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Abstract—A joint sensing/communication problem is consid-
ered for sensor networks. Herein, the channel(s) between a B g oo °
source and destination are the parameters to be sensed and

communicated over the network. Lower bounds on the end-
to-end distortion are developed for a multihop, linear network.
Inter-node communication is assumed to be done via an encode-
and-forward approach. For a many-to-one topology with two
hops, orthogonal communication schemes are compared to other
possible schemes and found to be optimal in the sense of
minimizing the sum distortion of all the channels in the network.

I. INTRODUCTION [Souree] [Destnarn)

In this paper, we study a special class of sensor networl..
where the unknown time-varying (communication) channel
between the nodes is the sensor data of interest. Thus, com-
munication and sensing share both the bandwidth and transmit
power at each node in the network, in contrast to most sensor

network formulations in the work. The bulk of the prior To consider problems seen more often in the real world, we
literature on communication and sensing in sensor networksxt examine a more complex network topology. This is a two
focuses on estimating a parameter or process extrinsic to [8gel tree-network where the first level has nodes connected
network and then using the sensor network for communicatifga single relay node. The relay node then communicates (and
an estimate or a pre-estimate to a fusion center or base-staeRses) with the destination node as shown in Figure 2. The
type node €.g. [1-3]). While the work in [4] also considers encode-and-forward results are generalized for this topology.
extrinsic parameter estimation; there is a tradeoff to be magig also prove that time orthogonal communication is optimal
between sensing (estimation) and communication. In [4], eaglt the first hop of the network.

node in the network observes a single phenomenon and thugy,o joint sensing and communication leads to some in-

each node has correlated observations. The tradeoff thergingiing differences compared to traditional sensor networks.
conglders the rate to be assigned to each node for transmittig, single hop results of [8] suggest an intuitive scheme for
the innovation at each node. , _ state estimation when the transmitter has perfect knowledge
In [5], we introduced our joint sensing and cOMMUNIC&5t the state. However, this is not the case in most prac-
tion problem, where end-to-end distortion was considered fgg, systems. Moreover, as the number of hops increases,
simple two-hop networks. In the current work, we extenghe problem becomes more complicated because the number
our results to multiple hops and make rigorous & conjectuig ghservations is fixed. A few general observations from
made in [S] for many-to-one network topologies. Herein, Wi proplem illustrate its specific characteristics. First, more
shall focus on theencode-and-forwardprotocol for shared transmit power not only improves communication performance
modality sensor networks. This protocol is inspired by wellyhroughput and/or error rates), but also simultaneously im-
known protocols for data forwarding in relay channels [&oyes sensing accuracy. Thus, for sensor nodes with limited
7]. A lower bound on the distortion for channel estimatioRnergy resources, the sensing and communication tasks do not
for linear networks (nodes arranged in a line as depicted 4gyntend” for the same source of power. In contrast, in most

Figure 1) is developed and analyzed for asymptotically highynsor networks, the battery power is shared between sensing

SNR, thus generalizing results in [5]. and communication subsystems such that more power for one

task does not necessarily improve the performance of the other
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Fig. 1. Multi-hop linear network.



SNR for small networks, while most asymptotic analysis iB. Problem Formulation

sensor networks requires a large network [9,10]. However,The opserved distortion in the channels is of interest at the

note that for the shared modality networks, the resource @istination. The distortion between the estimate and the actual
bandwidth or time is one for which there is contention. channel is given by their mean-squared error

Second, the shared sensing and communication networks
have fewer unknowns to estimate than most other sensor D; = E|h; — hial?
networks. Consider two sensor networks: one in which the
channel is the sensor data of interest (the network analy . _ _ . . .
in this paper) and one in which sensor data is independent %?S'ble distortion regiorD is then described as all those

the channel (traditionally analyzed sensor networks). In boglpl,’ Ds,...,Dn) n-tuples which can be simultaneously

cases, the channel is unknown and hence the communicaﬁ?ﬁ'eved' Of interest is investigating the achievaliersityof

task has to account for the time-varying unknown channé € joi_nt communication and sensing problem. We sha!l defi_ne
However, in the first network, there is no other unknown Wh”dwersny as the expor_lent on th? deca_y rate Of the d|sto_rt|on
in the second network, the additional unknown is the output\g? a function of the signal-to-noise ratio. That is, we achieve

ere h; 4 is the reconstruction at the destination. The

the sensors (the sensor data). Thus, the number of unkno hersity r if
in shared modality networks is smaller. We make no direct lim D, = O(SNR™)
comparisons between these two classes of networks as they vj SNR;—oco
cannot be interchanged in practice. . P
In this paper, we develop lower bounds on the end!Neré SNR=Cs.

to-end distortion for encode-and-forward based estima-As previously noted, we assume encode-and-forward based
tion/communication protocols. For the encode-and-forwat@ter-node communication. That is, each relay noddprms
scheme, as presented in this paper, it is interesting to néfe estimate of the channel for all preceding nodes. , node
that the bottleneck link (the one that transmits for the leagbtimatesh; and optimally encodes this vector for communi-
time) affects the estimates of all links before it. This lendgation over channel;, to the next node in the network+ 1.

itself to heurestic schemes for improving network performance
in an intuitive minimax way. It will be interesting to see if
these results carry over to other network topologies and/orThe following equations describe the signal model for the
other communication schemes like the amplify-and-forwarethop linear network,

1. LINEAR NETWORK

protocol. . 5
The rest of the paper is organized as follows. Section s — X0 = Vb, L €y
Il introduces the signal model and the formulation of the Y1 =+ Poh1 + Z1,t € Iy

problem as a minimization problem and defines _the different X, = \/Eﬁ1f1(fl1),t el
communication schemes. In Section Ill we consider encode- R
and-forward for a linear network. These results are extended Y, = \/Flﬁlfl(hl)hQ tZytel
to a variation of the linear network in Section IV. Section V
presents and discusses a few numerical results and finally, we )
summarize and discuss avenues for further research in Sectibp = Yn = \/ Po—18n-1fa—1(h1, . n—1)hn + Zn,t € 11
Vi where I; is the interval[Y!=) "' 7, S0 o] (I = [0, To)
[I. PRELIMINARIES and "' ,7; = T). Given our focus on mean-squared error,
A. Channel Model the optimal estimator is the minimum mean-squared error
estimate (MMSE). We denote the MMSE for chanrieat

i as. bl = Elh:|Y: -and-
Y,, is the received message aig, is the corresponding sentnOd?j.aS’hi _.]E[hl‘yj]' In the encode-and fprward scheme,
preliminary estimates of all channels preceding are made at a

m(.assage. The channel between nodel andi is denoted by node. thus we defing, . — [iliili+1 i as the MMSE
h;; thus the channel between the source (hode 0) and node L) ; 7
,,,,, 4. The minimum distortion for the estimate &f at

is hi. All channels,h;, are assumed to be narrow-band an o . . . :
! i destination node is denotéd. Finally, we defineD; to

flat fading. The channel gains are standard Gaussian ran o - . . .
variables,h; ~ A’(0,1) and the additive channel noises ar e the contribution to the minimum distortion iy at thejth
o ’ node. Note thatD; = >>7_, D7. This decomposition holds

Gaussian as wellZ; ~ N(0,0?). The channel coefficients =
and noises are also assumed) to be mutually independgﬁlte.3 to the orthogonality of the MMSE detector(see also [11]).

Finally the channels are assumed to have a common coherenqge&mma 1:D{ is lower bounded by:

interval of 7' seconds, such that all channels change to a 4 ‘ .

new realization everyl' seconds. We make the following D} > var(h) ")(1+SNR)™7* 1)
simplifying assumption — communication in the network is ri v

time orthogonalj.e when one node is transmitting data, every where iy = Efh|Y3] @
other node is silent.

Consider theV-node network in Figure 1. At each node,



Proof: We use the expression for the rate distortion functioBroof:
for Gaussian channels, use the coherent capacity as a bourid/e define4; = 1 + SNR;. Using Equations (6) and (7),
for the non-coherent capacity and then use Jensen’s inequatity expression foLJ is:

to bound the coherent capacity conditional on the channel re-
alization. (See [5] for an extended, more methodical derlvatlorLJ =(1-

of this lemma which exploits the results of [11]). |
Lemma 2:GivenY;, we can lower bound; as,
1
D> — 3
~ SNRT; +1 3)

Proof: If we assume that we know; . ;+; in addition to

Jj—1 #
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Y;, this bound follows from the computation of the estimatioMow, let SNR = SNRY j, thenA; = AV j and the above

error for the MMSE. [ |

Theorem 1 (An n-hop Encode and Forward Bound):

Given the signal model described above, we can form thé

following lower bounds:

S
= SNR,T, + 1

D;>Li=Y L, i<n
Jj=t

where, L; is the bound onD; and the boundZ? on D! is
formed as:

D (4)

®)

1

Li= SNRT 71 ©)
. . T7>
Ll =(1-LIY1+SNR))"Tj>i 7

Proof: Recallthath’ is the MMSE ofh; at nodej. Then, by
definition, vath?) = E [h]
of MMSE's, we can show that:

DIt =1 —var(h] ™) (8)

We also have:

var(h!) > var(h! ™)

©)

since the variance of the estimator can only increase as we get

further away from hop.
Summing Equation (8) and Equation (9), we have:

var(h!) >1— DJ™* (10)
Using Equation (10) and Lemma 1, yields
DI >(1-DI ) (1+SNR) 7 (11)

. By the orthogonality property

summation simplifies to:

J

> (~1irAT

k=i+1

J
k=it+1 Tk

% )
1A T L

m k Tm

+(-

As SNR — o0, the term in the sum above corresponding
to k = j dominates the expression (since it has the largest
exponent). To form the lower bound, tti¢’s are summed. As
such, the diversity factor for estimatirig is upperbounded by
min;s; % |

We note that subsequent channel estimates will achieve
lower end-to-end distortion than “earlier” channels. We next
formalize this notion for the three-hop case,which is easily
extended ton hops. First, we normalize the observation
interval T' to 1 over which communication and estimation is
conducted. The bounds from Theorem 1 can be shown to have
the following relationships:

1
Ls = SNR;T; + 1 (13)
< (1+SNR;)™ 75 (14)
< L, (15)
Consider f(z) = (1 + z)¥ — 1 — zy, then f(0) = 0 and

f'(z) < 0 wheneverz > 0 andy < 1. This proves Equation
(14) while Equation (15) follows sinc®, can be written as

a convex sum of 1 and the quantity in Equation (14) which is
upper bounded by 1. Similarly, we have;

Ly <Ly < (1-a)+a(l+SNR) T

> (1— )+ B(1+ SNR;) T (16)
wherea =1 — (1 + SNRy) 72 andﬁ = SNR,T% + 1 (this
statement follows by simple algebra after setting SNR
o0). Again we appeal to the properties of the functign

defined above and those of convex combinations to verify that
Equation (16) is valid.

Initializing with L from Lemma 2 and applying Equation (11)

recursively leads to the bound in the theorem statemel.

Corollary 1 (Diversity Factor for n-hops)For  encode-
and-forward, assuming that S)iR= SNR V j, the diversity
factor for estimatingh; is bounded as,

r; < min=2
j>i T

12)

IV. MANY To ONE RELAY

Our ultimate goal is to investigate the joint sensing and
communication problem for arbitrary network topologies. To
this end, an important generalization of the linear network
is to consider a two-level network where multiple nodes
communicate to a relay and then the relay communicates over
a single channel to the destination. We denote this topology as



The covariance matrix of the errer= h—h is then given by:
K=1-AT[AAT + 5714

and so

0.2

M 22 M
D =tracdK) = M — VB 18
@ <K 2t i W8

whereD is the total sum distortion observed at the relay node.
To minimize D, we then need to minimize the sum on the right
hand side of Equation (18):

\ 4

M 9
minimize -
£ \2 4 g2
i=1 1 7

M
subjectto» A? <P
Fig. 2. Node Topology for the Many to One Relay Problem i=1

This equation can be solved by Lagrange multipliers and the

o o ~ Karush-Kuhn-Tucker (sinca? must be positive) conditions to
the many-to-onenetwork. Our goal in this section is determingg yie|d the solution:

a good communication protocol for the first level of the many-

to-one network described in Figure 2. The quality of a com- 2 =oi(v—oy)t

munication scheme is gauged by the sum distortion of all the

channels at the destination. In this scenario, the relay receiviserer is chosen such that

training signals fromV/ sources for thé/ channels. The relay o

then jointly codes the estimated channels and transmits them 4

over the final link to the destination. The destination must then Z oilv - =P

decode/estimate all/ + 1 channels of interest. We observe =t

that several protocols are possible for this problem and Weere, ()t denotes the positive part af, i.e.

prove that any orthogonal communication scheme is optimal

for this network. In particular, time orthogonal communication n xz if x>0,

is one optimal scheme and is employed for its ease of use. ()" = 0 if z<0.
Theorem 2 (Orthogonal Communication is optimafjny -

orthogonal communication scheme is optimal, in the sengg particular, we can create a diagonal matrix fdr the

of minimizing the sum distortion of the channels, for th@igenvalues of which satisfy the conditions outlined above thus
many-to-one network shown in Figure 2. proving the theorem. m

Proof: The signal received at the relay can be written in vector Note that Theorem 2 only claims the optimality of orthogo-
form as: nal communication schemes for the problem of minimizing the
y=4Ah+n (17)  sum distortion of all channels at the relay and that these claims
where 4 is a matrix that depends on the signalling schenftéed not hold when the criterion for optimality is changed,
used, anch is the noise vector. Note that the dimensions dPr example, to minimizing the sum of the probability of error
y, handn are M x 1 and A is M x M. The ith column for all the channels. Once time orthogonality is accepted as
of the matrix A is formed at the relay node by collectingoPtimal, the end to end distortion faced by individual sources
all elements of the received signal which have contributio®&n be bounded by an application of Lemmas 1 and 2:
from h;. The only constraint in the problem Efil N <P

Ty,
where )\; is thei-th eigenvalue of the matrixd and P is the D; > a; + (1 —a;)(14+SNRy41)~ T i< M
total power transmitted by the source nodes. Since we assumeh B 1
that the channel is independent for each source and that the ©'e @i = SNRT; + 1
channel is normalized, mean-zero and Gaussian, we have 1
N (0, I). Finally, since we assume that the channel noises are Dara 2 SNRy 1T + 1
mutually independent, we have~ N (0, diago?,...,02,)).
For convenience, we defing = diag(c?,...,03%,). where we assume we are given the source powWey f”jl

Given the signal model in Equation (17), since the relayie channel noises variancés } 2! and the optimal trans-
node knowsy and A, we can form an MMSE oh, say h. mission times{7;} " for all the nodes in the network.



; prominent as the number of nodes increases while the time
. available for communication remains fixed.
g 2-hop

7 VI. CONCLUSIONS
g We have derived lower bounds on the distortion in channel

7 a estimates for a simple linear network as in Figure. 1 with

/ encode-and-forward based communication between the relays.
For a symmetric case, where each link has the same SNR,
ol | / | the distortion for the estimation of channglis limited by
RN T the smallest transmission duration between nodel and
) ) ’ the destination. This suggests that for more general cases
there is an effective SNR and transmission duration measure
that should be equalized over all links in order to ensure
equal distortion at the destination. In addition, we have shown
that under very mild conditions, orthogonal communication
yields lower distortions than any other communication scheme
for the many-to-one network in Figure. 2. Ongoing work is
completing the derivation of distortion bounds for amplify-
and-forward based communication for multihop networks and
applying the current results to more complex networks such
as those with tree topologies.

A comparison of the lower bound derived in Theorems 1
and 2 for the case when the network comprises of two and , o _
three links is presented in F.igure 3. We consider sources with! Séiwgvﬁfélgs's“ﬂs'téﬁggp ?,Qw‘{,Yll'jE'EEEiﬂ,T?,}!Igo'ﬁ hé’é?é’ﬂiﬂef\?esageﬁs
an SNR of 20dB and total tim& set to 1 for normalization. Communicationsvol. 22, no. 6, pp. 999-1006, August 2004.

Note that in the three hop case, we optimize for over the [2] S. Cui, J.-J. Xiao, A. J. Goldsmith, Z.-Q. Luo, and H. V. Poor, “Energy-
time spent in the second and third channels and that in the 2-
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Fig. 3. Comparison of the bounds @, for linear and many-to-one networks
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