Quasi-Cyclic Generalized Hadamard Matrices

Ji-Woong Jang
School of EECS
Seoul National University
Seoul 151-744, Korea.
Email: stasera@ccl.snu.ac.kr

Jong-Seon No
School of EECS
Seoul National University
Seoul 151-744, Korea.
Email: jsno@snu.ac.kr

Habong Chung
School of Electronics and Electrical Engineering
Hongik University
Seoul 121-791, Korea
Email: habchung@hongik.ac.kr

Abstract

In this paper, we define quasi-cyclic(QC) generalized Hadamard matrices and balanced QC generalized Hadamard matrices. Then we propose a new construction method for QC generalized Hadamard matrices. The proposed matrices are constructed from the balanced optimal low correlation zone(LCZ) sequence set which has correlation value -1 within low correlation zone.

I. Introduction

A generalized Hadamard matrix $\mathcal{H}(q, u)$ of order u is a $u \times u$ matrix over the set of complex q-th roots of unity satisfying $\mathcal{H}(q, u) \mathcal{H}^{\dagger}(q, u)=u I_{u}$, where \dagger denotes the conjugate transpose and I_{u} is the identity matrix of order u [1], [2]. For brevity, we use the notation \mathcal{H} interchangeably $\mathcal{H}(q, u)$ if specifying q and u is unnecessary. In other words, the definition implies that any two distinct rows of \mathcal{H} are orthogonal. For this reason, generalized Hadamard matrices have been studied for the applications in many areas such as wireless communication systems, coding theory, and signal design[1].

In this paper, we define quasi-cyclic(QC) generalized Hadamard matrices and balanced QC generalized Hadamard matrices. Then we propose a new construction method for QC generalized Hadamard matrices. The proposed matrices are constructed from the balanced optimal low correlation zone(LCZ) sequence set which has correlation value -1 within low correlation zone.

II. Preliminaries

In this section, we introduce some definitions and notations. For an integer q, let N be a positive integer such that $N \equiv-1 \bmod q$ and $s(t)$ a q-ary sequence of period N. Then the sequence $s(t)$ is said to be balanced if the number of occurrences of 0 in a period of the sequence is at most one less than the number of occurrences of any other symbols in nonzero element of Z_{q} or some subgroup of Z_{q}.

Given a q-ary sequence $s(t)$ of period N, the autocorrelation $R_{a}(\tau)$ of the sequence at shift τ is defined by

$$
R_{a}(\tau)=\sum_{t=0}^{N-1} \omega^{s(t)-s(t+\tau)}
$$

where ω is a primitive complex q-th root of unity. A q-ary sequence $s(t)$ of period N is said to have ideal autocorrelation
property if

$$
R_{a}(\tau)= \begin{cases}N, & \text { if } \tau=0 \\ -1, & \text { otherwise }\end{cases}
$$

The sequence $\omega^{s(t)}$ can be considered as the complex counterpart of $s(t)$. Throughout the rest of this paper, when we mention a sequence with some correlation property, we interchangeably imply $s(t)$ or $\omega^{s(t)}$ if no confusion is caused by the context.

A cyclic generalized Hadamard matrix is defined as:
Definition 1 (Cyclic generalized Hadamard matrix): Let $s(t)$ be a q-ary sequence of period N. Let \mathcal{H}_{C} be an $(N+1) \times(N+1)$ generalized Hadamard matrix defined by

$$
\mathcal{H}_{C}(q, N+1)=\left(h_{i j}\right)
$$

where $h_{i j}$ is given as

$$
h_{i j}= \begin{cases}1, & \text { if } i=0 \text { or } j=0 \\ \omega^{s_{i}(j-1)}, & \text { otherwise }\end{cases}
$$

Then the matrix \mathcal{H}_{C} is called a cyclic generalized Hadamard matrix if $s_{i}(t)=s(t+i-1)$ where addition is computed modulo N.

Let \mathcal{H}^{s} be the $N \times N$ submatrix of an $(N+1) \times(N+1)$ generalized Hadamard matrix \mathcal{H} obtained by deleting the first row and the first column of \mathcal{H}. Definition 1 implies that \mathcal{H}^{s} is a circulant matrix and each row of \mathcal{H}^{s} can be considered as some cyclic shift of a sequence of period N with ideal autocorrelation property.

Thus an $(N+1) \times(N+1)$ cyclic generalized Hadamard matrix completely characterizes a sequence with ideal autocorrelation of period N, and vice versa. And in this sense, we may call this sequence as the sequence associated with the cyclic generalized Hadamard matrix, and vice versa.

Now, let us broaden this idea of association, i.e., a generalized Hadamard matrix associated with a set of sequences instead of a single sequence. In this context, we can define a quasi-cyclic(QC) generalized Hadamard matrix as follows.

Definition 2 (QC generalized Hadamard matrix): Let \mathbf{S} be a set of M cyclically inequivalent q-ary sequences of period N. Let $\mathcal{H}_{Q C}$ be an $(N+1) \times(N+1)$ generalized Hadamard matrix defined by

$$
\mathcal{H}_{Q C}(q, N+1)=\left(c_{i j}\right)
$$

where $c_{i j}$ is given as

$$
c_{i j}= \begin{cases}1, & \text { if } i=0 \text { or } j=0 \\ \omega^{s_{i}(j-1)}, & \text { otherwise }\end{cases}
$$

If each of $s_{i}(t), 1 \leq t \leq N$, can be expressed as a cyclic shift (including zero shift) of some member in \mathbf{S}, then we call $\mathcal{H}_{Q C}$ a quasi-cyclic generalized Hadamard matrix associated with \mathbf{S}.

If the rows of $\mathcal{H}_{Q C}^{s}$ consists of the same number of cyclically shifted sequences of each member in the set \mathbf{S}, we call $\mathcal{H}_{Q C}$ a balanced quasi-cyclic generalized Hadamard matrix.

III. A CONSTRUCTION METHOD OF BALANCED QUASI-CYCLIC HADAMARD MATRICES ASSOCIATED WITH AN OPTIMAL LCZ SEQUENCE SET

In this section, we propose a new construction method of balanced QC generalized Hadamard matrices associated with an optimal LCZ sequence set that has the correlation value -1 within low correlation zone.

Definition 3 (LCZ sequence set [7]): Let \mathcal{S} be a set of M sequences of period N. If the magnitude of correlation function between any two sequences in \mathcal{S} takes the values less than or equal to ϵ within the range $-L<\tau<L$, of the offset τ, then \mathcal{S} is called an LCZ sequence set with parameters (N, M, L, ϵ).

Tang, Fan, and Matsufuji [9] derived the lower bound on the size of an LCZ sequence set using the Welch bound [10].

Theorem 4 (Tang, Fan, and Matsufuji [9]): Let \mathcal{S} be an LCZ sequence set with parameters (N, M, L, ϵ). Then,

$$
\begin{equation*}
M \leq\left\lfloor\frac{N^{2}-\epsilon^{2}}{L\left(N-\epsilon^{2}\right)}\right\rfloor \tag{1}
\end{equation*}
$$

where $\lfloor x\rfloor$ denotes the greatest integer not exceeding x.
An LCZ sequence set achieving the equality in the above bound is called an optimal LCZ sequence set. And if all the sequences in the LCZ sequence set are balanced, we call it a balanced LCZ sequence set. Associated with the balanced optimal LCZ sequence set that has correlation value -1 within the low correlation zone, we can construct the balanced QC generalized Hadamard matrix as in the following theorem.

Theorem 5: : Let L, M and N be integers such that $N=M L$. Let $\mathcal{S}=\left\{s_{i}(t)\right\}$ be the balanced optimal LCZ sequence set with parameters $(N, M, L, 1)$. Suppose that the correlation value between any two sequences in \mathcal{S} within the low correlation zone be -1 . Then we can construct an $(N+1) \times(N+1)$ balanced QC generalized Hadamard matrix

$$
\mathcal{H}_{L C}(q, N+1)=\left(h_{j k}\right)
$$

where $h_{j k}$ is given as

$$
h_{j k}= \begin{cases}1, & \text { if } j=0 \text { or } k=0 \\ w^{s_{\lfloor(j-1) / L\rfloor}\left(k-1+j_{L}\right)}, & \text { otherwise }\end{cases}
$$

and $j_{L}=(j-1) \bmod L$.
Proof: What we are going to show is that each row in $\mathcal{H}_{L C}$ is orthogonal to every other row in $\mathcal{H}_{L C}$, all sequences in \mathcal{S} appear exactly the same number of times as some rows of $\mathcal{H}_{L C}^{s}$ in the form of their cyclic shifts (including zero shift), and they are balanced.

Since rows in $\mathcal{H}_{L C}^{s}$ are cyclic shifts of the sequences in \mathcal{S}, it is clear that all rows in $\mathcal{H}_{L C}^{s}$ are balanced. From the definition of $h_{j k}$, it is manifest that all sequences in \mathcal{S} have the same number of occurrences as rows in $\mathcal{H}_{L C}^{s}$.

Let v_{i} be the i th row of $\mathcal{H}_{L C}, 0 \leq i \leq N$. We have to show that $v_{i} v_{k}^{\dagger}=0$ for all $i \neq k$. Since v_{0} is an all one sequence and each $v_{i}, 1 \leq i \leq N$, comes from some balanced sequence, it is clear that $v_{0} v_{i}^{\dagger}=0$ for all $1 \leq i \leq N$. From the structure of $\mathcal{H}_{L C}$, it is manifest that the rows $v_{1+l L}$ through $v_{L+l L}, 0 \leq l \leq M-1$, are the cyclic shifts of $\omega^{s_{l}(t)}$. And for all $1 \leq i<k \leq N$, we can rewrite $v_{i} v_{k}^{\dagger}$ as follows

$$
v_{i} v_{k}^{\dagger}=1+\sum_{t=0}^{N-1} w^{s_{\lfloor(i-1) / L\rfloor}\left(t+\tau_{i}\right)-s_{\lfloor(k-1) / L\rfloor}\left(t+\tau_{k}\right)}
$$

where $\tau_{i}=i-1-\lfloor(i-1) / L\rfloor L$ and $\tau_{k}=k-1-\lfloor(k-1) / L\rfloor L$.
From the property of LCZ sequence set with correlation value -1 within the low correlation zone, it is clear that

$$
\sum_{t=0}^{N-1} w^{s_{\lfloor(i-1) / L\rfloor}\left(t+\tau_{i}\right)-s_{\lfloor(k-1) / L\rfloor}\left(t+\tau_{k}\right)}=-1
$$

Using the optimal LCZ sequence set in [3] and Theorem 5, we have the following example.

Example 6: Let m and n be integers such that $m \mid n$. Let p be a prime and α a primitive element in the finite field $F_{p^{n}}$ with p^{n} elements. Let $v(\cdot)$ be a 1-form function from $F_{p^{m}}$ to F_{p} and $f(x)$ a 1-form function from $F_{p^{n}}$ to $F_{p^{m}}$. Let \mathcal{S}_{p} be an optimal p^{2}-ary LCZ sequence set with parameters $\left(p^{n}-1, p^{m}-1,\left(p^{n}-1\right) /\left(p^{m}-1\right), 1\right)$ defined by

$$
\mathcal{S}_{p}=\left\{s_{i}(t) \mid 0 \leq i \leq p^{m}-2\right\}
$$

where $s_{i}(t)$ is given as
$s_{i}(t)= \begin{cases}p f\left(\left[v\left(\alpha^{\frac{p^{n}-1}{p^{m}-1} i} x\right)\right]^{r}\right), & \text { if } \alpha^{\frac{p^{n}-1}{p^{m}-1} i} \in F_{p} \\ f\left([v(x)]^{r}\right)+p f\left(\left[v\left(\alpha^{\frac{p^{n}-1}{p^{m}-1} i} x\right)\right]^{r}\right), & \text { otherwise. }\end{cases}$
Then we can construct a $p^{n} \times p^{n}$ balanced QC generalized Hadamard matrix

$$
\mathcal{H}_{L C}\left(p^{2}, p^{n}\right)=\left(h_{j k}\right)
$$

where $h_{j k}$ is given as

$$
h_{j k}= \begin{cases}1, & \text { if } j=0 \text { or } k=0 \\ w^{s_{L(j-1) / L\rfloor}\left(k-1+j_{L}\right)}, & \text { otherwise }\end{cases}
$$

and $L=\left(p^{n}-1\right) /\left(p^{m}-1\right)$ and $j_{L}=(j-1) \bmod L$.

As one of the simplest form of Example 6, a 16×16 quaternary balanced QC generalized Hadamard matrix is shown below.

Example 7: Let α be a primitive element in $F_{2^{4}}$. Let \mathcal{S}_{b} be an optimal quaternary LCZ sequence set with parameters $(15,3,5,1)$ defined by

$$
\mathcal{S}_{b}=\left\{s_{i}(t) \mid 0 \leq i \leq 2\right\}
$$

where $s_{i}(t)$ is given as

$$
s_{i}(t)= \begin{cases}2 \operatorname{tr}_{1}^{4}\left(\alpha^{t}\right), & \text { if } i=0 \\ \operatorname{tr}_{1}^{4}\left(\alpha^{t}\right)+2 \operatorname{tr}_{1}^{4}\left(\alpha^{t+5 i}\right), & \text { if } i=1 \text { or } 2\end{cases}
$$

and $\operatorname{tr}_{1}^{4}(\cdot)$ is a trace function from $F_{2^{4}}$ to F_{2}.
Then the following matrix $\mathcal{H}_{L C}(4,16)$ is a balanced quaternary QC generalized Hadamard matrix.

$$
\left[\begin{array}{llllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 & 0 & 2 & 2 & 0 & 2 & 0 & 2 & 2 & 2 & 2 \\
0 & 0 & 0 & 2 & 0 & 0 & 2 & 2 & 0 & 2 & 0 & 2 & 2 & 2 & 2 & 0 \\
0 & 0 & 2 & 0 & 0 & 2 & 2 & 0 & 2 & 0 & 2 & 2 & 2 & 2 & 0 & 0 \\
0 & 2 & 0 & 0 & 2 & 2 & 0 & 2 & 0 & 2 & 2 & 2 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 2 & 0 & 2 & 0 & 2 & 2 & 2 & 2 & 0 & 0 & 0 & 2 \\
0 & 0 & 2 & 2 & 1 & 2 & 0 & 3 & 3 & 2 & 3 & 0 & 1 & 1 & 3 & 1 \\
0 & 2 & 2 & 1 & 2 & 0 & 3 & 3 & 2 & 3 & 0 & 1 & 1 & 3 & 1 & 0 \\
0 & 2 & 1 & 2 & 0 & 3 & 3 & 2 & 3 & 0 & 1 & 1 & 3 & 1 & 0 & 2 \\
0 & 1 & 2 & 0 & 3 & 3 & 2 & 3 & 0 & 1 & 1 & 3 & 1 & 0 & 2 & 2 \\
0 & 2 & 0 & 3 & 3 & 2 & 3 & 0 & 1 & 1 & 3 & 1 & 0 & 2 & 2 & 1 \\
0 & 0 & 2 & 2 & 3 & 2 & 0 & 1 & 1 & 2 & 1 & 0 & 3 & 3 & 1 & 3 \\
0 & 2 & 2 & 3 & 2 & 0 & 1 & 1 & 2 & 1 & 0 & 3 & 3 & 1 & 3 & 0 \\
0 & 2 & 3 & 2 & 0 & 1 & 1 & 2 & 1 & 0 & 3 & 3 & 1 & 3 & 0 & 2 \\
0 & 3 & 2 & 0 & 1 & 1 & 2 & 1 & 0 & 3 & 3 & 1 & 3 & 0 & 2 & 2 \\
0 & 2 & 0 & 1 & 1 & 2 & 1 & 0 & 3 & 3 & 1 & 3 & 0 & 2 & 2 & 3
\end{array}\right]
$$

In fact, all the entries $s \in\{0,1,2,3\}$ in $\mathcal{H}_{L C}$ should be $(\sqrt{-1})^{s} \in\{ \pm 1, \pm j\}$. Nevertheless, we stick to the above form (even if it is not right) simply because of the visual purpose. Note that rows v_{1} through v_{5} come from $s_{0}(t), v_{6}$ through v_{10} from $s_{1}(t)$, and v_{11} through v_{15} from $s_{2}(t)$.

Here is another example for Theorem 5.
Example 8: Let m and n be integers such that $m \mid n$. Let p be a prime and $f(t)$ a p-ary sequence of period $p^{m}-1$ with ideal autocorrelation. Let $\left\{f_{i}(t) \mid 0 \leq i \leq p^{m}-2\right\}$ be a set of cyclic shifts of $f(t)$, such that $f_{i}(t)=f(t+i), t=$ $0,1,2, \cdots, p^{m}-2$. From the result of [4], we can construct so-called a column sequence set \mathcal{S} for binary LCZ sequence set of period $p^{n}-1$ as

$$
\mathcal{S}=\left\{s_{i}(t) \mid 0 \leq i \leq p^{m}-2\right\}
$$

where $s_{i}(t)$ is given as

$$
s_{i}(t)= \begin{cases}f_{i}\left(p^{m}-2-1-t\right), & 0 \leq t \leq \frac{p^{m}-1}{2} \tag{2}\\ f_{i}\left(t+\left(p^{m}-1\right) / 2\right), & \frac{p^{m}-1}{2}+1 \leq t \leq p^{m}-2\end{cases}
$$

Let α be a primitive element in $F_{p^{n}}$. Let $c_{i}\left(\beta^{t}\right)=s_{i}(t)$, where β is a primitive element in $F_{p^{m}}$. Using the column
sequence set \mathcal{S}, we can construct the optimal p-ary LCZ set \mathcal{L}_{p} with parameters $\left(p^{n}-1, p^{m}-1,\left(p^{n}-1\right) /\left(p^{m}-1\right), 1\right)$ as

$$
\mathcal{L}_{p}=\left\{l_{i}(t) \mid 0 \leq i \leq p^{m}-2 \text { and } 0 \leq t \leq p^{n}-2\right\}
$$

where $l_{i}(t)$ is given as

$$
l_{i}(t)=c_{i}\left(\operatorname{tr}_{m}^{n}\left(\alpha^{t}\right)\right)
$$

Using the LCZ sequence set \mathcal{L}_{p}, we can construct a balanced QC generalized Hadamard matrix

$$
\mathcal{H}_{L P}\left(p, p^{n}\right)=\left(h_{j k}\right)
$$

where $h_{j k}$ is given as

$$
h_{j k}= \begin{cases}1, & \text { if } j=0 \text { or } k=0 \\ w^{l_{\lfloor(j-1) / L\rfloor}\left(k-1+j_{L}\right)}, & \text { otherwise }\end{cases}
$$

and $L=\left(p^{n}-1\right) /\left(p^{m}-1\right)$ and $j_{L}=(j-1) \bmod L$.
Here is an example of a 256×256 balanced QC Hadamard matrix with $p=2, m=4$, and $n=8$ in Example 8.

Example 9: Let $m(t)$ be the m -sequence of period 15 given as

$$
m(t)=0,0,0,1,0,0,1,1,0,1,0,1,1,1,1
$$

From the result of [4], we can construct the column sequence set \mathcal{S} for a binary LCZ sequence set of period 255 as

$$
\mathcal{S}=\left\{s_{i}(t) \mid 0 \leq i \leq 14\right\}
$$

where $s_{i}(t)$ is given as

$$
\begin{aligned}
s_{0}(t) & =1,1,1,1,0,1,0,0,0,0,1,0,0,1,1 \\
s_{1}(t) & =0,1,1,1,1,0,1,0,0,1,0,0,1,1,0 \\
s_{2}(t) & =0,0,1,1,1,1,0,0,1,0,0,1,1,0,1 \\
s_{3}(t) & =0,0,0,1,1,1,1,1,0,0,1,1,0,1,0 \\
s_{4}(t) & =1,0,0,0,1,1,1,0,0,1,1,0,1,0,1 \\
s_{5}(t) & =0,1,0,0,0,1,1,0,1,1,0,1,0,1,1 \\
s_{6}(t) & =0,0,1,0,0,0,1,1,1,0,1,0,1,1,1 \\
s_{7}(t) & =1,0,0,1,0,0,0,1,0,1,0,1,1,1,1 \\
s_{8}(t) & =1,1,0,0,1,0,0,0,1,0,1,1,1,1,0 \\
s_{9}(t) & =0,1,1,0,0,1,0,1,0,1,1,1,1,0,0 \\
s_{10}(t) & =1,0,1,1,0,0,1,0,1,1,1,1,0,0,0 \\
s_{11}(t) & =0,1,0,1,1,0,0,1,1,1,1,0,0,0,1 \\
s_{12}(t) & =1,0,1,0,1,1,0,1,1,1,0,0,0,1,0 \\
s_{13}(t) & =1,1,0,1,0,1,1,1,1,0,0,0,1,0,0 \\
s_{14}(t) & =1,1,1,0,1,0,1,1,0,0,0,1,0,0,1
\end{aligned}
$$

Let α be a primitive element in $F_{2^{8}}$. Let $c_{i}\left(\beta^{t}\right)=s_{i}(t)$, where β is a primitive element in $F_{2^{4}}$. Using the column sequence set \mathcal{S}, we can construct the optimal binary LCZ set \mathcal{L}_{b} with parameters $(255,15,17,1)$

$$
\mathcal{L}_{b}=\left\{l_{i}(t) \mid 0 \leq i \leq 14 \text { and } 0 \leq t<255\right\}
$$

where $l_{i}(t)$ is given as

$$
l_{i}(t)=c_{i}\left(\operatorname{tr}_{4}^{8}\left(\alpha^{t}\right)\right)
$$

Using the LCZ sequence set \mathcal{L}_{b}, we can construct a balanced QC Hadamard matrix

$$
\mathcal{H}_{L B}=\left(h_{j k}\right)
$$

where $h_{j k}$ is given as

$$
h_{j k}= \begin{cases}1, & \text { if } j=0 \text { or } k=0 \\ w^{l_{\lfloor(j-1) / L\rfloor}\left(k-1+j_{L}\right)}, & \text { otherwise }\end{cases}
$$

and $L=\left(2^{8}-1\right) /\left(2^{4}-1\right)=17$ and $j_{L}=(j-1) \bmod L$.

ACKNOWLEDGEMENT

This work was supported by University IT Research Center Project and Laboratory of Excellency Program.

REFERENCES

[1] S.S. Agaian, Hadamard matrices and their Applications, Lecture Notes in Mathematics, vol. 1168, New York: Springer-Verlag, 1980.
[2] A.T. Butson, "Generalized Hadamard matrices," Proc. Am. Math. Soc. 13, pp. 894-898, 1962.
[3] Ji-Woong Jang, Jong-Seon No, and Habong Chung, "A new construction of optimal p^{2}-ary low correlation zone sequences using unified sequences," submitted to IEICE Fundamentals, Dec. 2005.
[4] Ji-Woong Jang, Jong-Seon No, Habong Chung, and Xiaohu Tang, "New sets of optimal p-ary low correlation zone sequences," submitted to IEEE Trans. on Inform. Theory, March 2005.
[5] Sang-Hyo Kim, Ji-Woong Jang, Jong-Seon No, and Habong Chung, '"New constructions of quaternary low correlation zone sequences," IEEE Trans. on Inform. Theory, vol. 51, no. 4, pp. 1469-1477, April 2005.
[6] A. Klapper, " d-form sequence: Families of sequences with low correlation values and large linear spans," IEEE Trans. Inform. Theory, vol. 41, no. 2, pp. 423-431, Mar. 1995.
[7] B. Long, P. Zhang, and J. Hu, "A generalized QS-CDMA system and the design of new spreading codes," IEEE Trans. Veh. Technol., vo. 47, pp. 1268-1275, Nov. 1998.
[8] J. S. No, " p-ary unified sequences: p-ary extended d-form sequences with ideal autocorrelation property," IEEE Trans. Inform. Theory, vol. 48, no. 9, pp. 2540-2546, Sept. 2002.
[9] X. H. Tang, P. Z. Fan, and S. Matsufuji, "Lower bounds on correlation of spreading sequence set with low or zero correlatoin zone," Electon. Lett., vol. 36, no. 6, pp. 551-552, Mar. 2000.
[10] L. R. Welch, "Lower bounds on the maximum cross correlation of signals," IEEE Trans. Inform. Theory, vol. 20, no. 3, pp. 397-399, May 1974.

