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Abstract—We consider wireless networks with interference . STABILITY OF MAXIMAL GREEDY SCHEDULES
constraints. The network consists of a set of links and a set of
users who generate packets that traverse these links. Each use A. Single-Hop Routes

:.S associated with a route consisting of a sequence of links. The £ a6 of exposition, we first consider a network where
inks are subject to the usual interference constraints: (i) if link , . . . .
I interferes with link &, then link k also interferes with link {, ©ach user's route consists of a link. The stability resurttits
and (i) two links that interfere with each other cannot transmit model will then be used to derive a stability result for gaher
simultaneously. The interference set of a link is defined to be multi-hop networks. Consider a network consistinglofinks
the set of links that interfere with the link, along with the link gperating in a discrete time-slotted manner. Associateti wi
:.tse”' A greedy scheduler is one which selects an arbitrary set of ¢ . |ink is an interference s&twhich satisfies the following
inks to transmit subject only to the interference constraint. We . .
use a traffic regulator at each link along the route of each flow WO properties: (a) € &, and (b) ifk € &, thenl € &. There
which shapes the traffic of the flow. We prove that the network is €an be at most one departure from each interference set in any
queue-length stable under any maximal greedy scheduling policy time slot. We will state this more precisely later.
provided that the total arrival rate in the interference set of each Associated with each link is a stochastic arrival process
link is less than one. {A;(n)}, where 4;(n) is the number of packet arrivals in slot
n to link [. We assume that the arrival processes are stationary
and let\; = E(A;(n)). The number of departures from link
In this paper, we consider distributed scheduling algorith [ at timen is denoted byD;(n), and D;(n) is assumed to be
for resource allocation in general multi-hop wireless meks. less than or equal tq packets. In other words, linkcan serve
It has been well-known for a while that scheduling policieat the most; packets per time slot. Lef;(n) be the number
which use queue length information can stabilize very ganepf packets at link at the beginning of time slot. We assume
gueueing networks [12], [13], [11]. However, such schedyli that the sequence of events in each time slot is as follows: (i
policies have to be implemented in a centralized fashion. schedule consistent with the interference constraint iseh,
this paper, we consider the design of simpler decentralizét) departures occur next, and (iii) arrivals occur last.
scheduling policies, albeit at the loss of some throughput i Let d;(n) be an indicator function indicating whether link
the network. is scheduled in time sldtor not. We make the assumption that
We consider a fairly general interference model for thiénk [ is eligible for scheduling only if it has at leagtwaiting
wireless network. Associated with each link is a set of othgackets. ThusD,(n) = ¢;d;(n). Now, we define a maximal
links which interfere with the given link. The only assungpti greedy scheduling policy. A policy is said to be a maximal
we make is that the interference relationship is symmetdg, greedy policy if the departures under this policy satisfg th
if link [ interferes with linkk, then! also interferes withk. following constraint: if g;(n) > ¢, then}, o di(n) = 1.
We are interested in maximal greedy policies which selethis ensures that when a link has at legspackets, either
links for scheduling such that the interference constsaame the link is scheduled or if it not scheduled, then the reaban t
satisfied. The policies are greedy in the sense the schedtiis not scheduled is that another link from its interfererset
can be chosen in the following fashion: start with any link its scheduled.
the network and add links to the schedule, one link at a time,We now comment on prior work on this problem. The policy
subject to interference constraints. If the schedulergeds to that we consider in this paper is a natural extension of the
implement this algorithm until no more links can be added tmaximal schedules considered for high-speed switchestii [1
the schedule, then it is called maximal. Such maximal greef#] and, for Bluetooth-like wireless networks, in [7]. Assing
policies require no significant computation and potentiein ¢; = 1 for all [, the model considered in this paper has been
be implemented in a decentralized manner. considered previously in [16] and [3]:

I. INTRODUCTION



« LetC denote the capacity region of the network, i.e., thi¢ has an additionad; /¢; term. This would result in a slightly
set of all arrival rates for which there is a scheduling polveaker condition than the one we prove. Now
icy that renders the queues stable. het max; |&]. In
[16], it was shown that, under any maximal greedy policy, Vin+1) - V(n)
the queue Iengths in the network are stable if the arrival _ Z (g(n+1) (Z qr(n )
rates lie |n5|deLC In other words, the capacity reduction
due to maX|maI greedy policies is upper-bounded py.
o In [3], it was shown that ify", .. A < 1, then the net- Y q(n) (Z (qe(n+1) — Qk(n))>
work is rate stable under any maximal greedy scheduling Ck
policy, i.e, the departure rate from each link is equal to the
arrival rate into the link. If only rate stability is requite + Z (@(n+1) —aq) (Z (gr(n +1) - Qk(”))>
this is a much stronger result than the one in [16]. In a Ck

l ke&;

ke&

ke&g

this paper, for the case where the link capacities are in 1

general greater than or equal to we will prove that  — 22 a(n (Z (gr(n+1) — %(”)))

if Zke& Ai/a < 1, then the network is queue length kes, Ck

stable.

(@(n+1) —q(n qr(n+1) —qx(n
We assume that'ov(Ax(n), A;(n)) = o3, < oc. The proof +Z C)l () (Z (e C)k ( ))>
is presented only for the case where ke&
A(n) := {A1(n), Az(n), ..., AL(n)} = 22 a(n (Z w(n) — dk(n))>
ke&

are i.i.d. acrossn. In other words, the arrival process is =
i.i.d. across time slots, but may be dependent across links. +Z(az(n) _ Z(ak(n) —dp(n)) |,
The extension to more general Markovian arrival processes i Prs

straightforward. In the following Lyapunov analysis, onash
to then consider the drift over multiple time slots; otheyayi
the proof is similar.

whereay(n) := Ag(n)/ck. In the above derivation, we have
used the fact that

Define the state of the system to be Z (g(n+1) —q(n (Z qr(n )
Q(n) = (QI(n)an(n)u”'7qL(n))7 l ke&
where the dynamics af;(n) are given by Z a(n (Z (ge(n+1) — Qk(n))> .
keE Ck

a(n+1) =q(n) + Ai(n) — Di(n). _
Define Ex(-) = E(-|X). Using the bounded second-moment
Assume thaf{ D;(n)} is chosen according to some probabilityassumption and the fact that the number of departures from
distribution givenQ(n), i.e., P({D;(n) }|Q(n)) is given. Thus, each interference set is bounded, we get
Q(n) is a countable-state-space Markov chain. Note that

P({D;(n)}|Q(n)) can be arbitrary. In particulaf D;(n)} Eqm (V(n+1) - V(”))

could be any sequence of schedules consistent with the in- a

terference constraints. In a real-life network, the maxima = 22 . Z de

schedule may by selected by a random access protocol. In ke ke

this case, it may be reasonable to assume that the all feasibl 5 q(n) i

maximal schedules are equally likely at each time instant. — Z Z Z

However, our analysis applies to more general models as well Liai(n)>0 ket ket

in fact, it holds for any rule used to choose the set of active Ak(n)

links, as long as the resulting schedule is a maximal sckedul s 2 Z (Z . L)+ B
Deflne L ‘Il(n >0 ke&;

(1) l:qi(n)>0

q(n)
ql Qk S —2¢ Z + Bl7
n=> = Z
! he& where B, 31 > (0 are some constants and = 1 —
The above Lyapunov function is very similar to the Lyapunowax; Zkeg ok . Thus, we have the following theorem.
function considered in [4] to study maximal matching in kigh Theorem 1:For any set of distribution®({D;(n)}|Q(n)),

speed switches. The Lyapunov function in [4] is of the formthe Markov chainQ(n) is stable-in-the-mean, i.e.,

;qzén)( ZQk > lim sup—ZZqu

ke N—oo N n=11=1




if ) capacity of linki, at each time slot, a-regulator associated
Z 2k q vl with link [ checks its buffer size and if it exceeds link capacity
keg, OF ¢, it transferse; bits to the user’s queue with probability.
. . . herwi i f hing. W h H(n
Further, it P({ Dy(n)}|Q(n)) is independent of, thenQ(n) is Otherwise, it transfers not ing. We use the notati®h(n)
. : L g t? denote the number of departing packets from the regulator
a time-homogenous Markov chain and it is positive recurren . , —
Proof: Stability-in-the-mean follows from [6] and poskiv of users on link [. The idea of a regulator was originally
) Y . P suggested in the context of re-entrant manufacturing lines
recurrence follows from Foster’s theorem [1]. o [5]
In what follows, if the network is either stable-in-the-mea™ . - .
or positive recurrent, we call it queue-length stable Denote the arrival rate vector consisting of the arrivabsat
' ' of all the users by{\;]1<s<s. We choose the regulators of
B. Multi-Hop Routes a users according to the following rule: for the first hop

In this section, we extend the result in the last sectidff°d®) along the path of user we use aj,-regulator at
to wireless networks shared by mangers each of whom Its input queue for uses; for k™ hop ¢ > 2), we use a
has atraffic flow traversing the network through possibly()‘s + (kf 1)6)-regulatqr. . .
multiple hops. Specifically, we assume there Srasers each Ve define the combination of the regulators and maximal
of whose traffic takes a fixed path through the network. THE€edy scheduling to be a regulated greedy scheduling algo-

path information is contained by the routing mati#t — rithm. The main result of_ this seption is given belpw:
[Hf,1 <1 < L;1 < s < S], where Hf is an indicator Theorem 2:For a multi-hop wireless network, if the rate

function and is determined as follows vector {A;; 1 < s < 5} satisfies
. [ 1 ifl€ Lison the path of user; Do ASH
Hy = { 0 otherwise (2) kezg: ch <1 3
l

where £ = {1,2,..., L}. Further to indicate the fact that a
path is a directed route, we define two functioR&(l) and
N#(l) to be the previous and next link, respectively, fro
link [ on users’s route. Of course, the previous link and las
link are undefined for the first and last link, respectively,a

for any link[ in the network, the network is queue length stable
under regulated greedy schedulingeifs chosen sufficiently
mall. o
Proof: Let p; denote the length of the regulator queue on

: . . link ! for users. It is easy to see that the whole system
route. Each uses’s arrival processA,(n) is a random process . . ) :
. . o . . (a(n),p(n)) is a Markov Chain. We define the following
with mean arrival rate\*. Similar to the previous section, we . i
Lyapunov function for the system:

assume thatl;(n) is i.i.d. across time slots, but we also make

the further assumption that the arrival processes of differ V(q,p) = Vi(q) + £Va(p, q), (4)
users are independent. L&t,, denote the maximum number
of hops traversed by any user in the network. whereV;(q) is a natural modification of the Lyapunov func-

As before, letD;(n) be the number of departures from linktion in (1). Specifically, due to fact that we are considering
1 <1 < L in time slotn. Further, Dj(n) is the number of multiple flows in each link, we define
departures of user over link [ in time slotn, i.e.,

Zs s s ZS s S
Di(n) = 3 H; Di (). e =3 = Z(Z . )

! ke& k

Define g; to be the queue length of useron link [ and g ©On the other handV; is defined as follows
without the superscript denote the total queue length iat 1 . ,
ieLq =3, q;?{ls_ P a gh@ Va(p,a) = 5 SO ey +ai)
One way to achieve queue stability in a multi-hop network
system is to introduceegulators in the system. We have ¢ is a positive parameter.
investigated such problems in our previous works [15], {#] f The queue update equations for this system are
networks with a simple interference constraint. In this grap s s s <
we show that the same idea is also applicable to the general (n+1) = q(n)—Di(n)+ Ri(n) ®)
model considered in this paper, and prove that the sufficient pj(n+1) = (pj(n) — Rj(n))" + Dp.;y(n),  (6)
condition for single-hop stability case essentially remsaihe
same even with multi-hop routes.

leL s

where R; (n) is the output of the regulator that immediately

A regulator is introduced, for each flow using a link, Sudqreceds link on path of source. When link! is the first link
that the burstiness of the packets belonging to each usero'igthe p"?“h Sf source, then Dp. ;) = As(n). We glso use
regulated before entry into the node.regulator associated the ”C?ta“o”'.“l (n) to dgno'ge the departure normalized by the
with link [ is a logical device with a maximum service ratéalssouated link capacitg, i.e.,

A, i.e., it generates packets for the node at its output at
a maximum rate ofA. Specifically, assuming; to be the ri(n) = cl




Thus, 77 (n) is either0 or 1. Due to our definition of the —pye(n) — qf(n)>2 |q(n)7p(n)}
regulator,R; can only be non-zero whesf exceeds;. Hence,

we can remove the projection in (6) as well and we have The second term above can be bounded by a congtant
pi(n+1) = pi(n) — R (n) + Dip. ) (n). independent op(n) andq(n) as follows:

> Y (Pt +an+1)

We have to upper bound

EV(a(n+1),p(n+1)) = V(a(n),p(n))la(n), p(n)]

1<ISL s
by a negative number for all statég, p)(n) except possibly —Pi=y(n) — g (n ‘q ), p(n )}
in a bounded region, where the drift should simply be finite. 9
We consider the contribution df;(q) and Va(p, q) sepa- Z Z s+ Lme +((As + Line))” = Cs. (8)
rately for now. Thus, we first look at IsisL s
AVi(q) = Vi(a(n + 1)) — Vi(a(n)) The first term can be bounded by
B q(n (ge(n+1) — qi(n))
=22 (Z - S Y (e +am) (phen+1)
ke& 1<IKL s
1 - 1 - 9 S S s
+ Y (@(n + C) a(n)) (Z (gx(n + c) q"(”))> +¢; (n+1) = pay(n) — g (n)) Iq(n),p(n)}
] t keE, k
l = 3> (b +aim) BB ()
_ Z @ (n <Z Z )) I<I<L s
i — Ry (m)la(n), p(n)]
+ Y 0im) - di () (Z i) - dz<n>>> = Y Y (e + 6 0) Rz
l s ke& s 1<IKL s

Similar to the proof in Theorem 1, the second term can

. RN *(1) pNé(z)(")>CN (U}
be bounded by a constant. Further, given the fact that

Eqemy.pmlri(n)] < 2=L=<_ (due to the definition of the < S>> (pN () + ¢ (n )) (R}
regulators), we have 1<I<SL s
7RS sy Ipe s n(n)>cns :|7
Equy.pny (Vi(n +1) - utn N PR (e
1<I<L where R; is the average departure rate of regula®yjr if p;

Next, consider the contribution df, to the drift. Note that €xceeds:;. From our design of the regulators, we know that
+Ri(n) — R?GV-*(Z)(”)'(7) for any! on the path ofuses. From this, we have

We can bound the drift due t; as follows:
AVi(p,q) Z Z (PN s(n) +q(n ))

AVs(p,q) 1<I<L s
= E [Va(p(n + 1), a(n + 1)) =Va(p(n), a(n)ja(n), p(n)] (R = R gy zenen) + G2 (@)
= E [ Z Z(pﬁw(z)(n +1)+ ¢ (n+1))? By combining (8) and (9), we have

1<IKL s

EV(a(n+1), (n +1) = V(a(n),p(n))la(n), p(n)]

= 3 D ke +ai () |q<n>,p<n>] 2 M eSS (e () + g ()

1<IKL s 1<i<L 1<IKL s

X (RY — RigenDys  (m)y>cns +C
> 2 (p?vs(w(n) +qf(n)) (P?vs(z>(n+ 1) ( et (l)) 3

E
|:1§1§L s = - Z Z [ —f(Rz RNs ) pN wm(M=ens <z))]

s s s 1<I<L s
a7 (n+ 1) = Py (n) = (1)) la(n), p(n)]
xqj(n) +¢ Z prvs(z)(”) (R;
> 5 () it
WO atn Bs
1<I<L s RNS(Z)IP?VS(Z)(”)ZCNS(L)> +Cs



IA

IR

1<I<L s *t
X (Rf - wa(l)Ip‘j\,sm(n)ch(w) +Cs

-y Cﬂl—fcl_ q; (n)

1<I<L s b

—e6 Y phe(n) + Cu,

1I<I<L s

whereC, is another constant. We can easily chogsgnde-

q;(n) +¢ Z Zpﬁvs(z)(”)

I<I<L s

Using techniques in [8], this algorithm can be shown to
converge to the optimal solution of (10) dfis chosen to be
sufficiently small. We assume here that the congestion -infor
mation is available instantaneously to each source; dlgos

and analysis for more general delay models can be obtained by
appropriately modifying the results in [2]. Now, these \ati
rates, can be used to design the regulator parameters, which
along with greedy maximal scheduling ensures the stability
of the network. For an alternative solution to the resource
allocation problem for the special case of max-min fairness

pendent ofp(n) andq(n), of course) here such that

T &g >Cy >0

“ [1]
for any [ (we assumec; > 0 for any [; links with zero
capacity can be removed from the network without affectindz]
the capacity region), and thus

E[V(q(n+1),p(n+1)) = V(a(n),p(n))la(n), p(n)]

< = > S Gt —e€ 30 S pin) +Cu.

1<I<L s I<I<L s

(3]

(4]

This concludes the proof of this theorem. o g

IIl. RESOURCEALLOCATION [6]

In the previous section, we assumed that the arrival rate
satisfies the sufficient condition for stability given by .(&) 7
this section, we discuss how one can ensure that the arrival
rates can be controlled to satisfy the sufficient condition,
Associate a utility functions(\s) with each users, where (8]
Us(+) is an increasing, twice differentiable concave function.
Suppose that theg ).} are chosen to solve the following [°]
optimization problem:

nax, Us(As) (10) o
subject to (11
Z Z As <1 — (L + 1, v, [12]

ke& s:Hé:l Ck

wheree is chosen to be sufficiently small. This problem can
be solved in a distributed manner to obtain fhe }; see [10] [13]
for a general overview of congestion control and [2] for an
application to wireless networks with a special interfeeen [14]
constraint. Here we will briefly present how such a congestio
control algorithm can be implemented for our model. Eaghs)
source chooses its arrival rate at each time instant acaprdi
to the following algorithm which depends on the congestion
price p;(n) generated by each link: [16]

U'm) = 3 i),

l:HP=1

11)

and each link implements the following algorithm to compute
the congestion pricg;(n) :
+
A
D, )=|p 0 =1 (L, +1
pr(n+1)=|pi(n) + Z Z o (L, + 1)e

k€& s:Hp=1

we refer the reader to [9].
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