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On Integer Codes
Ulrich Tamm

Abstract— Integer codes are important in single–error correc-
tion and the study of perfect codes. Several further applications in
coding theory, computer science, graph theory as well as related
concepts in algebra and geometry are discussed.

Index Terms— Single-error correction, perfect codes, codes on
graphs, tiling, splitting of groups.

I. INTRODUCTION

An integer code as defined by Vinck and Morita in [1]
consists of all words (c1, . . . , cn) ∈ Zn

m, where Zm is the
ring of integers modulo m, fulfilling

n∑

i=1

wi · ci = d mod m. (1)

Here (w1, . . . , wn) ∈ Zn
m is a sequence of weights and d is

an element of Zm. So, n is the length of the code and m is
the size of the code alphabet.

Integer codes have a variety of applications in information
theory, computer science, graph theory, and algebra. In cod-
ing theory they are a useful tool in single–error–correction
[3] – [16]. The advantage is that the proper choice of the
weights allows great flexibility and enables to correct single
errors in many error models (substitution, insertion/deletion,
synchronization, etc.) and types (symmetric, asymmetric, uni-
directional, etc.). The analysis of the syndromes of integer
codes often yields conditions for perfectness, such that they
also contribute to the theory of perfect codes in various metrics
[17] – [21]. Further applications in coding theory have been
presented in [1].

A different motivation comes from computer science. The
goal here is not error correction but the efficient placement of
resources in distributed and parallel computations. This leads
to the concept of codes in a graph, since it has to be avoided
that processors are placed in vertices within a certain distance
in this graph [22] – [28]. An example is presented in section
II.

The proper choice of the weight sequence depends on the
type of error to be corrected. The effect of a single error is
reflected in the behaviour of the syndrome, which should be
changed to a value different from d by a linear combination
of the weights corresponding to the codeword’s coordinates
involved in this error. It turned out that the analysis of the
syndrome is deeply related to splitting of groups and tiling
of the Euclidean space by certain star bodies. This had been
intensively discussed in algebra [29] – [36].
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We shall discuss the choice of the parameters of an integer
code in the next section. After that, in Section III several
results important for coding theory are presented followed by
remarks on packings and coverings in Section IV.

II. CHOICE OF THE PARAMETERS

The weight sequence: There are two possibilities to arrange
the weight sequence w1, . . . , wn. One might work with a fixed
sequence of weights chosen in advance and then immediately
obtain the code or one might leave the sequence variable for
further analysis.

The most well - known example for codes with a fixed
weight sequence are the Varshamov – Tenengolts codes de-
fined by

n∑

i=1

i · ci = d mod n + 1.

This construction with a special n had been used already
by Ulrich [2] in 1957 for nonbinary codes. Varshamov –
Tenengotls codes have many applications, for instance, they
are a useful tool to correct single asymmetric errors [3] and
single deletions [4]. Often, the codewords (c1, . . . , cn) are
assumed to be binary [4], [5], such that the resulting codes
are not integer codes in the sense of (1).

Another fixed–weight sequence was recently studied by
Dorbec and Mollard [24]. They discussed the following for-
mula

k∑

i=0

p∑

j=1

((2p + 1)i + j)cip+j = l(2p+ 1) mod (k + 1)(2p+ 1)

for some l ∈ {0, . . . , k}. The codewords fulfilling this
equation followed by some further components form a perfect
code in the graph obtained as cartesian product of the grid
Zp(k+1) and the hypercube of dimension k.

As mentioned above, often the weights are left variable
and then the code behaviour is studied, for instance, by
analyzing the possible syndromes as explained in detail later
on. Since in many cases only existence results are of interest,
an explicit code construction may not be necessary. Otherwise,
the weights then later can be optimized according to the special
requirements.

The parameter d: Usually, the parameter d in (1) will be
chosen as 0. This is quite natural and the resulting code has a
group structure, which might be of advantage. However, there
might be reasons to choose another d, for instance, when the
resulting code has better properties or is concatenated with
another code as in the previous example. A combinatorial
analysis of the code size for different choices of d has been
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carried out by Martirosyan [6]. Sloane [7] discussed surprising
relations of the code sizes for Varshamov–Tenengolts codes to
further enumeration problems.

The syndrome: In order to be able to correct one single
error, the syndromes of an integer code have to be pairwisely
different. As pointed out before, integer codes allow to correct
single errors in several code concepts, as substitution, deletion,
transposition, etc. The code concept is reflected by the syn-
drome as the following two examples illustrate.

If the error is a substitution of the letter ci by c′i then the
resulting syndrome is

w1c1 + . . . + wi−1ci−1 + wic
′

i + wi+1ci+1 + . . . + wncn

= d + wi(c
′

i − ci), for i = 1, . . . , n

A single error may involve more than one component. For
instance, if the two adjacent letters ci and ci+1 are permuted,
then the syndrome will be

w1c1 + . . . + wi−1ci−1 + wici+1 + wi+1ci + wi+2ci+2+

. . .+wncn = d+(wi−wi+1)(ci+1−ci), for i = 1, . . . , n−1.

A very similar syndrome occurs in the correction of peak
shifts discussed by Levenshtein and Vinck [8]. Here n is the
number of runs in a run–length limited sequence of 0s and
1s and the cis are the lengths of the successive runs, i. e.,
the numbers of 0s between two consecutive 1s. A peak shift
results in a shift by at most k positions of the ith 1 to the left
or to the right. This has the effect that the length of the i–th
run ci increases by a number 0 ≤ j ≤ k and the length of the
(i + 1)th run decreases by the same number j, or vice versa.
The resulting syndrome is

w1c1 + . . . + wi−1ci−1 + wi(ci ± j) + wi+1(ci+1 ∓ j)

+wi+2ci+2 + . . . + wncn = d ± (wi − wi+1)j.

Possible errors:Without loss of generality, we assume d = 0.
So if the possible distortions, which can be corrected by the
integer code, are from an error set E = {a0, a1, . . . , ak−1} ⊂
Zm and the linear combinations of the weights are from a set
H ⊂ Zm, then we have to assure that all possible products by
the appropriate weight combinations and codeword combina-
tions are different, i. e.,

e · h 6= e′ · h′ for all e, e′ ∈ E and h, h′ ∈ H. (2)

For the special error set E = {1, 2, . . . , k} the set H is
denoted as shift design [8] or shift code [9]. In this sense,
we shall denote H corresponding to an arbitrary error set E as
syndrome code. If, all elements from the set Zm\{0} occur as
a product in (2), then the syndrome code is said to be perfect.
In this case also the corresponding integer code is perfect.

A perfect syndrome code in (2) jointly with the set E is also
known in algebra as splitting (E ,H) of the additive group Zm

[29], [30], [31]. Further, if m = p is a prime number, then
E ·H yields a factorization [32] of the multiplicative group Z∗

p

(here multiplication of two sets means the set of all possible
products of one element in one set with an element of the
other set).

III. SPECIAL PERFECT CODES AND SPLITTINGS

A general construction: We shall concentrate on groups Zp

where p is a prime number – results for composite moduli can
easily be derived from this ([9]). In this case the multiplicative
group Z∗

p = (Zp\{0}, ·) consists of all numbers {1, . . . , p−1}
and a splitting (E ,H) corresponds to a factorization E · H of
the group Z∗

p .
In many cases it can be shown that the set

H = {gjk : j = 0, . . . ,
p − 1

k
}. (3)

is a subgroup in Z∗

p , where g is a generator of Z∗

p .
In [10] the elements of E are expressed as powers of the

generator g, namely ai = gµi for i = 0, . . . , k − 1. In order
to assure that all products e · h (e ∈ E , h ∈ H) are different,
one has to guarantee that all products gµi · gjk = gjk+µi

are different for all possible choices j = 0, . . . , p−1
k

, i =
0, . . . , k − 1. This obviously holds if and only if the µi fall
into the different congruence classes modulo k, i. e., if

{µ0 mod k, . . . , µk−1 mod k} = {0, . . . , k − 1}. (4)

If, additionally, |E| · |H| = p − 1, then obviously H is a
perfect syndrome code.

In the following we are only interested in symmetric errors,
such that the error sets E under consideration are of the form
{±a0,±a1, . . . ,±ak−1}. It is easily seen that one can identify
the elements x and −x in Z∗

p and hence simply carry out all
previous calculations with the numbers a0, a1, . . . , ak−1 now
in Z∗

p/{1,−1}.
The error set E = {±1,±a}: In [11] the error set E =

{±1,±a} is discussed. This corresponds to the error model,
in which a letter ci is changed to one of its nearest neighbours
on the a × a – grid, where a component (x, y) is represented
by the number x + y · a This can be described in such a way
that the received letter is contained in the set {ci ± 1, ci ± a}.
given. The condition on the existence of a splitting in Zp is
that the element a2 has an even order modulo p. The set H
then consists of the group of even powers of a in Z∗

p/{1,−1}
and its translates in the respective cosets, cf. also [8] for a = 2.

The error set E = {±1,±a, . . . ,±ar}: This error set was
studied among others in [12]. The condition on perfectness
here is that the element a has order divisible by r + 1 in
Z∗

p/{1,−1}.
The error set E = {±1,±a, . . . ,±ar,±b, . . . ,±bs}:
For this set the conditions on the existence of a splitting in

Zp derived in [13] are.
1 The orders of a and b are both divisible by r + s + 1.
2 Whenever bl1 = al2 for some integers l1, l2, then l1+l2 ≡

0 mod (r + s + 1).
These conditions guarantee that the the syndrome code H =

{ai ·bj , i−j ≡ 0 mod (r+s+1)} is really the proper subgroup
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(3), which is then generated by the elements ar+s, br+s and
a · b.

The error set E = {±1,±a, . . . ,±ar,±b, . . . ,±bs,
±c, . . . ,±ct}: This is much more difficult to analyze. If
a = gµ1 , b = gµ2 , c = gµ3 , then it has to be arranged that
{µ1, . . . , rµ1} ∪ {µ2, . . . , sµ2} ∪ {µ3, . . . , tµ3} =

{1, . . . , r + s + t},
where the numbers are reduced modulo r + s + 1.

If one would have to control only the two parameters a and
b as previously discussed, one could simply choose µ1 ≡ 1
mod (r + s) and µ2 ≡ −1 mod (r + s) and the results above
follow easily.

By the same approach it is still possible to analyze the
case s = 1, i.e., E = {±1,±a, . . . ,±ar,±b,±c, . . . ,±ct}.
Fortunately, the two sets most important for applications are
of this form, as we shall see now – in general, for three
parameters a,b,c, a general formula seems to be hard to find.

The error set E = {±1,±a,±b,±c} has recently been
studied in [10]. The motivation came from another concept for
codes on the a× a grid, which was also discussed is [11]. In
this error model a letter cannot only be changed to the nearest
neighbours on the grid, but also to closest elements on the
diagonals passing through the vertex representing this letter,
such that the special error set E = {±1,±(a− 1),±a,±(a +
1)} arises.

The syndrome code H here is the group generated by the
elements a4, b2, c4, a · c, a2 · b (plus possibly its cosets) in
Z∗

p/{1,−1}.
Again it has to be guaranteed that this group is really of the

form (3) The conditions here are:
1 In Zp ∗ /{1,−1} the orders of a and c are divisible by 4

and the order of b is divisible by 2,
2 whenever ai · cj ∈ H then i − j ≡ 0 mod 4,
3 whenever ai · bj ∈ H then 2i + j ≡ 0 mod 4,
4 whenever ci · bj ∈ H then 2i + j ≡ 0 mod 4.

Another important example for this kind of error set, is the
set {1, 2, 3, 4, 5}= {1, a, a2, b, c} for (a, b, c) = (2, 3, 5). Here
the syndrome code H is basically the group generated by the
elements a5, b5, c5, a · c, and a2 · b.

The error set E = {±1,±2, . . . ,±k}: By far the most
important error set is E = {±1,±2, . . . ,±k}. As mentioned
before, this set arose in the study of run–length limited codes
and the syndrome code was denoted by Levenshtein and Vinck
[8] as k – shift design and later by Munemasa [9] as k – shift
code.

As a second application in coding theory, {±1,±2, . . . ,±k}
is also the error set for codes correcting single errors in the
so–called Stein sphere [14] – [16], where a single component
is distorted in such a way that the received letter c′i is of the
form c′i = ci + j, j ∈ {±1,±2, . . . ,±k}. A special case are
single–error–correcting codes in the Lee metric. The results
for the error sets previously discussed yield conditions for the
existence of of perfect k–shift codes for the small parameters
k = 2, 3, 4, 5.

This is deeply related to algebra and geometry, where the
set {±1,±2, . . . ,±k} jointly with the corresponding perfect

shift code had been studied before under the name group
splitting. The concept arose in the analysis of tilings of the
n-dimensional space by the (k, n)–cross [29], [30], [31].

A (k, n)–cross is the cluster consisting of the 2kn + 1 unit
n – dimensional cubes with centers (for j = 1, . . . , k)

(0, . . . , 0), (±j, 0, . . . , 0), (0,±j, . . . , 0), . . . , (0, . . . , 0,±j).

These star bodies correspond to the error spheres denoted
by Golomb [14] as Stein sphere and Stein corner, respectively.

It turned out in [33] that a lattice tiling of the Euclidean
space Rn by the (k, n)–cross exists exactly if {±1, . . . ± k}
splits some Abelian group of order 2kn + 1. The splitting of
Abelian groups can often be reduced to those for cyclic groups
Z2kn+1, such that the syndromes of integer codes fulfilling (2)
come into play.

The Stein sphere is also a special kind of polyomino [41]
and has a further application in the study of memory with
defects [42].

IV. PACKINGS AND COVERINGS

It can be shown by combinatorial arguments that perfect
integer codes are quite sparsely distributed [10]. One might
relax the condition and also look for constructions of almost
perfect codes, i. e., condition (2) is fulfilled and most elements
in Zm \ {0} can be represented as a product in (2).

Packings and coverings have been considered e.g in [37],
[38], [39]. Some applications to Information Theory are dis-
cussed in [15] and [16]. The following asymptotical result is
known.

lim
k→∞

f(k, n)

k2
= 1

Here f(k, n) denotes the smallest m such that a packing by
{±1,±2, . . . ,±k} of size n exists in Zm

Contrasting to the group splittings, the results on packings
and coverings of groups cannot be directly applied to coding
theory. Motivated by the geometric application, here the pa-
rameter n is fixed and k tends to infinity. The result shows that
good packings in this case cannot be expected, since f(k, n)
is about k2, which is much bigger than 2kn + 1 for n small
compared to k.

For applications in coding theory, however, one would rather
fix k and look for code constructions suitable for any n. Very
close packings of cyclic groups Zp of prime order can also be
obtained if condition (4) is fulfilled. However, if several µis
in (4) fall into the same congruence class, it is also obvious
by (4) that a close packing cannot exist in this case. So here it
might be advantageous to study packings of Zm for composite
numbers m. For the special sets E = {±1,±2,±3} and E =
{±1,±2,±3,±4} a greedy construction yielding very close
packed shift codes has been provided in [40]. For instance,
in Z40 the 3–shift code {1, 4, 5, 7, 9, 17} of size 6 improves
the value in Table V-4 on p. 316 in [30] and the 4–shift code
{1, 5, 8, 9, 11, 13, 14, 17, 23, 35, 37, 40} of size 12 in Z99 is
almost perfect.
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