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Abstract— Low density lattice codes (LDLC) are novel lattice
codes that can be decoded efficiently and approach the capacity of
the additive white Gaussian noise (AWGN) channel. In LDLC a
codeword x is generated directly at the n-dimensional Euclidean
space as a linear transformation of a corresponding integer
message vector b, i.e., x = Gb, where H = G−1 is restricted to
be sparse. The fact that H is sparse is utilized to develop a linear-
time iterative decoding scheme which attains, as demonstrated
by simulations, good error performance within ∼ 0.5dB from
capacity at block length of n = 100, 000 symbols. The paper also
discusses convergence results and implementation considerations.

I. INTRODUCTION

If we take a look at the evolution of codes for binary or
finite alphabet channels, it was first shown [1] that channel
capacity can be achieved with long random codewords. Then,
it was found out [2] that capacity can be achieved via a simpler
structure of linear codes. Then, specific families of linear
codes were found that are practical and have good minimum
Hamming distance (e.g. convolutional codes, cyclic block
codes, specific cyclic codes such as BCH and Reed-Solomon
codes [4]). Later, capacity achieving schemes were found,
which have special structures that allow efficient decoding,
such as low density parity check (LDPC) codes [5] or turbo
codes [6].

If we now take a similar look at continuous alphabet codes
for the additive white Gaussian noise (AWGN) channel, it
was first shown [3] that codes with long random Gaussian
codewords can achieve capacity. Later, it was shown that
lattice codes can also achieve capacity ([7] – [12]). Lattice
codes are clearly the Euclidean space analogue of linear codes.
However, there was almost no further progress from that point.
Specific lattice codes that were found were based on fixed
dimensional classical lattices [16] or based on algebraic error
correcting codes [13][14], but no significant effort was made
in designing lattice codes directly in the Euclidean space or
in finding specific capacity achieving lattice codes.

In [15], “signal codes” were introduced. These are lattice
codes, designed directly in the Euclidean space, where the
information sequence of integers in, n = 1, 2, ... is encoded
by convolving it with a fixed signal pattern gn, n = 1, 2, ...d.
Signal codes are clearly analogous to convolutional codes,
and can work at the AWGN channel cutoff rate with simple
sequential decoders, providing the first step toward finding
capacity approaching lattice codes with practical decoders.

Inspired by LDPC codes, we propose in this work “Low
Density Lattice Codes” (LDLC). We show that these codes can

approach the AWGN channel capacity with iterative decoders
whose complexity is linear in block length. Unlike LDPC, in
LDLC both the encoder and the channel use the same real
algebra which is natural for the AWGN. This feature also
simplifies the convergence analysis of the iterative decoder.

II. BASIC DEFINITIONS AND PROPERTIES

A. Lattices and Lattice Codes

An n dimensional lattice in Rm is defined as the set of all
linear combinations of a given basis of n linearly independent
vectors in Rm with integer coefficients. The matrix G, whose
columns are the basis vectors, is called a generator matrix
of the lattice. The Voronoi cell of a lattice point is defined
as the set of all points that are closer to this point than to
any other lattice point. The Voronoi cells of all lattice points
are congruent, and the volume of the Voronoi cell is equal to
det(G). A lattice code of dimension n is defined by a (possibly
shifted) lattice G in Rm and a shaping region B ⊂ Rm, where
the codewords are all the lattice points that lie within the
shaping region B.

When using a lattice code for the AWGN channel with
power limit P and noise variance σ2, the maximal information
rate is limited by the capacity 1

2 log2(1 + P
σ2 ). Poltyrev [17]

considered the AWGN channel without restrictions. If there is
no power restriction, code rate is a meaningless measure, since
it can be increased without limit. Instead, it was suggested in
[17] to use the measure of constellation density, leading to a
generalized definition of the AWGN capacity. When applied
to lattices, the generalized capacity implies that there exists a
lattice G of high enough dimension n, with det(G) = 1, that
enables transmission with arbitrary small error probability, if
and only if σ2 < 1

2πe . For the high SNR regime, a lattice
that achieves the generalized capacity of the AWGN channel
without restrictions, also achieves the channel capacity of the
power constrained AWGN channel, with a properly chosen
spherical shaping region.

In the rest of the work we shall concentrate on the lattice
design and the lattice decoding algorithm, and not on the
shaping region or shaping algorithms. We shall use lattices
with det(G) = 1, where analysis and simulations will be
carried for the AWGN channel without restrictions. A capacity
achieving lattice will have small error probability for noise
variance σ2 which is close to the theoretical limit 1

2πe .



B. Syndrome and Parity Check Matrix for Lattice Codes

A binary (n, k) error correcting code is defined by its n×k
binary generator matrix G. A binary information vector b with
dimension k is encoded by x = Gb, where calculations are
performed in the finite field GF(2). The parity check matrix H
is an (n−k)×n matrix such that x is a codeword if and only
if Hx = 0. The input to the decoder is the noisy codeword
y = x + e, where e is the error sequence and addition is done
in the finite field. The decoder typically starts by calculating
the syndrome s = Hy = H(x+e) = He which depends only
on the noise sequence and not on the transmitted codeword.

We would now like to extend the definitions of the parity
check matrix and the syndrome to lattice codes. An n-
dimensional lattice code is defined by its n×n lattice generator
matrix G (throughout this paper we assume that G is square,
but the results are easily extended to the non-square case).
Every codeword is of the form x = Gb, where b is a
vector of integers. Therefore, G−1x is a vector of integers
for every codeword x. We define the parity check matrix
for the lattice code as H

∆= G−1. Given a noisy codeword
y = x+w (where w is the additive noise vector, e.g. AWGN,
added by real arithmetic), we can then define the syndrome as
s

∆= frac{Hy}, where frac{x} is the fractional part of x,
defined as frac{x} = x−bxe, where bxe denotes the nearest
integer to x. The syndrome s will be zero if and only if y is a
lattice point, since Hy will then be a vector of integers with
zero fractional part. For a noisy codeword, the syndrome will
equal s = frac{Hy} = frac{H(x + w)} = frac{Hw}
and therefore will depend only on the noise sequence and not
on the transmitted codeword, as desired.

C. Low Density Lattice Codes

We shall now turn to the definition of the codes proposed
in this paper - low density lattice codes (LDLC).

Definition 1 (LDLC): An n dimensional LDLC is an n-
dimensional lattice code with a non-singular lattice generating
matrix G satisfying |det(G)| = 1, for which the parity
check matrix H = G−1 is sparse. The i’th row degree ri,
i = 1, 2, ...n is defined as the number of nonzero elements in
row i of H , and the i’th column degree ci, i = 1, 2, ...n is
defined as the number of nonzero elements in column i of H .

Definition 2 (regular LDLC): An n dimensional LDLC is
regular if all the row degrees and column degrees of the parity
check matrix are equal to a common degree d.

Note that in binary LDPC codes, the code is completely
defined by the locations of the nonzero elements of H . In
LDLC there is another degree of freedom since we also have
to choose the values of the nonzero elements of H .

Definition 3 (magic square LDLC): An n dimensional reg-
ular LDLC with degree d is called “magic square LDLC” if
every row and column of the parity check matrix H has the
same d nonzero values except for a possible change of order
and random signs.

For example, the matrix

H =


0 −0.8 0 −0.5 1 0

0.8 0 0 1 0 −0.5
0 0.5 1 0 0.8 0
0 0 −0.5 −0.8 0 1
1 0 0 0 0.5 0.8

0.5 −1 −0.8 0 0 0


is a parity check matrix of a magic square LDLC with lattice
dimension n = 6 and degree d = 3. The nonzero values
are {1, 0.8, 0.5}. This H should be further normalized by the
constant n

√
|det(H)| in order to have |det(H)| = |det(G)| =

1, as required by definition 1.
The bipartite graph of an LDLC is defined similarly to

LDPC codes: it is a graph with variable nodes at one side and
check nodes at the other side. Each variable node corresponds
to a single element of the codeword x = Gb. Each check
node corresponds to a check equation (a row of H). An edge
connects check node i and variable node j if and only if
Hi,j 6= 0. This edge is assigned the value Hi,j .

III. ITERATIVE DECODING FOR THE AWGN CHANNEL

Assume that the codeword x = Gb was transmitted, where
b is a vector of integers. We observe the noisy codeword y =
x + w, where w is a vector of i.i.d Gaussian noise samples
with common variance σ2, and we need to estimate the integer
valued vector b. The maximum likelihood (ML) estimator is
then b̂ = arg min

b
||y −Gb||2.

Our decoder will not estimate directly the integer vector
b. Instead, it will estimate the probability density function
(PDF) of the codeword vector x. Furthermore, instead of
calculating the n-dimensional PDF of the whole vector x,
we shall calculate the n one-dimensional PDF’s for each of
the components xk of this vector (conditioned on the whole
observation vector y). It can be shown that fxk|y(xk|y) is a
weighted sum of Dirac delta functions:

fxk|y(xk|y) = C ·
∑

l∈G∩B

δ(xk − lk) · e−d2(l,y)/2σ2
(1)

where C is independent of xk and d(l, y) is the Euclidean
distance between l and y. Direct evaluation of (1) is not
practical, so our decoder will try to estimate fxk|y(xk|y) (or
at least approximate it) in an iterative manner.

The calculation of fx|y(x|y) is involved since the com-
ponents xk are not independent random variables (RV’s),
because x is restricted to be a lattice point. Following [5]
we use a “trick” - we assume that the xk’s are i.i.d with a
properly chosen PDF f

(i.i.d)
xk (xk). This PDF is chosen to be the

marginal distribution of a vector distribution f
(i.i.d)
x (x), which

is uniformly distributed over the shaping region. In addition,
we add a condition that assures that only lattice points have
nonzero probability. Specifically, define s

∆= H · x. Define
further the set of integer valued vectors iB as iB = {i|i ∈
Zn,Gi ∈ B}. Restricting x to be a lattice point inside the
shaping region B is equivalent to restricting s ∈ iB . Therefore,
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Fig. 1. Tier diagram

instead of calculating fx|y(x|y) under the assumption that x
is a lattice point in B, we can add the condition s ∈ iB and
assume that the xk are i.i.d.

The derivation in [5] further imposed the tree assumption.
Figure 1 shows the tier diagram of a regular LDLC with degree
3. Each vertical line corresponds to a check equation. The tier
1 nodes of x1 are all the elements xk that take place in a check
equation with x1. The tier 2 nodes of x1 are all the elements
that take place in check equations with the tier 1 elements
of x1, and so on. The tree assumption assumes that all the
tree elements are distinct (i.e. no element appears in different
tiers or twice in the same tier). This assumption simplifies the
derivation, but in general, does not hold in practice, so our
iterative algorithm is not guaranteed to converge to the exact
solution (1) (see section IV).

The detailed derivation of the iterative decoder is omitted
due to space constraints (the full derivation can be found
in [18]). Below we present the final resulting algorithm.
This iterative algorithm can also be explained by intuitive
arguments, described after the algorithm specification.

A. The Iterative Decoding Algorithm

The iterative algorithm is most conveniently represented by
using a message passing scheme over the bipartite graph of
the code, similarly to LDPC codes. The basic difference is
that in LDPC codes the messages are scalar values (e.g. log
likelihood ratio of a bit), where for LDLC the messages are
real functions over the interval [−∞,∞]. As in LDPC, in each
iteration the check nodes send messages to the variable nodes
along the edges of the bipartite graph and visa versa. The
messages sent by the check nodes are periodic extensions of
PDF’s. The messages sent by the variable nodes are PDF’s.

LDLC iterative decoding algorithm:
Denote the variable nodes by x1, x2, ..., xn and the check

nodes by c1, c2, ...cn.
• Initialization: each variable node xk sends to all its check

nodes the message f
(0)
k (x) = 1√

2πσ2 e−
(yk−x)2

2σ2 .
• Basic iteration - check node message: Each check node

sends a (different) message to each of the variable nodes
that are connected to it. For a specific check node denote
(without loss of generality) the appropriate check equa-
tion by

∑r
l=1 hlxml

= integer, where xml
, l = 1, 2...r

are the variable nodes that are connected to this check
node (and r is the appropriate row degree of H). Denote
by fl(x), l = 1, 2...r, the message that was sent to
this check node by variable node xml

in the previous
iteration. The message that the check node transmits back
to variable node xmj

is calculated in three basic steps.

channel PDF 

check node message #1 

check node message #2 

check node message #3 

check node message #4 

Final variable node message 

Fig. 2. Signals at variable node

1) The convolution step - all messages, except fj(x),
are convolved (after expanding each fl(x) by hl):

p̃j(x) = f1

(
x

h1

)
~ · · · fj−1

(
x

hj−1

)
~

~fj+1

(
x

hj+1

)
~ · · · · · ·~ fr

(
x

hr

)
(2)

2) The stretching step - The result is stretched by
(−hj) to pj(x) = p̃j(−hjx)

3) The periodic extension step - The result is extended
to a periodic function with period 1/|hj |:

Qj(x) =
∞∑

i=−∞
pj

(
x− i

hj

)
(3)

The function Qj(x) is the message that is finally sent to
variable node xmj .

• Basic iteration - variable node message: Each variable
node sends a (different) message to each of the check
nodes that are connected to it. For a specific variable
node xk, assume that it is connected to check nodes
cm1 , cm2 , ...cme , where e is the appropriate column de-
gree of H. Denote by Ql(x), l = 1, 2, ...e, the message
that was sent from check node cml

to this variable node
in the previous iteration. The message that is sent back
to check node cmj

is calculated in two basic steps:

1) The product step: f̃j(x) = e−
(yk−x)2

2σ2
∏e

l=1
l 6=j

Ql(x)

2) The normalization step: fj(x) = f̃j(x)
R∞
−∞ f̃j(x)dx

This basic iteration is repeated for the desired number of
iterations.

• Final decision: After finishing the iterations, we want
to estimate the integer information vector b. Each check
node estimates the relevant integer, by calculating the
convolution p̃(x) as in (2), but this time without omitting
any PDF. Then, the integer bk is determined by b̂k =
arg maxj∈Z p̃(j).

The operation of the iterative algorithm can be intuitively
explained as follows. The check node operation is equivalent
to calculating the PDF of xmj

from the PDF’s of xmi
, i =

1, 2, ..., j − 1, j + 1, ...r, given that
∑r

l=1 hlxml
= integer,

and assuming that xmi
are independent. Extracting xmj

from
the check equation, we get xmj = 1

hj
(integer−

∑r
l=1
l 6=j

hlxml
).

Since the PDF of a sum of independent random variables is the
convolution of the corresponding PDF’s, equation (2) and the
stretching step that follows it simply calculate the PDF of xmj

,



assuming that the integer at the right hand side of the check
equation is zero. The result is then periodically extended such
that a properly shifted copy exists for every possible value of
this (unknown) integer. The variable node gets such a message
from all the check equations that involve the corresponding
variable. The check node messages and the channel PDF are
treated as independent sources of information on the variable,
so they are multiplied all together.

This multiplication is illustrated in Figure 2, where it can be
seen that each periodic signal has a different period, according
to the relevant coefficient of H . Also, the signals with larger
period have larger variance. This diversity resolves all the
ambiguities such that the multiplication result (bottom plot)
remains with a single peak. We expect the iterative algorithm
to converge to a solution where a single peak will remain at
each PDF, located at the desired value and narrow enough to
estimate the information.

IV. CONVERGENCE

A. The Gaussian Mixture Model

Interestingly, for LDLC we can come up with a convergence
analysis. Here we provide an outline, while the detailed analy-
sis is given in [18]. We start by introducing basic claims about
Gaussian PDF’s. We denote Gm,V (x) = 1√

2πV
e−

(x−m)2

2V .
Claim 1 (convolution of Gaussians): The convolution of n

Gaussians with mean values m1,m2, ...,mn and variances
V1, V2, ..., Vn, respectively, is a Gaussian with mean m1 +
m2 + ... + mn and variance V1 + V2 + ... + Vn.

Claim 2 (product of n Gaussians): Let Gm1,V1(x),
Gm2,V2(x),...,Gmn,Vn

(x) be n Gaussians with mean
values m1,m2, ...,mn and variances V1, V2, ..., Vn

respectively. Then,
∏n

i=1 Gmi,Vi(x) = Â · Gm̂,V̂ (x),

where 1
V̂

=
∑n

i=1
1
Vi

, m̂ =
Pn

i=1 miV
−1

iPn
i=1 V −1

i

, and

Â = 1√
(2π)n−1V̂ −1

Qn
k=1 Vk

· e−
V̂
2

Pn
i=1
Pn

j=i+1
(mi−mj)2

Vi·Vj) .

Now, the basic operations of the iterative decoder are
convolution, multiplication and stretching. The fact that all
these operations preserve the Gaussian nature of Gaussian
inputs can be used to prove the following lemma.

Lemma 1: Each message that is exchanged between the
check nodes and variable nodes in the LDLC decoding al-
gorithm (i.e. Qj(x) and fj(x)), at every iteration, can be
expressed as a Gaussian mixture of the form M(x) =∑∞

j=1 AjGmj ,Vj
(x).

Convergence analysis should therefore analyze the conver-
gence of the variances, mean values and amplitudes of the
Gaussians in each mixture.

B. Convergence of the Variances

We shall now analyze the behavior of the variances, and
start with the following lemma.

Lemma 2: For both variable node messages and check node
messages, all the Gaussians that take place in the same mixture
have the same variance.

Until this point we did not impose any restrictions on the
LDLC. From now on, we shall restrict ourselves to magic
square regular LDLC. Recall (see definition 3) that for such
codes, the same d nonzero values (except for random signs
and order) appear on each row or column of H . Denote these
nonzero values by h1, h2, ..., hd and assume without loss of
generality that h1 ≥ h2 ≥ ... ≥ hd > 0. The basic iterative
equations that relate the variances at iteration t + 1 to the
variances at iteration t are summarized in the following two
lemmas.

Lemma 3: Variable node messages that are sent at the same
iteration along edges with the same absolute value have the
same variance.

Lemma 4: Denote the variance of the messages that are
sent at iteration t along edges with weight ±hl by V

(t)
l .

The variance values V
(t)
1 , V

(t)
2 , ..., V

(t)
d obey the following

recursion:

1

V
(t+1)
i

=
1
σ2

+
d∑

m=1
m6=i

h2
m∑d

j=1
j 6=m

h2
jV

(t)
j

(4)

for i = 1, 2, ...d.
For illustration, the recursion for the case d = 3 is:

1

V
(t+1)
1

=
h2

2

h2
1V

(t)
1 + h2

3V
(t)
3

+
h2

3

h2
1V

(t)
1 + h2

2V
(t)
2

+
1
σ2

(5)

1

V
(t+1)
2

=
h2

1

h2
2V

(t)
2 + h2

3V
(t)
3

+
h2

3

h2
1V

(t)
1 + h2

2V
(t)
2

+
1
σ2

1

V
(t+1)
3

=
h2

1

h2
2V

(t)
2 + h2

3V
(t)
3

+
h2

2

h2
1V

(t)
1 + h2

3V
(t)
3

+
1
σ2

The lemmas above are used to prove the following theorem
regarding the variance convergence in the general magic
square LDLC case.

Theorem 1: For a magic square LDLC with degree d, define
the sequence of nonzero elements that appear in every row and
column (except for random signs and order) by h1, h2, ..., hd,
and assume without loss of generality that h1 ≥ h2 ≥ ... ≥
hd > 0. The asymptotic behavior of the variances depend on
α

∆=
Pd

i=2 h2
i

h2
1

in the following manner:

1) If α < 1, the first variance satisfies limt→∞ V
(t)
1 =

σ2(1−α), where for i = 2, 3..d we have limt→∞ V
(t)
i =

0 such that 0 < limt→∞
V

(t)
i

αt < ∞.
2) If α ≥ 1, then for i = 1, 2..., d we have limt→∞ V

(t)
i =

0, such that 0 < limt→∞ V
(t)
i · t < ∞.

It can be seen that by choosing h2
1 ≤

∑d
i=2 h2

i we have
all the variances approach zero, but in a slow rate of 1/t.
If we choose h2

1 >
∑d

i=2 h2
i we have one variance that

approaches a constant (and not zero). However, all the other
variances approach zero in an exponential rate. This will be
the preferred mode because the information can be recovered
even if a single variance does not decay to zero, where
exponential convergence is certainly preferred over the slow
1/t convergence.



C. Convergence of the Mean Values

The reason that the messages are mixtures and not single
Gaussians lies in the periodic extension step (3) at the check
nodes, and every Gaussian at the output of this step can be
related to a single index of the infinite sum. Therefore, we can
label each Gaussian at iteration t with a list of all the indices
that were used in (3) during its creation process in iterations
1, 2, ...t.

Definition 4 (label of a Gaussian): The label of a Gaussian
consists of a sequence of triplets of the form {t, c, i}, where
t is an iteration index, c is a check node index and i is an
integer. The labels are initialized to the empty sequence. Then,
the labels are updated along each iteration according to the
following update rules:

1) In the periodic extension step (3), each Gaussian in
the output periodic mixture is assigned the label of the
specific Gaussian of pj(x) that generated it, concate-
nated with a single triplet {t, c, i}, where t is the current
iteration index, c is the check node index and i is the
index in the infinite sum of (3) that corresponds to this
Gaussian.

2) In the convolution step and the product step, each
Gaussian in the output mixture is assigned a label
that equals the concatenation of all the labels of the
specific Gaussians in the input messages that formed
this Gaussian.

3) The stretching and normalization steps do not alter
the label of each Gaussian: Each Gaussian in the
stretched/normalized mixture inherits the label of the
appropriate Gaussian in the original mixture.

Definition 5 (a consistent Gaussian): A Gaussian in a mix-
ture is called “[ta, tb] consistent” if its label contains no
contradictions for iterations ta to tb, i.e. for every pair of
triplets {t1, c1, i1}, {t2, c2, i2} such that ta ≤ t1, t2 ≤ tb,
if c1 = c2 then i1 = i2. A [0, ∞] consistent Gaussian will be
simply called a consistent Gaussian.

We can relate every consistent Gaussian to a unique integer
vector b ∈ Zn, which holds the n integers used in the n check
nodes. Since in the periodic extension step (3) the sum is taken
over all integers, a consistent Gaussian exists in each variable
node message for every possible integer valued vector b ∈ Zn.
We shall see later that these Gaussians correspond to the lattice
point Gb.

According to theorem 1, if we choose the nonzero values
of H such that α < 1, every variable node generates d − 1
messages with zero approaching variance and a single message
with variance that approaches a constant. We shall refer to
these messages as “narrow” messages and “wide” messages,
respectively. For a given integer valued vector b, we shall
concentrate on the consistent Gaussians that relate to b in
all the nd variable node messages that are generated in each
iteration. The following lemmas summarize the asymptotic
behavior of the mean values of these consistent Gaussians for
the narrow messages.

Lemma 5: Asymptotically, the mean values of the consis-

tent Gaussians that relate to a given integer vector b are the
same for all the narrow variable node messages of the same
variable node.

Lemma 6: Denote the common mean value of the narrow
messages of the i’th variable node at iteration t by m

(t)
i , and

arrange all these mean values in a column vector m(t) of
dimension n. Then, for large t, m(t) satisfies:

m(t+1) ≈ −H̃ ·m(t) +
1
h1

b̃ (6)

where H̃ is derived from H by permuting the rows such that
the ±h1 elements will be placed on the diagonal, dividing each
row by the appropriate diagonal element (h1 or −h1), and then
nullifying the diagonal. b̃ is derived by flipping the sign of the
elements of b for which the largest magnitude element of the
appropriate row of H is −h1, and then permuting with the
same permutation that was used for the rows of H .

We can now state the following theorem, which describes
the conditions for convergence and the steady state value of
the mean values of the consistent Gaussians of the narrow
variable node messages.

Theorem 2: The mean values of the consistent Gaussians of
the narrow variable node messages are assured to converge if
and only if all the eigenvalues of H̃ have magnitude less than
1. When this condition is fulfilled, the steady state solution is
m(∞) = G · b.

We can see that the mean values of the consistent Gaussians
converge to the coordinates of the appropriate lattice point.
Interestingly, recursion (6) is equivalent to the Jacobi method
for solving systems of sparse linear equations [19], where here
we solve Hm = b. Note that without adding random signs
to the LDLC nonzero values, the all-ones vector will be an
eigenvector of H̃ with eigenvalue

Pd
i=2 hi

h1
, which may exceed

1.
We shall now turn to the convergence of the mean values

of the wide messages. The asymptotic behavior is summarized
in the following lemma.

Lemma 7: Denote the mean value of the wide message of
the i’th variable node at iteration t by m

(t)
i , and the appropriate

error by e
(t)
i

∆= m
(t)
i −xi, where x = Gb. Arrange all the error

values in a column vector e(t) of dimension n. Then, for large
t, e(t) satisfies:

e(t+1) ≈ −F · e(t) + (1− α)w (7)

where w is the channel noise vector, α is defined in theorem
1 and the matrix F can be constructed from H as follows. To
construct the k’th row of F , denote by ri, i = 1, 2, ...d, the
index of the element in the k’th column of H with value hi

(i.e. |Hri,k| = hi). Denote by li, i = 1, 2, ...d, the index of the
element in the ri’th row of H with value h1 (i.e. |Hri,li | =
h1). The k’th row of F will then be all zeros, except for the
d− 1 locations li, i = 2, 3...d, where Fk,li = Hri,k

Hri,li
.

The conditions for convergence and steady state solution for
the wide messages are brought in the following theorem.

Theorem 3: The recursion (7) is assured to converge if and
only if all the eigenvalues of F have magnitude less than 1.



When this condition is fulfilled, the steady state solution is
e(∞) = (1− α)(I + F )−1w.

Unlike the narrow messages, the mean values of the wide
messages do not converge to the appropriate lattice point
coordinates, since the error vector does not converge to zero.
The steady state error depends on the channel noise vector
and on the parameter α, and it decreases to zero as α → 1.
Note that this error term should not be a problem because
convergence of the narrow messages is sufficient for extracting
the information. In principle, the wide messages can even
diverge, as long as they remain wide. However, in a practical
implementation where the PDF’s have finite range, divergence
of the wide messages should be avoided.

To summarize the results for the mean values, we considered
the mean values of all the consistent Gaussians that correspond
to a given integer vector b. A single Gaussian of this form
exists in each of the nd variable node messages that are
generated in each iteration. For each variable node, d − 1
messages are narrow (have variance that approaches zero) and
a single message is wide (variance approaches a constant).
Under certain conditions on H , the mean values of all the
narrow messages converge to the appropriate coordinate of
the lattice point Gb. Under additional conditions on H , the
mean values of the wide messages converge, but the steady
state values contain an error term.

We considered consistent Gaussians which corresponds to
a specific integer vector b, but such a set of Gaussians will
exist for every possible choice of b, i.e. for every lattice point.
Therefore, the narrow messages will converge to a solution
that has an impulse at the appropriate coordinate of every
lattice point. This resembles the exact solution (1), so the key
for proper convergence lies in the amplitudes: we would like
the consistent Gaussians of the ML lattice point to have the
largest amplitude for each message. However, the analysis of
the amplitudes is more complex and was not yet finalized.

V. CODE DESIGN

We shall concentrate on magic square LDLC, since they
have inherent diversity of the nonzero elements in each row
and column, which was shown above to be beneficial. It
still remains to choose the sequence h1, h2, ...hd for the
magic square LDLC construction. Assume that the algorithm
converged, and each PDF has a peak at the desired value.
When the periodic functions are multiplied at a variable
node, the correct peaks will then align. We would like that
all the other peaks will be strongly attenuated, i.e. there will
be no other point where the peaks align. This resembles the
definition of the least common multiple (LCM) of integers:
if the periods were integers, we would like to have their
LCM as large as possible. This argument suggests the
sequence {1/2, 1/3, 1/5, 1/7, 1/11, 1/13, 1/17, ...}, i.e. the
reciprocals of the smallest d prime numbers. Since the periods
are 1/h1, 1/h2, ...1/hd, we will get the desired property.
Simulations have shown that increasing d beyond 7 with this
choice gave negligible improvement. Also, performance was
improved by adding some “dither” to the sequence, resulting in

{1/2.31, 1/3.17, 1/5.11, 1/7.33, 1/11.71, 1/13.11, 1/17.55}.
For d < 7, the first d elements are used.

We shall now test the conditions on H that were mentioned
in section IV. For these parameters we get α = 0.92 and 0.87
for d = 7 and 5, respectively, which is a reasonable trade off.
For n ≥ 1000, the largest eigenvalue of H̃ has magnitude
of 0.94 − 0.97, almost independently of n and the choice of
nonzero H locations. For n = 100 there were rare occasions
where it exceeds 1, and these H matrices should be avoided.

Finally, we shall present a simple algorithm for constructing
a parity check matrix for a magic square LDLC. If we look at
the bipartite graph, each variable node and each check node
has d edges connected to it, one with every possible weight
h1, h2, ...hd. All the edges that have the same weight hj form
a permutation from the variable nodes to the check nodes
(or visa versa). The proposed algorithm generates d random
permutations and then searches sequentially and cyclically for
2-loops (two parallel edges from a variable node to a check
node) and 4-loops (two variable nodes that both are connected
to a pair of check nodes). When such a loop is found, a pair
is swapped in one of the permutations such that the loop is
removed.

VI. IMPLEMENTATION AND COMPLEXITY

Each PDF should be approximated with a discrete vector
with resolution ∆ and finite range. According to the Gaussian
Q-function, choosing a range of, say, 6σ to both sides of the
noisy channel observation will ensure that the error probability
due to PDF truncation will be ≈ 10−9. Near capacity, σ2 ≈

1
2πe , so 12σ ≈ 3. Simulation showed that resolution errors
became negligible for ∆ = 1/64. Each PDF was then stored
in a L = 256 elements vector, corresponding to a range of
size 4.

The most computationally intensive part in the basic itera-
tion are the convolutions at the check nodes, so it is natural to
use FFT’s. It can be shown that FFT size can be 1/∆ instead
of L (64 instead of 256 for the parameters above).

The stretching of PDF’s is done using interpolation, that
averages the neighboring points of the desired location. Multi-
plication of check node messages is preceded by widening the
messages by 1 sample to each side. These operations inhibit
impulses from disappearing due to finite resolution.

Most of the computational effort is invested in the d FFT’s
and d IFFT’s (of length 1/∆) that each check node performs
each iteration. The total number of multiplications for t
iterations is o

(
n · d · t · 1

∆ · log2(
1
∆ )

)
. As in binary LDPC

codes, the computational complexity has the attractive property
of being linear with block length. However, the constant that
precedes the linear term is significantly higher, mainly due to
the FFT operations.

The memory requirements are governed by the storage of
the nd check node and variable node messages, with total
memory of o(n · d ·L). Compared to binary LDPC, the factor
of L significantly increases the required memory. For example,
for n = 10, 000, d = 7 and L = 256, the number of storage
elements is of the order of 106.
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Fig. 3. Simulation results

VII. SIMULATION RESULTS

Magic square LDLC with the generating sequence of section
V were simulated for the AWGN channel at various block
lengths. The degree was d = 5 for n = 100 and d = 7
for all other n. For n = 100 the matrix H was further
normalized to get n

√
det(H) = 1. For all other n, normalizing

the generating sequence such that the largest element has
magnitude 1 also gave the desired determinant normalization.
The H matrices were generated using the algorithm of section
V. PDF resolution was set to ∆ = 1/256 with a total range
of 4, i.e. L = 1024. High resolution was used since our main
target is to prove the LDLC concept and eliminate degradation
due to implementation considerations. For this reason, the
decoder was used with 200 iterations (though most of the time,
a much smaller number was sufficient).

According to Poltyrev’s results (section II-A), shaping is not
necessary and the all-zero codeword was used. Approaching
channel capacity is equivalent to σ2 → 1

2πe , so performance
is measured in symbol error rate (SER), vs. the distance of
the noise variance σ2 from capacity (in dB). The results are
shown in Figure 3. At SER of 10−5, for n = 100000, 10000,
1000, 100 we can work as close as 0.6dB, 0.8dB, 1.5dB and
3.7dB from capacity, respectively.

VIII. CONCLUSION

Low density lattice codes (LDLC) were introduced. LDLC
are novel lattice codes that can approach capacity and be
decoded efficiently. Good error performance within ∼ 0.5dB
from capacity at block length of 100,000 symbols was
demonstrated, and convergence analysis was outlined. Code
parameters were chosen from intuitive arguments, so it is
reasonable to assume that when the code structure will be more
understood, better parameters could be found, and channel
capacity could be approached even closer.
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