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Abstract�We study directed information in Bayesian networks
and related structures. Mutual information is split into directed
information and residual information. Some basic equations for
directed information and residual information are determined.

I. INTRODUCTION
Shannon introduced mutual information and demonstrated

how useful this quantity is to analyze a communication setup
[1]. For instance the capasity of a simple information channel
equals the maximum mutual information between input and
output where the maximum is taken over all input distribu-
tions. This result is remarkabel in that mutual information is
symmetric in the two arguments but an information channel
is highly unsymmetric in the sense that the sender has (partly
or full) control over the input, but the sender has only indirect
control over the distribution of output. Thus, the concept of
mutual information does not capture that information �ows
from the input to the output.
In channels with feedback there is both a �ow of informa-

tion from input to output and a �ow from output to input. The
concept of directed information has been introduced to analyse
channels with feedback, see [2], [3], [4], [5] and . Here we
shall go one step further in order to understand what it means
that information �ows. This question is both of philosophical,
theoretical and practical interest. There are many situations
where we need more precise concepts in order to understand to
what extend information is �owing. We just mention quantum
entanglement and secrecy sharing as concepts for which it is
not so obvious whether these concepts represent quantities that
can �ow.
In this paper we shall be more modest and restrict our

attention to Bayesian networks, because these networks are
important in modelling causality. Thus, for Bayesian networks
there is a natural direction of causality and time.

II. BAYESIAN NETWORKS
By a variable we shall understand any measurable mapping

from a probability space into a �nite space. The �niteness
condition is assumed for simplicity and most of our results
can easily be extended to variables that can take in�nitely
many values. Variables will be denoted with capital letters.
If X and Y are variables then X [ Y shall denote the
vector valued variable (X;Y ) : If (Xi) is a (�nite or in�nite)

sequence of variables then Xn
m shall denote the sequence

(Xm; Xm+1; :::; Xn) where m � n: Bold face capital letters
will indicate in�nite sequences.
If the variables X and Y are independent for each value

z of the variable Z we say that X and Y are conditionally
independent given Z and write (X?Y j Z) : The relation
conditional independence is a semi graphoid relation, which
means that

(X?Y j Z)() (Y?X j Z) (1)

and

(X?Y [ Z jW )() (X?Y jW ) and (X?Z j Y [W ) :
(2)

We introduce conditional mutual information I (X;Y j Z)
and note that I (X;Y j Z) � 0 with equality if and only
if (X?Y j Z) : The relations (1) and (2) for conditional
independence have counterparts for conditional independence:

I (X;Y j Z) = I (Y ;X j Z) (3a)
I (X;Y [ Z jW ) = I (X;Y jW ) + I (X;Z j Y [W ) :

(3b)

Note that these equations implies the semi graphoid relations.
We also get the important relation

I (X;Y j Z) = I (X [ Z;Y )� I (Z;Y ) (4)

that can be used to de�ne conditional mutual information from
mutual information. Now (3a) and (4) together implies (3b).
Semi graphoid relations have proved important in under-

standing causality [7], but they are dif�cult to classify. In mod-
elling causality one therefore prefer semi graphoid relations
described by Bayesian networks or related graphical models.
Here we shall focus on Bayesian networks. A Bayesian
network is a directed acyclic graph with a variable associated
to each node in the graph. If there is a directed path from the
variable X to the variable Y in the network we shall write
X � Y and note that � is a partial ordering of the nodes
and the associated variables. The ancestor set a (Y ) is de�ned
as the set of variables X such that there exists a path to a
variable in Y:
We shall restrict to syncronious networks consisting of a

number of layers on top of each other such that any arrow in



the graph points from one layer to the next. For such networks
the layers shall form a Markov chain where any variables in
one layer is independent of all other variables in the same alyer
given its parents. We shall write X � Y if X is in a lower
layer than Y; and X � Y if X and Y are in the same layer.
For each variable there is a Markov kernel from the parents
of the variables to the variable and the joint distribution on
all variables is determined by these Markov kernels. There
exists a syncronization of a network if and only all directed
paths from one variable to another are of equal length. By
introduction of dummy variables it is easy to syncronize any
network and therefore the restriction to syncronious networks
gives no loss of generality.
The previous description of a Bayesian network is static

in the sense that it relates a graph to some variables with a
probabilistic structure but with no time evolution. We shall
now introduce dynamic Bayesian networks. For each variable
X in a static Bayesian network we associate an double in�nite
sequence X of variables. The joint distribution on all the
sequences should be a stationary Markov chain with the
Markov kernel being the product of the Markov kernels from
the parents of a variable to the variable. The dynamic Bayesian
network can be considered as a Bayesian network with in�-
nitely many nodes/variables. The static Baysian network can
then be considered as the stationary distribution of the dynamic
Bayesian network.
For a stationay sequence X we de�ne the entropy rate in

the usual way, i.e.

H (X) = lim
1

N
H
�
XN
1

�
= lim

1

N

NX
n=1

H
�
Xn j Xn�1

1

�
= H

�
X1 j X0

�1
�
:

Similarly we de�ne the conditional mutual information rate
by

I (X;Y j Z) = lim
N!1

1

N
I
�
XN
1 ;Y

N
1 j ZN1

�
:

For sequences of variables X;Y and Z in a dynamic Bayesian
network we have

I (X;Y j Z) = I (X;Y j Z) ;

where X;Y and Z are the associated variables in the static
Bayesian network. The relation can be used to translate con-
cepts for sequences into concepts for static Bayesian networks.
Note that in general

I
�
XN
1 ;Y

N
1 j ZN1

�
6= I (X;Y j Z) :

Let X denote a sequence. Then we let T (X) denote the
delayed sequence such that T (X)n = Xn�1:

III. DIRECTED AND RESIDUAL INFORMATION

Consider two sequences of random variables XN and Y N .
Then the directed information from XN to Y N is de�ned by

~I
�
XN ! Y N

�
=

1

N

NX
n=1

H
�
Yn j Y n�11

�
�H

�
Yn j Xn�1

1 [ Y n�11

�
=
1

N

NX
n=1

I
�
Yn;X

n�1
1 j Y n�11

�
If X = (Xn)n2Z and Y = (Yn)n2Z are stationary processes
then the directed information rate from X to Y is de�ned as
the limit

~I (X! Y) = lim
N!1

~I
�
XN ! Y N

�
:

It easy to prove that the limit exists and equals

H
�
Y1 j Y 0�1

�
�H

�
Y1 j X0

�1 [ Y 01
�
:

The mutual information rate between two sequences of random
variables XN and Y N is given by

1

N
I
�
XN ;Y N

�
=
1

N

�
H
�
XN

�
+H

�
Y N

�
�H

�
XN [ Y N

��
=
1

N

NX
n=1

�
H
�
Xn j Xn�1

1

�
+H

�
Yn j Y n�11

�
�H

�
Xn [ Yn j Xn�1

1 [ Y n�11

� �

=
1

N

NX
n=1

0BBBB@
H
�
Xn j Xn�1

1

�
�H

�
Xn j Xn�1

1 [ Y n�11

�
+H

�
Yn j Y n�11

�
�H

�
Yn j Xn�1

1 [ Y n�11

�
+

0@ H
�
Xn j Xn�1

1 [ Y n�11

�
+H

�
Yn j Xn�1

1 [ Y n�11

�
�H

�
Xn [ Yn j Xn�1

1 [ Y n�11

�
1A

1CCCCA
= ~I

�
XN ! Y N

�
+ ~I

�
Y N ! XN

�
+
1

N

NX
n=1

I
�
Xn;Yn j Xn�1

1 [ Y n�11

�
:

We see that a mutual information rate is a sum of two directed
information terms plus a term that we shall call the residual
information. Thus

~Ires
�
XN ;Y N

�
=
1

N

NX
n=1

I
�
Xn;Yn j Xn�1

1 [ Y n�11

�
:

The residual information measures how much the sequences
deviates from being a Bayesian network of the form depicted
in Figure 1. For stationary sequences we de�ne the residual
information as the limit

~Ires (X;Y) = lim
N!1

~Ires
�
XN ;Y N

�
= I

�
X1;Y1 j X0

�1 [ Y 0�1
�
:



Fig. 1. Two sequences with zero residual information.

Thus we get

1

N
I
�
XN ;Y N

�
=

~I
�
XN ! Y N

�
+ ~I

�
Y N ! XN

�
+ ~Ires

�
XN ;Y N

�
and

I (X;Y) = (5)
~I (X! Y) + ~I (Y ! X) + ~Ires (X;Y) :

Example 1: Let X and Y be sequences of variables in a
dynamical Bayesian network corresponding to variablesX and
Y associated with single noden in the graph. Then

I (X;Y ) =

8<:
~I (X! Y) if X � Y
~I (Y ! X) if Y � X
Ires (X;Y) if X � Y

:

With this de�ntion of directed information we have that there
may be an information �ow from X to Y allthough :X � Y:
In this sense information may not �ow along the direction of
causation. We shall discuss this problem later and suggest a
solution.

IV. RELATIVITY OF INFORMATION FLOWS
Both the de�nition of directed information and residual in-

formation depends on the syncronization of the sequences. We
shall now see how the de�nitions rely on the syncronization.
We have

~I (T (X)! Y) = H
�
Y1 j Y 0�1

�
�H

�
Y1 j T (X)0�1 [ Y 01

�
= H

�
Y1 j Y 0�1

�
�H

�
Y1 j X�1

�1 [ Y 01
�

� H
�
Y1 j Y 0�1

�
�H

�
Y1 j X0

�1 [ Y 01
�

= ~I (X! Y) :

The identity

~I (X!T (Y)) = ~I
�
T�1 (X)! Y

�

is obvious. Thus ~I (Tn (X)! Y) is a decreasing function
of n and ~I (X!Tn (Y)) is an increasing function of n:
Therefore the numbers for which both ~I (Tn (X)! Y) and
~I (X!Tn (Y)) are positive is an interval. Only in this
interval communication is possible in both directions and in
practice this idea is often use to check syncronization. In the
litterature directed information is de�ned by

I (X! Y) = ~I
�
X!T�1 (Y)

�
;

see [5] and [8]. With this de�nition mutual information will
not split up into two �ows and a residual term. Instead one
has to involve the operator T to get formulas relating mutual
information and directed information.
Let k be a positive integer and let X be a stationary

sequence. Then kX shall denote "block sequence" where the
n'th variable is block X(n�1)k+1; X(n�1)k+2; :::; Xnk: We get

~I (kX!kY)
= H

�
Y k1 j Y 0�1

�
�H

�
Y k1 j X0

�1 [ Y 01
�

=
kX

n=1

H
�
Yn j Y n�1�1

�
�H

�
Yn j X0

�1 [ Y n�11
�

�
kX

n=1

H
�
Yn j Y n�1�1

�
�H

�
Yn j Xn�1

�1 [ Y n�11
�

= k ~I (X! Y) :

Similarly we get
~Ires (kX; kY) � kIres (X;Y) :

The conclusion is that one can explain less mutual information
as �ow and more as residual information if one consider a
block sequence instead of the original sequence.

V. CONDITIONAL FLOWS
Conditional versions of directed information have been

studied in [4], [5], [8] and [6]. Note that the de�ntion we shall
use is a little different from what is found in the litterature.
We de�ne the conditional directed information by
~I
�
XN ! Y NkZN

�
= ~I

�
XN [ ZN ! Y N

�
�~I
�
ZN ! Y N

�
(6)

so that the information �owing from XN to Y N given ZN is
the information �owing from both variables minus the amount
of information �owing ZN : Thus

~I
�
XN ! Y NkZN

�
=
1

N

NX
n=1

�
H
�
Yn j Y n�11

�
�H

�
Yn j Xn�1

1 [ Y n�11 [ Zn�11

� �

� 1

N

NX
n=1

H
�
Yn j Y n�11

�
�H

�
Yn j Xn�1

1 [ Zn�11

�
=
1

N

NX
n=1

�
H
�
Yn j Y n�11 [ Zn�11

�
�H

�
Yn j Xn�1

1 [ Y n�11 [ Zn�11

� � :
Note that ~I

�
XN ! Y NkZN

�
� 0:



For stationary sequences we de�ne

~I (X! YkZ) = lim
N!1

~I
�
XN ! Y NkZN

�
:

Then

~I (X! YkZ) = H
�
Y1 j Y 0�1 [ Z0�1

�
�H

�
Y1 j X0

�1 [ Y 0�1 [ Z0�1
�
:

We observe that

~I (X [Y ! ZkW)

= H
�
Z1 j Z0�1 [W 0

�1
�

�H
�
Z1 j X0

�1 [ Y 0�1 [ Z0�1 [W 0
�1
�

= H
�
Z1 j Z0�1 [W 0

�1
�
�H

�
Z1 j X0

�1 [ Z0�1 [W 0
�1
�

+H
�
Z1 j X0

�1 [ Z0�1 [W 0
�1
�

�H
�
Z1 j X0

�1 [ Y 0�1 [ Z0�1 [W 0
�1
�

= ~I (X! ZkW) + ~I (Y ! ZkX [W) :

We are now able to write a conditional mutual information
in terms of conditional �ows and residual information. We
have

I (X;Y j Z) = lim
N!1

1

N
I
�
XN ;Y N j ZN

�
= lim

N!1

�
1
N I

�
XN [ ZN ;Y N

�
� 1
N I

�
ZN ;Y N

� �
= I (X [ Z;Y)� I (Z;Y) :

Each of these terms can be written as a sum of two �ow and
residual information. Thus,

I (X;Y j Z) =
~I (X [ Z! Y) + ~I (Y ! X [ Z) + ~Ires (X [ Z;Y)

� ~I (Z! Y)� ~I (Y ! Z)� ~Ires (Z;Y) :

and we get the formula

I (X;Y j Z) =
~I (X! YkZ) + ~I (Y ! X [ Z)� ~I (Y ! Z)

+ ~Ires (X [ Z;Y)� ~Ires (Z;Y) :

The formula is closely related to [8, Prop. 3], but by introduing
residual information we have formulas that do not involve the
delay operator. It seems tempting to de�ne ~Ires (X [ Z;Y)�
~Ires (Z;Y) as the residual mutual information of X and Y
given Z; but it may lead to a negative quantity.
The basic equations for conditional mutual information can

now be stated in terms of directed and residual information.
Equation 3a states that

~I (X! YkZ) + ~I (Y ! X [ Z)� ~I (Y ! Z)

+ ~Ires (X [ Z;Y)� ~Ires (Z;Y)
= ~I (Y ! XkZ) + ~I (X! Y [ Z)� ~I (X! Z)

+ ~Ires (Y [ Z;X)� ~Ires (Z;X)

The terms can be reorganized so that we get
~I (X! Y [ Z)� ~I (X! YkZ)� ~I (X! Z) (7)
+ ~Ires (X;Y [ Z)� ~Ires (Z;X)
= ~I (Y ! X [ Z)� ~I (Y ! XkZ)� ~I (Y ! Z)

+ ~Ires (Y;X [ Z)� ~Ires (Z;Y) :

We see that relation 7 together with Equation 5 and the
de�nitions 6 and 4 implies the identities 3a and 3b.

VI. LOWER BOUNDS ON DIRECTED INFORMATION
As we have noticed that directed information is relative

to the syncronization of the sequences. Nevertheless it is
sometimes possible to provide lower bound to the directed
information, which are independent of the syncronization.
Here we shall just provide a simple example that will illustrate
the idea.
Consider (sets of) variables X;Y; Z and W in a Bayesian

network satisfying that statistical independence holds if and
only the d-separation criteria is ful�lled. Assume that X and
Y are independent given Z [ W: Then we have the lower
bound

I (W ! X [ Y [ Z) � I (X;Y j Z) : (8)

To se this we put W 0 =W \ a (X [ Y [ Z) and note X and
Y are independent of Z [W 0 [9]. Now,

~I (W ! X [ Y [ Z) = ~I (W 0 ! X [ Y [ Z)
+ ~I

�
{W ! X [ Y [ Z jW 0�

� ~I (W 0 ! X [ Y [ Z)
� I (W ;X [ Y [ Z)
� I (W ;X [ Y j Z)
� I (X;Y j Z) :

The last inequality is easily proved by using the Venn diagram
method [10].
The bound (8) can be written as
~I (W ! X [ Y [ Z) � I (X;Y j Z)� I (X;Y j Z [W ) :

Under weak conditions this lower bound holds even when X
and Y are not independent given Z [W: More re�ned lower
bounds are an area for future investigations.
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