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Abstract— We consider wireless networks with interference
constraints. The network consists of a set of links and a set of
users who generate packets that traverse these links. Each user
is associated with a route consisting of a sequence of links. The
links are subject to the usual interference constraints: (i) if link
l interferes with link k, then link k also interferes with link l,

and (ii) two links that interfere with each other cannot transmit
simultaneously. The interference set of a link is defined to be
the set of links that interfere with the link, along with the link
itself. A greedy scheduler is one which selects an arbitrary set of
links to transmit subject only to the interference constraint. We
use a traffic regulator at each link along the route of each flow
which shapes the traffic of the flow. We prove that the network is
queue-length stable under any maximal greedy scheduling policy
provided that the total arrival rate in the interference set of each
link is less than one.

I. I NTRODUCTION

In this paper, we consider distributed scheduling algorithms
for resource allocation in general multi-hop wireless networks.
It has been well-known for a while that scheduling policies
which use queue length information can stabilize very general
queueing networks [12], [13], [11]. However, such scheduling
policies have to be implemented in a centralized fashion. In
this paper, we consider the design of simpler decentralized
scheduling policies, albeit at the loss of some throughput in
the network.

We consider a fairly general interference model for the
wireless network. Associated with each link is a set of other
links which interfere with the given link. The only assumption
we make is that the interference relationship is symmetric,i.e.,
if link l interferes with linkk, then l also interferes withk.
We are interested in maximal greedy policies which select
links for scheduling such that the interference constraints are
satisfied. The policies are greedy in the sense the schedule
can be chosen in the following fashion: start with any link in
the network and add links to the schedule, one link at a time,
subject to interference constraints. If the scheduler proceeds to
implement this algorithm until no more links can be added to
the schedule, then it is called maximal. Such maximal greedy
policies require no significant computation and potentially can
be implemented in a decentralized manner.

II. STABILITY OF MAXIMAL GREEDY SCHEDULES

A. Single-Hop Routes

For ease of exposition, we first consider a network where
each user’s route consists of a link. The stability result for this
model will then be used to derive a stability result for general
multi-hop networks. Consider a network consisting ofL links
operating in a discrete time-slotted manner. Associated with
each link is an interference setEl which satisfies the following
two properties: (a)l ∈ El, and (b) ifk ∈ El, thenl ∈ Ek. There
can be at most one departure from each interference set in any
time slot. We will state this more precisely later.

Associated with each link is a stochastic arrival process
{Al(n)}, whereAl(n) is the number of packet arrivals in slot
n to link l. We assume that the arrival processes are stationary
and letλl = E(Al(n)). The number of departures from link
l at timen is denoted byDl(n), andDl(n) is assumed to be
less than or equal tocl packets. In other words, linkl can serve
at the mostcl packets per time slot. Letql(n) be the number
of packets at linkl at the beginning of time slotn. We assume
that the sequence of events in each time slot is as follows: (i)
schedule consistent with the interference constraint is chosen,
(ii) departures occur next, and (iii) arrivals occur last.

Let dl(n) be an indicator function indicating whether linkl
is scheduled in time slotl or not. We make the assumption that
link l is eligible for scheduling only if it has at leastcl waiting
packets. Thus,Dl(n) = cldl(n). Now, we define a maximal
greedy scheduling policy. A policy is said to be a maximal
greedy policy if the departures under this policy satisfy the
following constraint: if ql(n) ≥ cl, then

∑

k∈El
dl(n) = 1.

This ensures that when a link has at leastcl packets, either
the link is scheduled or if it not scheduled, then the reason that
it is not scheduled is that another link from its interference set
is scheduled.

We now comment on prior work on this problem. The policy
that we consider in this paper is a natural extension of the
maximal schedules considered for high-speed switches in [14],
[4] and, for Bluetooth-like wireless networks, in [7]. Assuming
cl = 1 for all l, the model considered in this paper has been
considered previously in [16] and [3]:



• Let C denote the capacity region of the network, i.e., the
set of all arrival rates for which there is a scheduling pol-
icy that renders the queues stable. Letα = maxl |El|. In
[16], it was shown that, under any maximal greedy policy,
the queue lengths in the network are stable if the arrival
rates lie inside1

α
C. In other words, the capacity reduction

due to maximal greedy policies is upper-bounded by1/α.
• In [3], it was shown that if

∑

k∈El
λl ≤ 1, then the net-

work is rate stable under any maximal greedy scheduling
policy, i.e, the departure rate from each link is equal to the
arrival rate into the link. If only rate stability is required,
this is a much stronger result than the one in [16]. In
this paper, for the case where the link capacities are in
general greater than or equal to1, we will prove that
if
∑

k∈El
λl/cl < 1, then the network is queue length

stable.

We assume thatCov(Ak(n), Al(n)) = σ2
kl < ∞. The proof

is presented only for the case where

A(n) := {A1(n), A2(n), . . . , AL(n)}

are i.i.d. acrossn. In other words, the arrival process is
i.i.d. across time slots, but may be dependent across links.
The extension to more general Markovian arrival processes is
straightforward. In the following Lyapunov analysis, one has
to then consider the drift over multiple time slots; otherwise,
the proof is similar.

Define the state of the system to be

Q(n) := (q1(n), q2(n), . . . , qL(n)),

where the dynamics ofql(n) are given by

ql(n + 1) = ql(n) + Al(n) − Dl(n).

Assume that{Dl(n)} is chosen according to some probability
distribution givenQ(n), i.e.,P ({Dl(n)}|Q(n)) is given. Thus,
Q(n) is a countable-state-space Markov chain. Note that
P ({Dl(n)}|Q(n)) can be arbitrary. In particular,{Dl(n)}
could be any sequence of schedules consistent with the in-
terference constraints. In a real-life network, the maximal
schedule may by selected by a random access protocol. In
this case, it may be reasonable to assume that the all feasible
maximal schedules are equally likely at each time instant.
However, our analysis applies to more general models as well;
in fact, it holds for any rule used to choose the set of active
links, as long as the resulting schedule is a maximal schedule.

Define

V (n) =
∑

l

ql(n)

cl

(

∑

k∈El

qk(n)

ck

)

. (1)

The above Lyapunov function is very similar to the Lyapunov
function considered in [4] to study maximal matching in high-
speed switches. The Lyapunov function in [4] is of the form

∑

l

ql(n)

cl

(

ql(n)

cl

+
∑

k∈El

qk(n)

ck

)

.

It has an additionalql/cl term. This would result in a slightly
weaker condition than the one we prove. Now

V (n + 1) − V (n)

=
∑

l

(ql(n + 1) − ql(n))

cl

(

∑

k∈El

qk(n)

ck

)

+
∑

l

ql(n)

cl

(

∑

k∈El

(qk(n + 1) − qk(n))

ck

)

+
∑

l

(ql(n + 1) − ql(n))

cl

(

∑

k∈El

(qk(n + 1) − qk(n))

ck

)

= 2
∑

l

ql(n)

cl

(

∑

k∈El

(qk(n + 1) − qk(n))

ck

)

+
∑

l

(ql(n + 1) − ql(n))

cl

(

∑

k∈El

(qk(n + 1) − qk(n))

ck

)

= 2
∑

l

ql(n)

cl

(

∑

k∈El

(ak(n) − dk(n))

)

+
∑

l

(al(n) − dl(n))

(

∑

k∈El

(ak(n) − dk(n))

)

,

whereak(n) := Ak(n)/ck. In the above derivation, we have
used the fact that

∑

l

(ql(n + 1) − ql(n))

cl

(

∑

k∈El

qk(n)

ck

)

=
∑

l

ql(n)

cl

(

∑

k∈El

(qk(n + 1) − qk(n))

ck

)

.

DefineEX(·) = E(·|X). Using the bounded second-moment
assumption and the fact that the number of departures from
each interference set is bounded, we get

EQ(n) (V (n + 1) − V (n))

≤ 2
∑

l

ql(n)

cl

(

∑

k∈El

λk(n)

ck

−
∑

k∈El

dk(n)

)

+ B

= 2
∑

l:ql(n)>0

ql(n)

cl

(

∑

k∈El

λk(n)

ck

−
∑

k∈El

dk(n)

)

+ B

≤ 2
∑

l:ql(n)>0

ql(n)

cl

(

∑

k∈El

λk(n)

ck

− 1

)

+ B1

≤ −2ǫ
∑

l:ql(n)>0

ql(n)

cl

+ B1,

where B,B1 > 0 are some constants andǫ = 1 −
maxl

∑

k∈El

λk

ck

. Thus, we have the following theorem.
Theorem 1:For any set of distributionsP ({Dl(n)}|Q(n)),

the Markov chainQ(n) is stable-in-the-mean, i.e.,

lim sup
N→∞

1

N

N
∑

n=1

L
∑

l=1

E(ql(n)) < ∞,



if
∑

k∈El

λk

ck

< 1, ∀l.

Further, ifP ({Dl(n)}|Q(n)) is independent ofn, thenQ(n) is
a time-homogenous Markov chain and it is positive recurrent.

Proof: Stability-in-the-mean follows from [6] and positive
recurrence follows from Foster’s theorem [1]. ⋄

In what follows, if the network is either stable-in-the-mean
or positive recurrent, we call it queue-length stable.

B. Multi-Hop Routes

In this section, we extend the result in the last section
to wireless networks shared by manyusers, each of whom
has a traffic flow traversing the network through possibly
multiple hops. Specifically, we assume there areS users each
of whose traffic takes a fixed path through the network. The
path information is contained by the routing matrixH =
[Hs

l , 1 ≤ l ≤ L; 1 ≤ s ≤ S], where Hs
l is an indicator

function and is determined as follows

Hs
l =

{

1 if l ∈ L is on the path of users;
0 otherwise,

(2)

whereL = {1, 2, . . . , L}. Further to indicate the fact that a
path is a directed route, we define two functionsP s(l) and
Ns(l) to be the previous and next link, respectively, from
link l on users’s route. Of course, the previous link and last
link are undefined for the first and last link, respectively, on a
route. Each users’s arrival processAs(n) is a random process
with mean arrival rateλs. Similar to the previous section, we
assume thatAs(n) is i.i.d. across time slots, but we also make
the further assumption that the arrival processes of different
users are independent. LetLm denote the maximum number
of hops traversed by any user in the network.

As before, letDl(n) be the number of departures from link
1 ≤ l ≤ L in time slot n. Further,Ds

l (n) is the number of
departures of users over link l in time slotn, i.e.,

Dl(n) =
∑

s

Hs
l Ds

l (n).

Define qs
l to be the queue length of users on link l and ql

without the superscripts denote the total queue length atl,
i.e., ql =

∑

s qs
l H

s
l .

One way to achieve queue stability in a multi-hop network
system is to introduceregulators in the system. We have
investigated such problems in our previous works [15], [2] for
networks with a simple interference constraint. In this paper,
we show that the same idea is also applicable to the general
model considered in this paper, and prove that the sufficient
condition for single-hop stability case essentially remains the
same even with multi-hop routes.

A regulator is introduced, for each flow using a link, such
that the burstiness of the packets belonging to each user is
regulated before entry into the node. Aλ-regulator associated
with link l is a logical device with a maximum service rate
λ, i.e., it generates packets for the node at its output at
a maximum rate ofλ. Specifically, assumingcl to be the

capacity of link l, at each time slot, aλ-regulator associated
with link l checks its buffer size and if it exceeds link capacity
cl, it transferscl bits to the user’s queue with probabilityλ

cl

.
Otherwise, it transfers nothing. We use the notationRs

l (n)
to denote the number of departing packets from the regulator
of user s on link l. The idea of a regulator was originally
suggested in the context of re-entrant manufacturing linesin
[5].

Denote the arrival rate vector consisting of the arrival rates
of all the users by[λs]1≤s≤S . We choose the regulators of
a users according to the following rule: for the first hop
(node) along the path of users, we use aλs-regulator at
its input queue for users; for kth hop (k ≥ 2), we use a
(λs + (k − 1)ǫ)-regulator.

We define the combination of the regulators and maximal
greedy scheduling to be a regulated greedy scheduling algo-
rithm. The main result of this section is given below:

Theorem 2:For a multi-hop wireless network, if the rate
vector{λs; 1 ≤ s ≤ S} satisfies

∑

k∈El

∑

s λsH
s
k

ck

< 1 (3)

for any link l in the network, the network is queue length stable
under regulated greedy scheduling ifǫ is chosen sufficiently
small. ⋄

Proof: Let ps
l denote the length of the regulator queue on

link l for user s. It is easy to see that the whole system
(q(n),p(n)) is a Markov Chain. We define the following
Lyapunov function for the system:

V (q,p) = V1(q) + ξV2(p,q), (4)

whereV1(q) is a natural modification of the Lyapunov func-
tion in (1). Specifically, due to fact that we are considering
multiple flows in each link, we define

V1(q) =
∑

l

∑

s qs
l H

s
l

cl

(

∑

k∈El

∑

s qs
kHs

k

ck

)

.

On the other hand,V2 is defined as follows

V2(p,q) =
1

2

∑

l∈L

∑

s

(ps

Ns(l) + q
s

l )
2
.

ξ is a positive parameter.
The queue update equations for this system are

qs
l (n + 1) = qs

l (n) − Ds
l (n) + Rs

l (n) (5)

ps
l (n + 1) = (ps

l (n) − Rs
l (n))+ + Ds

P s(l)(n), (6)

whereRs
l (n) is the output of the regulator that immediately

preceds linkl on path of sources. When link l is the first link
on the path of sources, then DP s(l) = As(n). We also use
the notationrs

l (n) to denote the departure normalized by the
associated link capacitycl, i.e.,

rs
l (n) =

Rs
l (n)

cl

.



Thus, rs
l (n) is either 0 or 1. Due to our definition of the

regulator,Rs
l can only be non-zero whenps

l exceedscl. Hence,
we can remove the projection in (6) as well and we have

ps
l (n + 1) = ps

l (n) − Rs
l (n) + Ds

P s(l)(n).

We have to upper bound

E [V (q(n + 1),p(n + 1)) − V (q(n),p(n))|q(n),p(n)]

by a negative number for all states(q,p)(n) except possibly
in a bounded region, where the drift should simply be finite.

We consider the contribution ofV1(q) and V2(p,q) sepa-
rately for now. Thus, we first look at

∆V1(q) = V1(q(n + 1)) − V1(q(n))

= 2
∑

l

ql(n)

cl

(

∑

k∈El

(qk(n + 1) − qk(n))

ck

)

+
∑

l

(ql(n + 1) − ql(n))

cl

(

∑

k∈El

(qk(n + 1) − qk(n))

ck

)

= 2
∑

l

ql(n)

cl

(

∑

k∈El

∑

s

(rs
k(n) − ds

k(n))

)

+
∑

l

∑

s

(rs
l (n) − ds

l (n))

(

∑

k∈El

∑

s

(rs
k(n) − ds

k(n))

)

.

Similar to the proof in Theorem 1, the second term can
be bounded by a constant. Further, given the fact that
EQ(n),P (n)[r

s
k(n)] ≤ λs+Lmǫ

ck

, (due to the definition of the
regulators), we have

EQ(n),P (n) (V1(n + 1) − V1(n)) ≤ −2η
∑

1≤l≤L

ql(n)

cl

+ B,

Next, consider the contribution ofV2 to the drift. Note that

qs
l (n + 1) + ps

Ns(l)(n + 1) = qs
l (n) + ps

Ns(l)(n)

+Rs
l (n) − Rs

Ns(l)(n). (7)

We can bound the drift due toV2 as follows:

∆V2(p,q)

=E [V2(p(n + 1),q(n + 1)) −V2(p(n),q(n))|q(n),p(n)]

= E





∑

1≤l≤L

∑

s

(ps
Ns(l)(n + 1) + qs

l (n + 1))2

−
∑

1≤l≤L

∑

s

(ps
Ns(l)(n) + qs

l (n))2|q(n),p(n)





= E





∑

1≤l≤L

∑

s

(

ps
Ns(l)(n) + qs

l (n)
)(

ps
Ns(l)(n + 1)

+qs
l (n + 1) − ps

Ns(l)(n) − qs
l (n)

)

|q(n),p(n)
]

+
1

2
E





∑

1≤l≤L

∑

s

(

ps
Ns(l)(n + 1) + qs

l (n + 1)

−ps
Ns(l)(n) − qs

l (n)
)2

|q(n),p(n)

]

The second term above can be bounded by a constantC3

independent ofp(n) andq(n) as follows:

E





∑

1≤l≤L

∑

s

(

ps
Ns(l)(n + 1) + qs

l (n + 1)

−ps
Ns(l)(n) − qs

l (n) )
2
∣

∣

∣
q(n),p(n)

]

≤ 2
∑

1≤l≤L

∑

s

((λs + Lmǫ))
2

+ ((λs + Lmǫ))
2

= C3. (8)

The first term can be bounded by

E





∑

1≤l≤L

∑

s

(

ps
Ns(l)(n) + qs

l (n)
) (

ps
Ns(l)(n + 1)

+qs
l (n + 1) − ps

Ns(l)(n) − qs
l (n)

)

|q(n),p(n)
]

=
∑

1≤l≤L

∑

s

(

ps
Ns(l)(n) + qs

l (n)
)

E [Rs
l (n)

−Rs
Ns(l)(n)|q(n),p(n)

]

=
∑

1≤l≤L

∑

s

(

ps
Ns(l)(n) + qs

l (n)
) [

R̄s
l Ips

l
(n)≥cl

−R̄s
Ns(l)Ips

Ns(l)
(n)≥cNs(l)

]

≤
∑

1≤l≤L

∑

s

(

ps
Ns(l)(n) + qs

l (n)
)

[

R̄s
l

−R̄s
Ns(l)Ips

Ns(l)
(n)≥cNs(l)

]

,

whereR̄s
l is the average departure rate of regulatorRs

l , if ps
l

exceedscl. From our design of the regulators, we know that

R̄s
Ns(l) = R̄s

l + ǫ,

for any l on the path ofusers. From this, we have

∆V2(p,q) ≤
∑

1≤l≤L

∑

s

(

ps
Ns(l)(n) + qs

l (n)
)

×

(

R̄s
l − R̄s

Ns(l)Ips

Ns(l)
(n)≥cNs(l)

)

+ C2. (9)

By combining (8) and (9), we have

E [V (q(n + 1),p(n + 1)) − V (q(n),p(n))|q(n),p(n)]

≤ −η
∑

1≤l≤L

ql(n)

cl

+ ξ
∑

1≤l≤L

∑

s

(

ps
Ns(l)(n) + qs

l (n)
)

×
(

R̄s
l − R̄s

Ns(l)Ips

Ns(l)
(n)≥cNs(l)

)

+ C3

= −
∑

1≤l≤L

∑

s

[

η

cl

− ξ
(

R̄s
l − R̄s

Ns(l)Ips

Ns(l)
(n)≥cNs(l)

)

]

×qs
l (n) + ξ

∑

1≤l≤L

∑

s

ps
Ns(l)(n)

(

R̄s
l−

R̄s
Ns(l)Ips

Ns(l)
(n)≥cNs(l)

)

+ C3



≤ −
∑

1≤l≤L

∑

s

[

η

cl

− ξcl

]

qs
l (n) + ξ

∑

1≤l≤L

∑

s

ps
Ns(l)(n)

×
(

R̄s
l − R̄s

Ns(l)Ips

Ns(l)
(n)≥cNs(l)

)

+ C3

= −
∑

1≤l≤L

∑

s

[

η

cl

− ξcl

]

qs
l (n)

−ǫξ
∑

1≤l≤L

∑

s

ps
Ns(l)(n) + C4,

whereC4 is another constant. We can easily chooseξ (inde-
pendent ofp(n) andq(n), of course) here such that

η

cl

− ξcl ≥ C0 > 0

for any l (we assumecl > 0 for any l; links with zero
capacity can be removed from the network without affecting
the capacity region), and thus

E [V (q(n + 1),p(n + 1)) − V (q(n),p(n))|q(n),p(n)]

≤ −
∑

1≤l≤L

∑

s

C0q
s
l (n) − ǫξ

∑

1≤l≤L

∑

s

ps
l (n) + C4.

This concludes the proof of this theorem. ⋄

III. R ESOURCEALLOCATION

In the previous section, we assumed that the arrival rate
satisfies the sufficient condition for stability given by (3). In
this section, we discuss how one can ensure that the arrival
rates can be controlled to satisfy the sufficient condition.
Associate a utility functionUs(λs) with each users, where
Us(·) is an increasing, twice differentiable concave function.
Suppose that the{λs} are chosen to solve the following
optimization problem:

max
{λs≥0}

∑

s

Us(λs) (10)

subject to
∑

k∈El

∑

s:Hs

k
=1

λs

ck

≤ 1 − (Lm + 1)ǫ, ∀l,

whereǫ is chosen to be sufficiently small. This problem can
be solved in a distributed manner to obtain the{λs}; see [10]
for a general overview of congestion control and [2] for an
application to wireless networks with a special interference
constraint. Here we will briefly present how such a congestion-
control algorithm can be implemented for our model. Each
source chooses its arrival rate at each time instant according
to the following algorithm which depends on the congestion
price p̃l(n) generated by each link:

U ′(λs(n)) =
∑

l:Hs

l
=1

p̃l(n), (11)

and each link implements the following algorithm to compute
the congestion pricẽpl(n) :

p̃l(n+1)=



p̃l(n) +δ





∑

k∈El

∑

s:Hs

k
=1

λs

ck

− 1 − (Lm + 1)ǫ









+

.

Using techniques in [8], this algorithm can be shown to
converge to the optimal solution of (10) ifδ is chosen to be
sufficiently small. We assume here that the congestion infor-
mation is available instantaneously to each source; algorithms
and analysis for more general delay models can be obtained by
appropriately modifying the results in [2]. Now, these arrival
rates, can be used to design the regulator parameters, which
along with greedy maximal scheduling ensures the stability
of the network. For an alternative solution to the resource
allocation problem for the special case of max-min fairness,
we refer the reader to [9].
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