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Abstract— LDPC convolutional codes have been shown to be
capable of achieving the same capacity-approaching performance
as LDPC block codes with iterative message-passing decoding.
However, traditional means of comparing block and convolu-
tional codes tied to the implementation complexity of trellis-
based decoding are irrelevant for message-passing decoders. In
this paper, we undertake a comparison of LDPC block and
convolutional codes based on several factors: encoding com-
plexity, decoding computational complexity, decoding hardware
complexity, decoding memory requirements, decoding delay, and
VLSI implementation requirements.

I. INTRODUCTION

A few years after the invention of turbo codes, re-
searchers became aware that Gallager’s low-density parity-
check (LDPC) block codes, first introduced in [1], were also
capable of capacity-approaching performance on a variety of
channels. Analysis and design of these codes quickly attracted
considerable attention in the literature, beginning with the
work of Wiberg [2], MacKay and Neal [3], and many others.
The convolutional counterparts of LDPC block codes, namely
LDPC convolutional codes, were subsequently proposed in [4].
Analogous to LDPC block codes, LDPC convolutional codes
are defined by sparse parity-check matrices that allow them to
be decoded using a sliding window-based iterative message-
passing decoder.

Recent studies have shown that LDPC convolutional codes
are suitable for practical implementation in a number of differ-
ent communication scenarios, including continuous transmis-
sion as well as block transmission in frames of arbitrary size
[5], [6], [7]. They are also known for their encoding simplicity,
since the original code construction method proposed in [4]
yields a shift-register based systematic encoder for real time
encoding of continuous data. This is an advantage when
compared to randomly constructed LDPC block codes.

Given their excellent bit error rate (BER) performance
along with their simplicity of encoding, it is quite natural to
compare LDPC convolutional codes with corresponding LDPC
block codes. In this paper, we compare these codes under
several different assumptions: equal decoding computational
complexity, equal decoding processor (hardware) complexity,
equal decoding memory requirements, and equal decoding
delay.

The paper is organized as follows. In Section II, we provide
a brief overview of LDPC convolutional codes. The main
contribution of the paper is Section III, where comparisons
of LDPC block and convolutional codes based on several
criteria are presented. In the next section, we focus on finite
block length comparisons between LDPC block codes and
terminated LDPC convolutional codes. Finally, we provide
some conclusions in Section V.

II. AN OVERVIEW OF LDPC CONVOLUTIONAL CODES

An (ms, J,K) regular LDPC convolutional code is the set
of sequences v satisfying the equation vH

T = 0, where
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(1)
Here, H

T is the (time-varying) semi-infinite syndrome for-
mer (transposed parity-check) matrix. For a rate R = b/c,
b < c, LDPC convolutional code, the elements H

T
i (t), i =

0, 1, · · · ,ms, are binary c × (c − b) submatrices defined as
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Starting from the ms · (c − b)-th column, H
T has J ones

in each row and K ones in each column. The value ms,
called the syndrome former memory, is determined by the
maximal width of the nonzero area in the matrix H

T, and
the associated constraint length is defined as νs = (ms +1) ·c.
In practical applications, periodic syndrome former matrices
are of interest. Periodic syndrome formers are said to have a
period T if they satisfy H

T
i (t) = H

T
i (t+T ), i = 0, 1, . . . ,ms,

t ∈ Z.
Although the corresponding Tanner graph has an infinite

number of nodes, the distance between two variable nodes
that are connected to the same check node is limited by the
syndrome former memory of the code. This allows continuous
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Fig. 1. Tanner graph of an R=1/3 LDPC convolutional code and an illustration of pipeline decoding.

decoding that operates on a finite window sliding along the
received sequence, similar to a Viterbi decoder with finite path
memory [8]. The decoding of two variable nodes that are at
least (ms+1) time units apart can be performed independently,
since the corresponding bits cannot participate in the same
parity-check equation. This allows the parallelization of the
I iterations by employing I independent identical processors
working on different regions of the Tanner graph simultane-
ously. Alternatively, since the processors implemented in the
decoder hardware are identical, a single “hopping” processor
that runs on different regions of the decoder memory succes-
sively can also be employed.

A pipeline decoding architecture that is based on the ideas
summarized in the previous paragraph was introduced by
Jiménez Felström and Zigangirov in [4]. The pipeline decoder
outputs a continuous stream of decoded data once an initial
decoding delay has elapsed. The operation of this decoder on
the Tanner graph for a simple time-invariant rate R = 1/3
LDPC convolutional code with ms = 2 is shown in Figure 1.
(Note that, to achieve capacity-approaching performance, an
LDPC convolutional code must have a large value of ms.)

III. IMPLEMENTATION COMPLEXITY COMPARISONS OF
LDPC BLOCK AND CONVOLUTIONAL CODES

In this section, we compare several aspects of decoding
LDPC convolutional and block codes.

A. Computational Complexity

Let Ccheck (Cvar) denote the number of computations re-
quired for a check (variable) node update for a check (variable)
node of degree K (J). Regardless of the code structure, Ccheck

and Cvar only depend on the values J and K.
For a rate R = b/c, (ms, J,K)-LDPC convolutional code

decoded using a pipeline decoder with I iterations/processors,
at every time instant each processor activates c − b check

nodes and c variable nodes. The computational complexity
per decoded bit is therefore given by

Cconv
bit = ((c − b) · Ccheck + c · Cvar) · I/c (3)

= ((1 − R) · Ccheck + Cvar) · I,

which is independent of the constraint length νs.
Similarly, the decoding complexity for an (N, J,K)-LDPC

block code is given by

Cblock
bit = (N ·

J

K
· Ccheck + N · Cvar) · I/N (4)

= (
J

K
· Ccheck + Cvar) · I

= ((1 − R) · Ccheck + Cvar) · I,

which is again independent of the code length N . Thus, there
is no difference between block and convolutional LDPC codes
with respect to computational complexity.

B. Processor (Hardware) Complexity

The sliding window decoder implementation of an LDPC
convolutional code operates on I · νs symbols. However,
decoding can be carried out by using I identical independent
parallel processors, each capable of handling only νs symbols.
Hence it is sufficient to design the processor hardware for νs
symbols. For an LDPC block code of length N , the processor
must be capable of handling all N symbols. Therefore, for
the same processor complexity, the block length of an LDPC
block code must be chosen to satisfy N = νs.

C. Memory Requirements

For the pipeline decoder, we need a storage element for
each edge in the corresponding Tanner graph. Each variable
node also needs a storage element for the channel value. Thus
a total of I · (J + 1) · νs storage elements are required for I
iterations of decoding. Similarly, we need N · (J + 1) storage



elements for the decoding of an LDPC block code of length
N . Thus, for the same memory requirements, an LDPC block
code must satisfy N = I · νs.

D. Decoding Delay

Let Ts denote the time between the arrival of successive
symbols, i.e., the symbol rate is 1/Ts. Then the maximum
time from the arrival of a symbol until it is decoded is given
by

∆conv
io = ((c − 1) + (ms + 1) · c · I) · Ts. (5)

The first term (c − 1) in (5) represents the time between the
arrival of the first and last of the c encoded symbols output by a
rate R = b/c convolutional encoder in each encoding interval.
The dominant second term (ms + 1) · c · I is the time each
symbol spends in the decoding window. Since c symbols are
loaded into the decoder simultaneously, the pipeline decoder
also requires a buffer to hold the first (c − 1) symbols.

With LDPC block codes, data is typically transmitted in
a sequence of blocks. Depending on the data rate and the
processor speed, several scenarios are possible. We consider
the best case for block codes, i.e., each block is decoded by
the time the first bit of the next block arrives. This results in
a maximum input-output delay of ∆block

io = N · Ts
1. Thus,

for equal decoding delays, the block length must satisfy N =
(c − 1) + νs · I , assuming the least possible delay for block
codes.

E. VLSI implementation requirements

As previously noted, both LDPC block and convolutional
codes can be decoded using message passing algorithms.
Therefore decoder implementations in both cases consist of
identical processing elements, namely variable nodes and
check nodes. What differs between the two decoders is the
total number of these elements and the way in which they are
interconnected.

It is well known that VLSI implementations of parallel
LDPC block decoders suffer from an interconnection problem
[9]. This is due to the fact that processing nodes must be placed
on the silicon at specific locations and connected as defined
by H. Regardless of how the rows and columns of H are
permuted, long interconnections are still required. The same
observation was also noted for LDPC block codes constructed
using algebraic techniques [10].

However, VLSI implementations of LDPC convolutional
decoders are based on replicating identical units, termed
processors. As illustrated in Fig. 2, the complete decoder can
be constructed by concatenating a number of these processors
together. For comparable BER performance, the size of an
LDPC convolutional code processor needs to be about an order
of magnitude less than the block length of an LDPC block code

1Note that the block decoder does not need any buffering under such
conditions. Let Tdec(N, I) denote the time required to perform I iterations
of message-passing decoding on a block of N symbols. Thus we require
Tdec(N, I) ≤ Ts, i.e., this scenario requires extremely fast processors or very
low data rates. By contrast, Tdec(c, I = 1) ≤ c ·Ts for convolutional codes,
implying that they can achieve much higher data rates under this assumption.
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Fig. 2. LDPC convolutional code decoders can be implemented by concate-
nating sub-units termed processors.

[11]. Therefore the routing complexity within a processor is
also an order of magnitude less than for a block code.

There are a wealth of other considerations than impact
upon VLSI implementations of LDPC codes. These include
the following.

• Any fully parallel LDPC block code decoder may suffer
from routing congestion [9]. If so, the total area of such
a decoder will be quite large and the maximum clock
frequency will be limited by wiring delays.

• The fully parallel LDPC block code decoder can be re-
placed with a smaller decoder that implements a fraction
of the circuit per clock cycle over a number of cycles.
This reduces power, area, and throughput in a linear
fashion.

• The LDPC convolutional code architecture is more
amenable to pipelining because it is inherently a feed-
forward architecture. Therefore it may achieve higher
clock speeds.

• Since LDPC convolutional code decoders require fewer
check and variable processing elements, the marginal cost
of optimizing their critical paths in return for increasing
their area is less than for LDPC block codes.

• Memory-based architectures have been proposed for both
LDPC block codes [12] and LDPC convolutional codes
[13].

• Algebraic code construction techniques can simplify
LDPC block code decoder implementations [14], [15].
However since LDPC convolutional codes can often be
constructed using the same methods these benefits may
be applied to both types of codes [11].



• The choice may be affected by system level issues such as
variable frame size, variable code rates, latency budgets,
and target frame error rate (FER).

In Table I we present a brief summary of some existing
LDPC block code and LDPC convolutional code VLSI im-
plementations. In [16] a 54 MBPS decoder was implemented
on a Xilinx Virtex-E FPGA. In [9] the decoder throughput
was much higher (500 MBPS) because the design was im-
plemented as an ASIC. The BER was about 2 × 10−5 at 2
dB. The decoder presented in [10] targets the IEEE 802.3an
standard [17], but it is a hard-decision decoder. This permits a
very high throughput but compromises performance. Also note
that the codes in [12] and [10] are high-rate, which makes it
easier to achieve higher throughput since less processing is
required per information bit. The decoder presented in [7] is
for a very powerful LDPC convolutional code, and as such it
achieves very good performance at the cost of relatively high-
complexity and low throughput. In [18] the first ever LDPC
convolutional code ASIC decoder is presented. It occupies
three times less area (in a larger process) than the LDPC
block code ASIC in [9], however it has about three times less
throughput and the BER performance is worse.

The discussion in this section illustrates the point that
making a comparison between LDPC block codes and LDPC
convolutional codes that includes BER/FER performance and
VLSI implementation complexity is not simple. It depends on
code choice, throughput, power, area, clock speeds, processing
node sizes, and system considerations. It is very possible that
there is no single best choice between LDPC block codes
and LDPC convolutional codes. Instead, LDPC block codes
and LDPC convolutional codes may provide complementary
solutions and the appropriate choice may vary from one system
to another. It is worth noting that LDPC block codes have
been the focus of extensive research for several years whereas
LDPC convolutional codes are relatively understudied. The
first attempts to implement decoders for LDPC convolutional
codes noted here are encouraging enough to suggest that
further investigation is warranted.

IV. BER-FER PERFORMANCE COMPARISON OF LDPC
BLOCK AND CONVOLUTIONAL CODES

In order to test the comparisons given in the previous
section, in Figure 3 we plot the performance of a rate R = 1/2,
(2048,3,6)-LDPC convolutional code with I = 50 iterations
on an AWGN channel. Also shown is the performance of two
J = 3, K = 6 LDPC block codes with a maximum of 50
iterations. The block lengths were chosen so that in one case
the decoders have the same processor complexity, i.e., N = νs,
and in the other case the same memory requirements, i.e., N =
νs · I . For the same processor complexity, the convolutional
code outperforms the block code by about 0.6 dB at a bit
error rate of 10−5. For the same memory requirements, the
convolutional and block code performance is nearly identical.

LDPC convolutional codes are very efficient for the trans-
mission of streaming data since they allow continuous encod-
ing/decoding. However, in some applications, it is preferable
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Fig. 3. BER performance comparison of LDPC block and convolutional
codes.

to have the data encoded in frames of pre-determined size in
order to maintain compatibility with some standard format.
Therefore, we now consider the performance of terminated
LDPC convolutional codes in this context.

The information sequence must be terminated with a tail of
symbols to force the encoder to the zero state at the end of the
encoding process. For conventional polynomial convolutional
encoders, the terminating tail consists of a sequence of zeros.
For LDPC convolutional code encoders, the tail is, generally
speaking, non-zero and depends on the encoded information
bits. Therefore, a system of linear equations must be solved
[19].

In Figure 4, we show FER performance comparisons of
terminated LDPC convolutional codes versus LDPC block
codes, assuming 100 decoding iterations. We terminate a rate
R = 1/2 (2048, 3, 6) LDPC convolutional code at various
frame lengths, resulting in a variety of terminated block
lengths and rates. We also provide simulation results for LDPC
block codes of comparable block lengths. As shown in Figure
4, a single LDPC convolutional code can be employed to
construct a family of codes of varying frame length and error
performance via termination. This is an advantage in terms
of flexibility compared to LDPC block codes, where a new
code must be constructed each time a new transmission frame
length is required.

Figure 4 also shows that, even though the LDPC convolu-
tional code with syndrome former memory ms = 2048 has a
hardware complexity comparable to that of a length N = 4096
LDPC block code, its performance is similar to much longer
LDPC block codes. In particular, for a terminated frame length
of N = 64512, the LDPC convolutional code outperforms the
LDPC block code of length N = 10000 and performs almost
as well as the LDPC block code of length N = 100000.

V. CONCLUSIONS

In this paper, we have provided a comparison of LDPC
block and convolutional codes based on several criteria,



TABLE I
A COMPARISON OF EXISTING BLOCK AND CONVOLUTIONAL LDPC CODE IMPLEMENTATIONS.NOTE PERFORMANCE FIGURES, WHERE AVAILABLE, ARE

GIVEN AT A CERTAIN
Eb

N0
.

Ref. Type Code Params. Code Rate Device Perf. Throughput
[9] Block (1024,3,6) 0.5 52.5mm2 in 0.16um CMOS BER = 2.0e-5 @ 2dB 500 MBPS
[16] Block (9216,3,6) 0.5 FPGA BER = 1.0e-6 @ 2dB 54 MBPS
[12] Block (8176,7154) 0.875 FPGA n/a 169 MBPS
[10] Block (2048,1723) 0.841 17.64mm2 in 0.18um CMOS BER = 5.0e-5 @ 6dB 3200 MBPS
[13] Conv. (128,3,6) 0.5 FPGA BER = 1.0e-3 (1.0e-4) @ 2dB 75 MBPS (25 MBPS)
[7] Conv (2048,3,6) 0.5 FPGA BER = 1.0e-10 @ 2dB 2 MBPS
[18] Conv (128,3,6) 0.5 16mm2 in 0.18um CMOS BER = 3.0e-4 @ 3dB 150 MBPS
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Fig. 4. FER performance comparison of terminated LDPC convolutional and
block codes.

including computational complexity, hardware complexity,
memory requirements, decoding delay, and BER/FER perfor-
mance. It has been shown via computer simulations that LDPC
convolutional codes have an error performance comparable
to that of their block code counterparts. In addition, several
interesting tradeoffs have been identified between the two
different types of codes with respect to VLSI implementation.
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