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Abstract— A joint sensing/communication problem is consid-
ered for sensor networks. Herein, the channel(s) between a
source and destination are the parameters to be sensed and
communicated over the network. Lower bounds on the end-
to-end distortion are developed for a multihop, linear network.
Inter-node communication is assumed to be done via an encode-
and-forward approach. For a many-to-one topology with two
hops, orthogonal communication schemes are compared to other
possible schemes and found to be optimal in the sense of
minimizing the sum distortion of all the channels in the network.

I. I NTRODUCTION

In this paper, we study a special class of sensor networks
where the unknown time-varying (communication) channel
between the nodes is the sensor data of interest. Thus, com-
munication and sensing share both the bandwidth and transmit
power at each node in the network, in contrast to most sensor
network formulations in the work. The bulk of the prior
literature on communication and sensing in sensor networks
focuses on estimating a parameter or process extrinsic to the
network and then using the sensor network for communicating
an estimate or a pre-estimate to a fusion center or base-station
type node (e.g. [1–3]). While the work in [4] also considers
extrinsic parameter estimation; there is a tradeoff to be made
between sensing (estimation) and communication. In [4], each
node in the network observes a single phenomenon and thus
each node has correlated observations. The tradeoff therein
considers the rate to be assigned to each node for transmitting
the innovation at each node.

In [5], we introduced our joint sensing and communica-
tion problem, where end-to-end distortion was considered for
simple two-hop networks. In the current work, we extend
our results to multiple hops and make rigorous a conjecture
made in [5] for many-to-one network topologies. Herein, we
shall focus on theencode-and-forwardprotocol for shared
modality sensor networks. This protocol is inspired by well-
known protocols for data forwarding in relay channels [6,
7]. A lower bound on the distortion for channel estimation
for linear networks (nodes arranged in a line as depicted in
Figure 1) is developed and analyzed for asymptotically high
SNR, thus generalizing results in [5].
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Fig. 1. Multi-hop linear network.

To consider problems seen more often in the real world, we
next examine a more complex network topology. This is a two
level tree-network where the first level hasM nodes connected
to a single relay node. The relay node then communicates (and
senses) with the destination node as shown in Figure 2. The
encode-and-forward results are generalized for this topology.
We also prove that time orthogonal communication is optimal
for the first hop of the network.

The joint sensing and communication leads to some in-
teresting differences compared to traditional sensor networks.
The single hop results of [8] suggest an intuitive scheme for
state estimation when the transmitter has perfect knowledge
of the state. However, this is not the case in most prac-
tical systems. Moreover, as the number of hops increases,
the problem becomes more complicated because the number
of observations is fixed. A few general observations from
the problem illustrate its specific characteristics. First, more
transmit power not only improves communication performance
(throughput and/or error rates), but also simultaneously im-
proves sensing accuracy. Thus, for sensor nodes with limited
energy resources, the sensing and communication tasks do not
“contend” for the same source of power. In contrast, in most
sensor networks, the battery power is shared between sensing
and communication subsystems such that more power for one
task does not necessarily improve the performance of the other
task. In fact, this is the major reason why we can study
sensing performance asymptotics as a function of received



SNR for small networks, while most asymptotic analysis in
sensor networks requires a large network [9, 10]. However,
note that for the shared modality networks, the resource of
bandwidth or time is one for which there is contention.

Second, the shared sensing and communication networks
have fewer unknowns to estimate than most other sensor
networks. Consider two sensor networks: one in which the
channel is the sensor data of interest (the network analyzed
in this paper) and one in which sensor data is independent of
the channel (traditionally analyzed sensor networks). In both
cases, the channel is unknown and hence the communication
task has to account for the time-varying unknown channel.
However, in the first network, there is no other unknown while
in the second network, the additional unknown is the output of
the sensors (the sensor data). Thus, the number of unknowns
in shared modality networks is smaller. We make no direct
comparisons between these two classes of networks as they
cannot be interchanged in practice.

In this paper, we develop lower bounds on the end-
to-end distortion for encode-and-forward based estima-
tion/communication protocols. For the encode-and-forward
scheme, as presented in this paper, it is interesting to note
that the bottleneck link (the one that transmits for the least
time) affects the estimates of all links before it. This lends
itself to heurestic schemes for improving network performance
in an intuitive minimax way. It will be interesting to see if
these results carry over to other network topologies and/or
other communication schemes like the amplify-and-forward
protocol.

The rest of the paper is organized as follows. Section
II introduces the signal model and the formulation of the
problem as a minimization problem and defines the different
communication schemes. In Section III we consider encode-
and-forward for a linear network. These results are extended
to a variation of the linear network in Section IV. Section V
presents and discusses a few numerical results and finally, we
summarize and discuss avenues for further research in Section
VI.

II. PRELIMINARIES

A. Channel Model

Consider theN -node network in Figure 1. At each node,n,
Yn is the received message andXn is the corresponding sent
message. The channel between nodei−1 andi is denoted by
hi; thus the channel between the source (node 0) and node 1
is h1. All channels,hi, are assumed to be narrow-band and
flat fading. The channel gains are standard Gaussian random
variables,hi ∼ N (0, 1) and the additive channel noises are
Gaussian as well,Zi ∼ N (0, σ2

i ). The channel coefficients
and noises are also assumed to be mutually independent.
Finally the channels are assumed to have a common coherence
interval of T seconds, such that all channels change to a
new realization everyT seconds. We make the following
simplifying assumption – communication in the network is
time orthogonal,i.e when one node is transmitting data, every
other node is silent.

B. Problem Formulation

The observed distortion in the channels is of interest at the
destination. The distortion between the estimate and the actual
channel is given by their mean-squared error,

Di = E|hi − hi,d|2

where hi,d is the reconstruction at the destination. The
feasible distortion regionD is then described as all those
(D1, D2, . . . , Dn) n-tuples which can be simultaneously
achieved. Of interest is investigating the achievablediversityof
the joint communication and sensing problem. We shall define
diversity as the exponent on the decay rate of the distortion
as a function of the signal-to-noise ratio. That is, we achieve
diversity r if

lim
∀ j SNRj→∞

Di = O
(
SNR−r

i

)
where SNRj

.= Pj

σ2
j
.

As previously noted, we assume encode-and-forward based
inter-node communication. That is, each relay node,j, forms
an estimate of the channel for all preceding nodes. , nodej
estimateshj

1 and optimally encodes this vector for communi-
cation over channelhj , to the next node in the networkj +1.

III. L INEAR NETWORK

The following equations describe the signal model for the
n-hop linear network,

XS = X0 =
√

P0, t ∈ I0

Y1 =
√

P0h1 + Z1, t ∈ I0

X1 =
√

P1β1f1(ĥ1), t ∈ I1

Y2 =
√

P1β1f1(ĥ1)h2 + Z2, t ∈ I1

...

YD = Yn =
√

Pn−1βn−1fn−1(ĥ1,...,n−1)hn + Zn, t ∈ In−1

where Ij is the interval[
∑i=j−1

i=0 Ti,
∑i=j

i=0 Ti] (I0 = [0, T0]
and

∑n
i=0 Ti = T ). Given our focus on mean-squared error,

the optimal estimator is the minimum mean-squared error
estimate (MMSE). We denote the MMSE for channeli at
nodej as,ĥj

i = E[hi|Yj ]. In the encode-and-forward scheme,
preliminary estimates of all channels preceding are made at a
node, thus we definêhi,...,j = [ĥiĥi+1 . . . ĥj ] as the MMSE
of hi,...,j . The minimum distortion for the estimate ofhi at
the destination node is denotedDi. Finally, we defineDj

i to
be the contribution to the minimum distortion inhi at thejth
node. Note thatDi =

∑n
j=i Dn

j . This decomposition holds
due to the orthogonality of the MMSE detector(see also [11]).

Lemma 1:Dj
i is lower bounded by:

Dj
i ≥ var(ĥj−1

i )(1 + SNRj)−
Tj
T (1)

where ĥj
i = E[hi|Yj ] (2)



Proof: We use the expression for the rate distortion function
for Gaussian channels, use the coherent capacity as a bound
for the non-coherent capacity and then use Jensen’s inequality
to bound the coherent capacity conditional on the channel re-
alization. (See [5] for an extended, more methodical derivation
of this lemma which exploits the results of [11]). �

Lemma 2:Given Yi, we can lower boundDi as,

Di ≥
1

SNRiTi + 1
(3)

Proof: If we assume that we knowh1,...,i+1 in addition to
Yi, this bound follows from the computation of the estimation
error for the MMSE. �

Theorem 1 (An n-hop Encode and Forward Bound):
Given the signal model described above, we can form the
following lower bounds:

Dn ≥
1

SNRnTn + 1
(4)

Di ≥ Li =
n∑

j=i

Lj
i , i < n (5)

where,Li is the bound onDi and the boundLj
i on Dj

i is
formed as:

Li
i =

1
SNRiTi + 1

(6)

Lj
i = (1− Lj−1

i )(1 + SNRj)−
Tj
T j > i (7)

Proof: Recall that̂hj
i is the MMSE ofhi at nodej. Then, by

definition, var(ĥj
i ) = E

[
ĥj

i

]2

. By the orthogonality property
of MMSE’s, we can show that:

Dj−1
i = 1− var(ĥj−1

i ) (8)

We also have:

var(ĥj
i ) ≥ var(ĥj−1

i ) (9)

since the variance of the estimator can only increase as we get
further away from hopi.

Summing Equation (8) and Equation (9), we have:

var(ĥj
i ) ≥ 1−Dj−1

i (10)

Using Equation (10) and Lemma 1, yields

Dj
i ≥ (1−Dj−1

i )(1 + SNRj)−
Tj
T (11)

Initializing with Li
i from Lemma 2 and applying Equation (11)

recursively leads to the bound in the theorem statement.�

Corollary 1 (Diversity Factor for n-hops):For encode-
and-forward, assuming that SNRj = SNR ∀ j, the diversity
factor for estimatinghi is bounded as,

ri ≤ min
j>i

Tj

T
(12)

Proof:
We defineAj = 1 + SNRj . Using Equations (6) and (7),

the expression forLj
i is:

Lj
i = (1− Lj−1

i )A−
Tj
T

j

= A
−

Tj
T

j − (1− Lj−2
i )A−

Tj−1
T

j−1 A
−

Tj
T

j

= A
−

Tj
T

j −A
−

Tj−1
T

j−1 A
−

Tj
T

j + . . .

=
j∑

k=i+1

(−1)j−k

j∏
m=k

A
−Tm

T
m + (−1)j−i

j∏
k=i+1

A
−Tk

T

k Li
i

Now, let SNRj = SNR∀ j, thenAj = A ∀ j and the above
summation simplifies to:

Lj
i =

j∑
k=i+1

(−1)j−kA−
Pj

m=k
Tm

T + (−1)j−iA−
Pj

k=i+1 Tk

T Li
i

As SNR→ ∞, the term in the sum above corresponding
to k = j dominates the expression (since it has the largest
exponent). To form the lower bound, theLj

i ’s are summed. As
such, the diversity factor for estimatinghi is upperbounded by
minj>i

Tj

T . �
We note that subsequent channel estimates will achieve

lower end-to-end distortion than “earlier” channels. We next
formalize this notion for the three-hop case,which is easily
extended ton hops. First, we normalize the observation
interval T to 1 over which communication and estimation is
conducted. The bounds from Theorem 1 can be shown to have
the following relationships:

L3 =
1

SNR3T3 + 1
(13)

< (1 + SNR3)−T3 (14)

< L2 (15)

Considerf(x) = (1 + x)y − 1 − xy, then f(0) = 0 and
f ′(x) < 0 wheneverx > 0 andy < 1. This proves Equation
(14) while Equation (15) follows sinceD2 can be written as
a convex sum of 1 and the quantity in Equation (14) which is
upper bounded by 1. Similarly, we have;

L2 < L1 ⇐⇒ (1− α) + α(1 + SNR3)−T3

> (1− β) + β(1 + SNR3)−T3 (16)

whereα = 1− (1 + SNR2)−T2 and 1
1−β = SNR2T2 + 1 (this

statement follows by simple algebra after setting SNR1 →
∞). Again we appeal to the properties of the functionf
defined above and those of convex combinations to verify that
Equation (16) is valid.

IV. M ANY TO ONE RELAY

Our ultimate goal is to investigate the joint sensing and
communication problem for arbitrary network topologies. To
this end, an important generalization of the linear network
is to consider a two-level network where multiple nodes
communicate to a relay and then the relay communicates over
a single channel to the destination. We denote this topology as
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Fig. 2. Node Topology for the Many to One Relay Problem

themany-to-onenetwork. Our goal in this section is determine
a good communication protocol for the first level of the many-
to-one network described in Figure 2. The quality of a com-
munication scheme is gauged by the sum distortion of all the
channels at the destination. In this scenario, the relay receives
training signals fromM sources for theM channels. The relay
then jointly codes the estimated channels and transmits them
over the final link to the destination. The destination must then
decode/estimate allM + 1 channels of interest. We observe
that several protocols are possible for this problem and we
prove that any orthogonal communication scheme is optimal
for this network. In particular, time orthogonal communication
is one optimal scheme and is employed for its ease of use.

Theorem 2 (Orthogonal Communication is optimal):Any
orthogonal communication scheme is optimal, in the sense
of minimizing the sum distortion of the channels, for the
many-to-one network shown in Figure 2.
Proof: The signal received at the relay can be written in vector
form as:

y = Ah + n (17)

where A is a matrix that depends on the signalling scheme
used, andn is the noise vector. Note that the dimensions of
y, h and n are M × 1 and A is M × M . The ith column
of the matrix A is formed at the relay node by collecting
all elements of the received signal which have contributions
from hi. The only constraint in the problem is

∑M
i=1 λ2

i ≤ P
whereλi is the i-th eigenvalue of the matrixA andP is the
total power transmitted by the source nodes. Since we assume
that the channel is independent for each source and that the
channel is normalized, mean-zero and Gaussian, we haveh ∼
N (0, I). Finally, since we assume that the channel noises are
mutually independent, we haven ∼ N (0, diag(σ2

1 , . . . , σ2
M )).

For convenience, we defineS = diag(σ2
1 , . . . , σ2

M ).
Given the signal model in Equation (17), since the relay

node knowsy and A, we can form an MMSE ofh, say ĥ.

The covariance matrix of the errore = ĥ−h is then given by:

K = I −AT [AAT + S]−1A

and so

D = trace(K) = M −
M∑
i=1

λ2
i

λ2
i + σ2

i

=
M∑
i=1

σ2
i

λ2
i + σ2

i

(18)

whereD is the total sum distortion observed at the relay node.
To minimizeD, we then need to minimize the sum on the right
hand side of Equation (18):

minimize
M∑
i=1

σ2
i

λ2
i + σ2

i

subject to
M∑
i=1

λ2
i ≤ P

This equation can be solved by Lagrange multipliers and the
Karush-Kuhn-Tucker (sinceλ2

i must be positive) conditions to
to yield the solution:

λ2
i = σi(ν − σi)+

whereν is chosen such that

M∑
i=1

σi(ν − σi)+ = P

Here,(x)+ denotes the positive part ofx, i.e.

(x)+ =

{
x if x > 0,

0 if x ≤ 0.

In particular, we can create a diagonal matrix forA, the
eigenvalues of which satisfy the conditions outlined above thus
proving the theorem. �

Note that Theorem 2 only claims the optimality of orthogo-
nal communication schemes for the problem of minimizing the
sum distortion of all channels at the relay and that these claims
need not hold when the criterion for optimality is changed,
for example, to minimizing the sum of the probability of error
for all the channels. Once time orthogonality is accepted as
optimal, the end to end distortion faced by individual sources
can be bounded by an application of Lemmas 1 and 2:

Di ≥ αi + (1− αi)(1 + SNRM+1)−
TM+1

T i ≤ M

where, αi =
1

SNRiTi + 1

DM+1 ≥
1

SNRM+1TM+1 + 1

where we assume we are given the source powers{Pi}M+1
i=1 ,

the channel noises variances{σ}M+1
i=1 and the optimal trans-

mission times{Ti}M+1
i=0 for all the nodes in the network.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Spent in First Link

O
b
s
e
rv

e
d
 D

is
to

rt
io

n
 f
o
r 

F
ir
s
t 
S

o
u
rc

e

2!to!1

3!hop

2!hop

Fig. 3. Comparison of the bounds onD1 for linear and many-to-one networks

V. RESULTS

A comparison of the lower bound derived in Theorems 1
and 2 for the case when the network comprises of two and
three links is presented in Figure 3. We consider sources with
an SNR of 20dB and total timeT set to 1 for normalization.
Note that in the three hop case, we optimize forD1 over the
time spent in the second and third channels and that in the 2-
to-1 network, the time spent in the first link is divided evenly
between the two sources (which is intuitive given the equal
powers for the two sources).

Observe that the bounds are very steep at lowT1. This is
to be expected for the conditions assumed (SNR1 = SNR2 =
SNR3 =20dB), since at lowT1, any increase provides a large
improvement in distortion. Also note that the bound for the
two-hop network is less sensitive to changes inT1 for a large
interval of time while the three-hop bound is “sharper”. As
the number of nodes in the network grow, the bounds become
more sensitive toT1 due to the larger number of variables that
influence the bound and need to be optimized over. Further,
the slope of the curves changes asT1 → 1. (D1 = 1 trivially
when T1 is 1). This is because whenT1 is close to 1, while
relay node1 has a good estimate ofh1, since this information
now has to travel over more hops (in the same time) to reach
the destination, the distortion faced is greater which translates
to a lower slope for more nodes. As the number of nodes tends
to ∞, it is to be expected that the curve approaches the point
(1,1) at a zero slope.

It is intuitive to observe that the distortion in the 2-hop
topology and the 2-to-1 topology are similar. Further, the 2-to-
1 case is lower bounded by the 2-hop case since the time spent
in the first link is now used to estimate two different sources
thus leading to a higher distortion in both. Also note that
while the 2-to-1 topology has the same number of channels
of interest as the 3-hop network, the hierarchically layered
nature of the 2-to-1 network leads to a reduced distortion
at the destination. This feature is expected to become more

prominent as the number of nodes increases while the time
available for communication remains fixed.

VI. CONCLUSIONS

We have derived lower bounds on the distortion in channel
estimates for a simple linear network as in Figure. 1 with
encode-and-forward based communication between the relays.
For a symmetric case, where each link has the same SNR,
the distortion for the estimation of channeli is limited by
the smallest transmission duration between nodei − 1 and
the destination. This suggests that for more general cases
there is an effective SNR and transmission duration measure
that should be equalized over all links in order to ensure
equal distortion at the destination. In addition, we have shown
that under very mild conditions, orthogonal communication
yields lower distortions than any other communication scheme
for the many-to-one network in Figure. 2. Ongoing work is
completing the derivation of distortion bounds for amplify-
and-forward based communication for multihop networks and
applying the current results to more complex networks such
as those with tree topologies.
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