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Abstract— In this paper, we study the best rate distortion
performance that an H.264 encoder can possibly achieve. Using
soft decision quantization rather than the standard hard decision
quantization, we first establish a general framework for jointly
designing motion compensation, quantization, and entropy coding
in the hybrid coding structure of H.264 to minimize a true
rate distortion cost. We then propose three rate distortion
optimization algorithms—a graph-based algorithm for optimal
soft decision quantization in H.264 baseline profile encoding given
motion compensation and quantization step sizes, an iterative
algorithm for optimal residual coding in H.264 baseline profile
encoding given motion compensation, and an iterative overall
algorithm for optimal H.264 baseline profile encoding—with them
embedded in the indicated order. The graph-based algorithm
for optimal soft decision quantization is the core; given motion
compensation and quantization step sizes, it is guaranteed to
perform optimal soft decision quantization to certain degree. The
proposed iterative overall algorithm has been implemented based
on the reference encoder JM82 of H.264. Comparative studies
show that it achieves a significant performance gain, which can be
as high as 25% rate reduction at the same PSNR when compared
to the reference encoder.

I. INTRODUCTION

H.264, the newest hybrid video compression standard [2],
has proved its superiority in coding efficiency over its prece-
dents, e.g., it shows a more than 50% rate reduction over the
popular MPEG-2. However, as the enormous volume of video
data constantly demands for better and better compression, it
is desirable to study how rate distortion (RD) methods can be
used to further enhance the compression performance in the
H.264 standard-compliant coding environment.

RD methods can be classified into two categories. The
first category computes the theoretical RD function based on
a given statistic model for video data [1]. These methods
usually encounter a problem of model mismatch. The second
category uses an operational RD function, which is computed
based on the data to be compressed. In general, there are
two main problems. First, in most operational methods, the
formulated optimization problem is restricted and the RD cost
is optimized only over motion compensation and quantization
step sizes. Second, there is no simple way to solve the
restricted optimization problem if the actual RD cost is used
because of hard decision quantization. Hence, an approximate
RD cost is often used in the restricted optimization problem
in many operational methods. For example, the optimization
of motion compensation in [5] is based on the prediction error
instead of the actual distortion, which is the quantization error.

In this paper, we shall use the actual RD cost and take
a different approach to design an operational RD method.

Using soft decision quantization (SDQ) instead of hard de-
cision quantization, we discover that the quantized residual
itself is a free parameter that can be optimized in order
to improve compression performance. Then, we formulate a
general framework for jointly designing motion compensation,
quantization, and entropy coding in the H.264 hybrid cod-
ing structure. Surprisingly, this generality not only improves
the compression performance in term of the RD tradeoff,
but also makes the optimization problem tractable at least
algorithmically. Indeed, with respect to the baseline profile
of H.264, we propose three RD optimization algorithms—a
graph-based algorithm for optimal soft decision quantization
given motion compensation and quantization step sizes, an
iterative algorithm for optimal residual coding given motion
compensation, and an iterative overall algorithm for optimal
H.264 baseline profile encoding—with them embedded in the
indicated order. The algorithm for optimal SDQ is the core.
The SDQ design is based on a graph structure developed
specifically for the context adaptive variable length coding
(CAVLC) method in the baseline profile of H.264. Given
motion compensation and quantization step sizes, the graph-
based algorithm is guaranteed to perform optimal soft decision
quantization to certain degree. The proposed iterative over-
all algorithm has been implemented based on the reference
encoder JM82 of H.264. Comparative studies show that it
achieves a significant performance gain over other baseline-
based methods reported in the literature, which can be as high
as 25% rate reduction at the same PSNR when compared to
the reference encoder.

The proposed rate distortion optimization algorithms for
H.264 video coding are inspired by a fixed-slope universal
lossy data compression scheme considered in [4], which was
first initiated in [6]. Other related works on practical SDQ
include without limitation SDQ in JPEG image coding and
H.263+ video coding (see [7], [8], [11] and references therein).
In [7], partial SDQ called rate-distortion optimal thresholding
was considered. Recently, Yang and Wang [8] successfully
developed an algorithm for optimal SDQ in JPEG compatible
image coding.Without considering optimization over motion
compensation and quantization step sizes, Wen et. al [11]
proposed a trellis-based algorithm for optimal SDQ in H.263+
video coding, which, however, is not applicable to H.264 due
to the inherent difference in the entropy coding stages of H.264
and H.263+.

This paper is organized as follows. In Section II, we develop
a framework for jointly designing the hybrid coding structure



in H.264. Section III is then dedicated to the core algorithm
of SDQ based on CAVLC. Simulation results and conclusion
are presented in Section IV and V, respectively.

II. THE SYNTAX-CONSTRAINED OPTIMIZATION
FRAMEWORK FOR H.264 VIDEO COMPRESSION

Besides the well-studied variabilities in H.264, e.g., motion
vectors, prediction modes, and quantization step sizes, we
discovered in [9] a somehow hidden parameter, i.e., the quan-
tized coefficient, which can be optimized in order to improve
compression performance, leading to an SDQ design. Using
SDQ instead of conventional hard-decision quantization a joint
design framework of motion compensation, quantization and
entropy coding in the hybrid structure is formulated as follows,

min
m,V,q,U

d(X, X̂) + λ · (r(m) + r(V) + r(q) + r(U)), (1)

where X is a given frame, X̂=P(m, V)+Ẑ(q, U) is the recon-
struction with P denoting the prediction, Ẑ={ẑ : ẑ=T−1(q·u)},
T−1 denotes the inverse DCT transform in H.264, d(·) is a
distortion measure, r(·) is the rate function for CAVLC, λ is
a positive constant corresponding to the slope of a point on the
RD curve, m, V, q, U are the prediction modes, motion vectors,
quantization step sizes, and quantized transform coefficients of
the frame, respectively, and (q, u) correspond to a block.

To make the problem tractable, an iterative solution is
proposed based on three algorithms—one for optimal soft
decision quantization given motion compensation and quanti-
zation step sizes, one for optimal residual coding given motion
compensation, and an overall iterative algorithm for jointly
designing motion compensation, quantization and entropy
coding—with them embedded in the indicated order. Specifi-
cally, the SDQ algorithm for given motion compensation and
quantization step sizes is formulated as,

min
U

d(X − P, Ẑ(q, U)) + λ · r(U). (2)

The overall iterative algorithm is obtained by alternately opti-
mizing residual coding and motion compensation as follows.

1. Optimal residual coding. For given motion prediction P,
residual coding is optimized by

min
q,U

d(X − P, Ẑ(q, U)) + λ · (r(q) + r(U)). (3)

2. Motion compensation optimization. For given residual
reconstruction Ẑ, motion compensation is optimized by

min
m,V

d(X − Ẑ, P(m, V)) + λ · (r(m) + r(V)). (4)

As discussed in [3], the core of the above iterative solution is
the SDQ algorithm, based on which the optimal residual cod-
ing algorithm is developed. In the following, we propose the
SDQ algorithm based on the CAVLC entropy coding method
in H.264, while the residual coding algorithm for given SDQ
outputs and the motion compensation algorithm are simple and
not included here (See [3] for more details.) At this point, it is
not clear whether or not the above iterative joint optimization
algorithm will converge to the global optimal solution of

(1). However, the iterative joint optimization algorithm does
converge in the sense that the actual rate distortion cost is
decreasing at each iteration step.

III. SOFT DECISION QUANTIZATION ALGORITHM DESIGN

This section presents the core SDQ algorithm for (2) based
on the CAVLC entropy coding method in H.264. Clearly,
for given motion prediction and q, the distortion term in (2)
is block-wise additive. Note that U = {u1, · · · , u16K}. In
H.264, encoding of each block uk depends not only on uk

itself, but also on its two neighboring blocks. However, such
dependency is very weak, and the number of bits needed
to encode uk largely depends on uk itself. Therefore, in
the given optimization problem, we will decouple such weak
dependency. In doing so, the optimization of the entire frame
can be solved in a block by block manner with each block
being 4×4. By omitting the subscript, the optimization problem
given in (2) now reduces to,

u = arg min
u

d(x− p, T−1(u · q)) + λ · r(u) (5)

where r(u) is the number of bits needed for CAVLC to encode
u given that its two neighboring blocks have been optimized.

We now address the computation issue for the distortion
term in (5) as it contains the inverse DCT transform. Con-
sider that DCT is a unitary transform, which maintains the
Euclidean distance. We use the Euclidean distance for d(·).
Then, the problem of (5) becomes

u = arg min
u

||c− u · q||2 + λ · r(u), (6)

where c = T(x − p) is computed before SDQ. Besides the
computational simplicity, the computation of distortion in the
DCT domain facilitates a dynamic programming solution of
the SDQ problem because the distortion is now computed in
an element-wise additive manner.

A. Review of CAVLC

The CAVLC entropy coding method is briefly summarized
as follows (see [2] for details, including notations mentioned
but otherwise undefined in this paper),

1. Initialization. An input sequence is scanned in the re-
verse order to form the run-length codewords, as well
as to initialize parameters such as TotalCoeffs , T1s , and
TotalZeros .

2. Encoding trailing levels with value ±1. It is named the
trailing ones coding rule.

3. Encoding other levels. 7 variable length coding tables,
named as Vlc(i) with 0 ≤ i ≤ 6, are used to encode
levels one by one. The table selection criteria are
summarized in the following pseudo codes.
//Choose a table for the first level
if(TotalCoeffs>10&&T1s<3)use Vlc(1);
else use Vlc(0);
// Update the table selection
vlc_inc[7]={0,3,6,12,24,48,inf} ;
if(level>vlc_inc[i]) i ++ ;
if(level>3 && FirstLevel) i = 2 ;
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Fig. 1. States and transitions. Left panel: defined according to the trailing one
coding rule of CAVLC. Right Panel: defined according to the level coding
process.

4. Encoding runs. A parameter, ZerosLeft , defined as the
number of zeros between the current level and the scan
end is used to select one table out of 7 to encode the
current run.

B. Graph Design for Soft Decision Quantization

A graph structure is developed to solve the minimization
problem in (6). Specifically, a graph is constructed to repre-
sent the vector space of the quantization outputs, with each
transition standing for a (run, level) pair and each path in the
graph giving a unique sequence of quantization output.

Figure 1 shows the states and transitions defined according
to the trailing ones coding rule and the level coding process in
CAVLC. The state definition implies a restriction to the state
output. For example, the output for the state Vi>Ti must be
greater than Ti. Consider the dynamic range of [1, 255] for a
level in H.264. The output range for Vi≤Ti is [1, Ti], while
the output for Vi>Ti will be any integer in [Ti +1, 255]. For
V6, the output range will be the full range of [1, 255].

Consider the runs coding process of CAVLC. As shown in
Figure 2, a state group is defined for each different ZerosLeft
as a set of all states defined according to the level coding
process and the trailing one rule. For coefficient c(i), there
are (i + 1) groups, corresponding to ZerosLeft = 0, 1, · · · , i.
Connections between groups are shown in the left panel of
Figure 2.

Based on the state definition for trailing ones and the state
group formation, we are able to follow the level coding table
initialization rule in the graph design. Specifically, for a path
starting at c(i) with ZerosLeft , we know that TotalCoeffs=
i+1−ZerosLeft . Thus, the rule is applied to build connections
from trailing one states to the initial level coding states.

Finally, we expand the main structure in the left panel of
figure 2 into a full graph. Specifically, there are 16 columns,
each of them corresponding to one coefficient. Each column
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Fig. 2. The graph structure for soft decision quantization based on CAVLC.
There are 16 columns according to 16 coefficient. A column consists of
multiple state groups, according to different ZerosLeft . The left panel shows
the connections between these groups. Each group initially contains a set
of states defined on the right panel, while eventually only those states that
receive connections from HOS will remain. Note that ZL in the figure stands
for ZerosLeft in the text.

contains several groups of states. There are i + 1 groups for
the column of c(i). The graph structure starts from HOS, with
connections going to Tn1H in all groups, to Tn2H in groups
with i+1−ZerosLeft > 1, to Tn3H in groups with i+1−
ZerosLeft > 2, to V0≤3 and V0>3 in groups with i+1−
ZerosLeft≤10, and to V1≤3 and V1>3 in groups with i+1−
ZerosLeft >10. Then, as discussed in the above, connections
between state groups are established according to the rules
shown in Figure 1 and the level coding table initialization
rule. Eventually, while each group initially contains 19 states
as shown in the right panel of Figure 2, only those states that
receive connections from HOS will remain valid. The graph
ends at a dummy state EOS. There is also a connection from
HOS directly to EOS, corresponding to a case where the whole
sequence is quantized to 0.

Theorem: Given a 4× 4 residual block, applying Viterbi
algorithm for a search in the proposed graph gives the optimal
solution to the soft decision quantization problem of (6).

Proof: We first show that for a given input sequence c =
(c15, · · · , c0) any possible sequence of quantization outputs
accords to a path in the proposed graph by introducing parallel
transitions between two connected states in the graph. Then,
we define a metric for each transition in the graph so that for
any path the accumulated metric equals to the RD cost of (6).
Consequently, Viterbi algorithm can be used to search for a
path in the graph to minimize the RD cost, and the obtained
path gives the optimal quantization outputs for solving (6).

We now define parallel transitions between two connected
states in the proposed graph. As discussed in the above, the
output of a state based on a level coding table will be any
integer within a given range. Consider a connection from a
state s1 at ci to a state s2 at cj . Denote the output range of s2

as [ulow, uhigh]. There will be (uhigh−ulow+1) parallel transitions
from s1 to s2, with each according to a unique quantization
output within the given range. Consider that for each coding



table two complementary states are defined to cover the whole
dynamic range of a level (or in case of Vlc(6) the state V6
covers the whole range). It is not hard to see that the proposed
graph represents the entire 16-dimensional vector space for the
quantization outputs.

To assign a metric to each transition, we study three types of
transitions, a transition starting from HOS, a transition ending
at EOS, and a transition from a state s1 at ci to another state
s2 at cj . Specifically, the RD cost for a transition from HOS
to a state s1 at ci is

ghead(ci, s1)=
15∑

k=i+1

c2
k + λ·r(ZerosLeft ,T1s,TotalCoeffs)

+ (ci − ui · q)2 + λ · rs1(ui), (7)

where the first term is the distortion for quantizing coefficients
from c15 to ci+1 to zero as the encoding starts with ci, the
second term gives the rate cost for coding the three parameters,
the last two terms accord to the RD cost for quantizing ci to
ui, and q is the quantization step size.

For a normal transition from state s1 at ci to state s2 at cj ,
(15≥ i >j ≥ 0), the metric is defined as

gn =
i−1∑

k=j+1

c2
k+λ·rs1(i−j−1)+(cj−uj ·q)2+λ·rs2(uj), (8)

where the first term computes the distortion for quantizing
coefficients in the between to zero, the second term is the rate
cost for coding the run with rs1(i − j − 1) given by the run
coding table at state s1, the last two terms are the RD cost
for quantizing cj to uj with rs2(uj) determined by the level
coding table at state s2.

Finally, for a transition from a state at the column of cj to
EOS, the RD cost is

gend(cj) =
j−1∑

k=0

c2
k, (9)

which accords to the distortion for quantizing the remaining
coefficients from cj−1 to c0 to zero.

By examining details of CAVLC, it is not hard to see that
the accumulated metric along any path leads to the same value
as evaluating the RD cost in (6) for the corresponding output
sequence. Thus, Viterbi algorithm is applicable to find the path
with the minimize RD cost, and the obtain path gives the
quantization output sequence to solve (6).

In practice, the number of parallel transitions from a state s1

to a state s2 can be much less than the (uhigh−ulow+1) to reduce
the complexity because the distortion is a quadratic function
of the quantization output. Simulation results also show that it
is sufficient to compute as few as 4 parallel transitions. Thus
the complexity is reduced to a fairly low level.

IV. EXPERIMENTAL RESULTS

The proposed joint optimization method is implemented
based on the H.264 reference software Jm82[12]. Simulations
have been conducted over a range of typical video sequences.

Figure 3 illustrates the RD performance of four methods
for coding various a video sequence. The video quality is
measured by PSNR, which is defined as

PSNR = 10 log10

2552

MSE
,

where MSE is the mean square error. Compared to the
method in [5] with the baseline profile, the proposed method
significantly reduces the coding rate while maintaining the
same quality. Compared to the method in [5] with the main
profile CABAC, the proposed method results in a codec that
has slightly better coding performance but enjoys a much faster
decoding process.

The right panel of figure 3 shows the relative rate savings of
the three optimization methods over the H.264 codec without
any RD optimization. Given two methods A and B the rate
saving of A relative to B is defined as [5],

S(PSNR) = 100 · RA(PSNR)−RB(PSNR)
RA(PSNR)

%,

where RA(PSNR) and RB(PSNR) are the rate with given
PSNR for methods A and B, respectively. It is shown that
with the same coding setting the proposed RD optimization
method achieves 20∼ 25% rate gain over the codec without
RD optimization, while the baseline-based method in [5] has
a gain of 10∼15%.

Hybrid video compression generally implies high corre-
lation among frames due to the application of inter-frame
prediction. The method proposed in this paper optimizes the
coding performance for each individual frame. Figure 4 shows
the simulation results of the relative rate savings, which is
obtained by averaging over various numbers of coding frames.
Clearly, the relative rate savings decreases as N increases due
to the error accumulation. However, compare the results for
the proposed method in the left panel and the result for the
method in [5] in the right panel. The proposed method show
a constant gain, indicating a positive effect of the proposed
optimization method on the RD performance for coding the
whole sequence.

V. CONCLUSION

In this paper, we have proposed a framework for jointly de-
signing motion compensation, quantization and entropy coding
in the hybrid coding structure of H.264. The core algorithm,
i.e., a graph-based SDQ algorithm, was proven to achieve
the optimal soft decision quantization for a block with given
motion compensation and the quantization step size in the
sense of minimizing the actual RD cost. The proposed method
achieves a significant compression gain, as up to 25% rate
reduction at the same PSNR when compared to the reference
codec.

In general, the SDQ-based joint optimization framework
is applicable to any coding method with a hybrid structure.
Although this paper was focused on its application to H.264, it
can be applied to other hybrid coding standards by developing
algorithms, particularly the SDQ algorithm, accordingly.
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Fig. 3. The RD performance and relative rate savings for coding a video sequence of “Carphone”. The left panels show the RD curves for four coding
methods. In the right panels, the relative rate savings over one common method, i.e., the method without RD optimization, are presented for the three RD
optimization methods.
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