Universal Burst Correction Marc Fossorier

In this work, it is shown that under very mild assumptions, practically any binary linear block code of length $N\$ and dimension $K\$ is able to correct any burst of length up to $N-K\$ with probability of success $P_{c} = 1\$ for erasures, and any burst of length up to $N-K-m\$ with probability of success $P_{c} = 1\$ for erasures, and any burst of length up to $N-K-m\$ with probability of success $P_{c} = 1\$ for erasures, and any burst of length up to $N-K-m\$ with probability of success $P_{c} = 1\$ for erasures, and any burst of length up to $N-K-m\$ with probability of success $P_{c} = 1\$ for erasures, and any burst of length up to $N-K-m\$ with probability of success $P_{c} = 1\$ for erasures, and any burst of length up to $N-K-m\$ both cases, the decoding is based on identifying a string of zeroes in an extended syndrome corresponding to a particular representation of the parity check matrix of the code and its complexity is $O(N^2)\$ binary operations.