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Abstract— The Lagrangian formulations of fixed-
rate and variable-rate vector quantization can be com-
bined into a single formulation involving constraints
on both entropy and log codebook size. The approach
leads to a Lloyd design algorithm and to results on
high-rate or high-resolution quantization. It provides
both a unified view of the traditional results and an
approach to studying the implications of Gersho’s con-
jecure, including asymptotic quantizer point density
functions. We here describe the approach, preliminary
results, and open problems.

I. I NTRODUCTION

The theory of quantization derives largely from
Lloyd’s work [9], which formalized the optimal
performance and found asymptotic approximations
to the optimal performance for high-rate scalar
quantization. The ideas were initially extended to
vector quantizers by Zador [10]. Zador considered
two separate cases of code constraints: total number
of codewords (fixed-rate codes) and quantizer output
entropy (variable-rate or entropy-constrained codes).
The fixed-rate results of Zador were generalized
and simplified by Bucklew and Wise [1] and Graf
and Luschgy [5]. The entropy-constrained results of
Zador were generalized in [6] using the Lagrangian
formulation of [3]. Extensions to combined con-
straints on entropy and codebook size are presented
without proof, but with heuristic arguments based
on Gersho’s conjecture. Details are contained in a
paper in progress. See also [7], [8].

A quantizeror vector quantizerq on <k can be
described by the following mappings and sets: an
encoderα : <k → I, whereI = {0, 1, 2, . . .} is an
index set, an associated partitionS = {Si : i ∈ I},
Si ⊂ <k, such thatα(x) = i if x ∈ Si, a decoder
β : I → <k, an associated reproduction codebook
C = {β(i) : i ∈ I} of size N(q) = |C|, and a
length function{`(i) : i ∈ I} which isadmissiblein
the sense that

∑
i∈I e

−`(i) ≤ 1. Let q denote both
the collection of mappings and the overall mapping
q(x) = β(α(x)).

The distortion d(x, x̂) between an inputx and a
quantized version̂x = β(α(x)) is assumed here to
be the squared error distortion||x − x̂||2. If X is
a random vector with densityf (assumed to be ab-
solutely continuous with respect to Lebesgue mea-
sure), theaverage distortionis defined asDf (q) =
Efd(X,β(α(X))), whereEf denotes expectation
with respect tof . The averagerate is defined by
Rf (q) = (1−η)Ef `(α(X))+η lnN(q). Define the
average Lagrangian distortion

ρ(f, λ, η, q) = Ef

(
d(X,β(α(X)))

+ λ[(1− η)`(α(X)) + η lnN(q)]
)
, (1)

where λ > 0 and η ∈ [0, 1]. The corresponding
optimization is to characterize

ρ(f, λ, η) = inf
q
ρ(f, λ, η, q). (2)

In this context the high-rate results for the traditional
cases of variable-rate coding (η = 0) and fixed-rate
coding (η = 1) can be considered as special cases
of the limiting behavior asλ→ 0 of

θ(f, λ, η) =
ρ(f, λ, η)

λ
+
k

2
lnλ. (3)

The Lagrangian form of the variable-rate result [6]
is that under suitable conditions

lim
λ→0

θ(f, λ, 0) = h(f) + θk, (4)

whereh(f) is the differential entropy of the pdff

andθk
∆= infλ>0 θ(u, λ, 0), andu is the uniform pdf

on a unit cube. The Lagrangian form of the fixed-
rate result [8] is

lim
λ→0

θ(f, λ, 1) = ψk + ln ||f ||k/2
k/(k+2), (5)

whereψk
∆= infλ>0 θ(u, λ, 1). The proofs of these

results tend to be tedious, but they largely follow
Zador’s original approach:

Step 1Prove the result for a uniform density on
a cube.

Step 2Prove the result for a pdf that is piecewise
constant on disjoint cubes of equal volume.



Step 3Prove the result for a general pdf on a
cube by approximating it by a piecewise
constant pdf on small cubes.

Step 4Extend the result for a general pdf on the
cube to general pdfs on<k by limiting
arguments.

The uniform densityu on [0, 1)k plays a funda-
mental role both as Step 1 and as a simple example
sufficient for developing the properties of the Zador
constants related toθk andψk.

The form of the Lagrangian approach suggests a
conjecture for the asymptotic behavior consistent
with the high-rate Lagrangian fixed- and variable-
rate cases:

lim
λ→0

(
ρ(f, λ, η)

λ
+
k

2
lnλ
)

= θ(f, η) , (6)

where θ(f, η) is finite. Furthermore, the particular
form of the traditional cases suggests a second
conjecture—that the asymptotically optimal perfor-
manceθ(f, η) can be expressed as a sum of two
terms, the first involving an infimum for the uniform
density on a unit cube and the second depending on
the specific pdf:

θ(f, η) = θk(η) + h(f, η), where (7)

θk(η) ∆= inf
λ>0

(
ρ(u, λ, η)

λ
+
k

2
lnλ
)
. (8)

From the traditional variable-rate and fixed-rate
cases,θk(0) = θk and h(f, 0) = h(f), whereas
θk(1) = ψ1 andh(f, 1) = ln ||f ||k/2

k/(k+2).

II. L LOYD OPTIMALITY CONDITIONS

For λ > 0 and η ∈ (0, 1), the Lloyd optimality
properties become

• For a given decoderβ and length func-
tion `, the optimal encoder satisfiesα(x) =
argmini (d(x, β(i)) + λη`(i)) .
• For a given encoderα, the optimal decoder
satisfiesβ(i) = argminy E(d(X, y|α(X) = i)
if the minimum exists.
• For a given encoderα, the optimal code-
length is `(i) = − ln Pr(α(X) = i). Therefore
Ef `(α(X)) = Hf (q), the Shannon entropy of
the quantizer output.
• A necessary condition for optimality of a fixed-
rate quantizerq with codebookC is that there be
no subcodebookC′ ⊂ C for which

Df (C′) + λ [(1− η)Hf (C′) + η ln |C′| ]
< Df (C) + λ [(1− η)Hf (C) + η ln |C| ] , (9)

whereHf (C) andHf (C′) denote the entropies
of the partitions corresponding to the optimal
encoding for codebookC andC′.

Given a codebookC (or decoderβ) or partitionS
(or encoderα), the Lloyd properties determine the
remaining components, so optimizing over quantiz-
ers is equivalent to optimizing over codebooks or
partitions.

III. A SYMPTOTICALLY OPTIMAL QUANTIZERS

It is convenient to consider the quantity defined
by normalizing the average Lagrangian distortion by
λ and adding a weightedlnλ term. Define

θ(f, λ, η,S) =
ρ(f, λ, η,S)

λ
+
k

2
lnλ

=
Df (S)
λ

+[(1− η)Hf (S) + η lnN(S)]+
k

2
lnλ

and the related quantities θ(f, λ, η) =
infS θ(f, λ, η,S), θ(f, η) = lim supλ→0 θ(f, λ, η),
and θ(f, η) = lim infλ→0 θ(f, λ, η). The main
conjecture (6) is true if and only ifθ(f, η) = θ(f, η),
in which case the common value is denotedθ(f, η).

Lemma 1:θ(f, λ, η,S) andθ(f, λ, η) are mono-
tonic nondecreasing, concave, and continuous func-
tions of η.

Corollary 1: Suppose that for a pdff the con-
jecture (6) holds for allη ∈ [0, 1] and hence

θ(f, η) = lim
λ→0

θ(f, λ, η)

exists for η ∈ [0, 1]. Then θ(f, η) is a monotone
nondecreasing concave function ofη and it is con-
tinuous except possibly at the origin. Furthermore,
θ′(f, η) = dθ(f, η)/dη exists and is finite for all
η ∈ (0, 1) except possibly on a set of Lebesgue
measure 0.

If equation (6) holds forf and η, then for
every sequenceλn → 0 there exists a sequence of
partitionsSn for which

lim
n→∞

θ(f, λn, η,Sn) = θ(f, η), (10)

in which case we say that the sequenceSn is
(η, λn)-asymptotically optimal or simply(η, λn)-
a.o. for the pdff .

If Sn is (η, λn)-a.o. for a pdff , then (12) can be
used as in the fixed-rate and variable-rate cases to
show that

lim
n→∞

k

2
ln
(

2e
k
Df (Sn)e

2
k
[(1 − η)Hf (S) + η ln |S| ]

)
= θ(f, η). (11)

A sequence of partitionsSn satisfying (11) will
be calledη-asymptotically optimal or brieflyη-a.o.



for the pdf f . If a sequence is(η, λn)-a.o. for any
sequenceλn, then it is eta-a.o. Conversely if it is
η-a.o., then it is(η, λn)-a.o. for someλn → 0.

In the traditional cases the asymptotic behavior
of distortion and rate can be teased apart from the
linear combination of the two in (10) [7], [8]. These
results can be extended to the combined constraint
case using the following inequality based on the
ln r ≤ r − 1 inequality:

θ(f, λ, η,S) ≥
k

2
ln
(

2e
k
Df (S)e

2
k
[(1 − η)Hf (S) + η ln |S| ]

)
(12)

with equality if and only ifλ = 2Df (S)/k. If Sn

is η-a.o. forf , then

lim
n→∞

2Df (Sn)
kλn

= 1 (13)

lim
n→∞

(
1− η)Hf (Sn) + η ln |Sn|+

k

2
lnλn

)
= θ(f, η)− k

2
. (14)

If, in addition, we make the assumption of Corollary
1 that (6) holds for allη ∈ [0, 1], then we can also
separate out the behavior ofHf (Sn) andln |Sn)| in
terms ofλn:

lim
n→∞

(ln |Sn| −Hf (Sn)) = θ′(f, η). (15)

Perhaps surprisingly, the two growing termsln |Sn|
andHf (Sn)) differ only by a constant in the limit
if θ′(f, η) is finite! Combining the previous results
yields the following corollary which separates out
the asymptotic behavior of distortion, entropy, code-
book size, and the difference between the entropy
and codebook size.

Lemma 2:Suppose that for a pdff the conjecture
(6) holds for all η ∈ [0, 1], hence θ(f, η) =
limλ→0 θ(f, λ, η) exists for η ∈ [0, 1]. Then for
almost allη ∈ (0, 1), if Sn is (η, λn)-a.o. then

lim
n→∞

2Df (Sn)
kλn

= 1

lim
n→∞

(
Hf (Sn) +

k

2
lnλn

)
=

θ(f, η)− ηθ′(f, η)− k

2

lim
n→∞

(
ln |Sn|+

k

2
lnλn

)
=

θ(f, η) + (1− η)θ′(f, η)− k

2

lim
n→∞

(
ln |Sn| −Hf (Sn)

)
= θ′(f, η).

IV. H EURISTIC DERIVATION

Gersho’s conjecture and the associated approx-
imations can be used to derive the basic results
for joint entropy and codebook size constrained
quantization. This approach, although not rigorous,
provides insight into the results and a consistency
check with the rigorous development. An obvious
modification suggests a solution to the general case.

Gersho’s conjecture involves two assumptions re-
garding asymptotically optimal sequences of fixed-
rate and variable-rate quantizers. First, it is assumed
that there exists a quantizer point density function
Λ(x) such that a sequence of optimal codes withN
codewords,N = 1, 2, . . . will satisfy

lim
N→∞

1
N
× ( # reproduction vectors in a setS)

=
∫

S

Λ(x) dx; all S, (16)

where
∫
<k Λ(x) dx = 1. Second, Gersho assumed

that If fX(x) is smooth andR is large, then
the minimum distortion quantizer has cellsSi that
are (approximately) scaled, rotated, and translated
copies ofS∗, the convex polytope that tesselatesRk

with minimum normalized moments of inertia

M(S) =
1

kV (S)2/k

∫
S

||x− y(S)||2

V (S)
dx

wherey(S) denotes the centroid ofS. Specifically,
define

ck = min
tesselating convex polytopesS

M(S).

Under these assumptions, it can be argued using
Riemann approximations of integrals and sums that
for largeN

Df (q) ≈ ckEf

(
(

1
N(q)Λ(X)

)2/k

)
(17)

Hf (q(X)) ≈ h(X)− E

(
log(

1
N(q)Λ(X)

)
)

= lnN(q)−H(f ||Λ), (18)

where the relative entropy H(f ||λ) =∫
f(x) ln(f(x)/Λ(x)) dx. Application of Holder’s

inequality to (17) yields the classic fixed-rate result
and the combination of (17) and (18) with Jensen’s
inequality yields the classic variable-rate result.
Suppose that a quantizerq has a quantizer point
densityΛ and a total ofN quantization levels for
N large, then

θ(f, λ, η,Λ)

≈
ckEf

(
(NΛ(X))−2/k

)
λ

+

(1− η)[lnN −H(f ||Λ)] + η lnN +
k

2
lnλ.



If the quantizer point densityΛ is fixed, then the
optimum choice ofN is the that which minimizes

ckN
−2/kEf

(
(Λ(X))−2/k

)
λ

+ lnN

≥ k

2
ln

(
2eck
k

Ef

(
(Λ(X))−2/k

)
λ

)
with equality if and only if

N =

[
2
k

ckEf

(
(Λ(X))−2/k

)
λ

]k/2

. (19)

Thus

θ(f, λ, η,Λ) =
k

2
ln
(
keck

2

)
+ (1− η)h(f)+

k

2
ln
(
Ef

(
(Λ(X))−2/k

))
+(1−η)Ef (lnΛ(X)) ,

(20)

and the goal becomes the minimization of
θ(f, λ, η,Λ) over all point density functionsΛ. Ger-
sho’s conjecture and this heuristic approach imply
that (1/2) ln(keck/2) = θk = ψk, the Zador fixed-
rate and variable-rate constants are equal, but no
proof of this result exists except fork = 1 and
asymptotically ask →∞. For our purposes we can
identify (k/2) ln(keck/2) asθk(η) when comparing
(20) with the rigorous results, which results in the
conjecture

θ(f, η) = θk(η) + h(f, η) (21)

h(f, η) = (1− η)h(f)+

inf
Λ

[
k

2
ln
(
Ef

(
(Λ(X))−2/k

))
+(1− η)Ef (lnΛ(X))] . (22)

This leads to the traditional results whenη = 0, 1.

V. SOME KNOWN RESULTS

Conjecture (6) has been proved for uniform den-
sities on cubes [8].

Theorem 1:

θk(η) ∆= inf
λ>0

θ(u, λ, η) = lim
λ→0

θ(u, λ, η) (23)

Thus η-a.o. quantizers exist for such densities and
the previous results Lemma 2 concerning the behav-
ior θ(f, η) apply to θ(u, η) = θk(η). For example,
from the remarks following conjecture 3 of [7], the
lemma implies that for almost allη, the asymp-
totic quantizer point density function exists and is
uniform for the uniform distribution, extending the
known result for fixed-rate coding to the combined
case.

Step 2 assumes that the pdff is nonzero on
the union of a finite numberM of disjoint cubes
{C(m) : m = 1, 2, . . . ,M} on which it is constant:

f(x) =
∑
m

wmfm(x) =
∑
m

wma
−k1C(m)(x),

(24)
where

∑
m wm = 1 and andak is the volume of

eachC(m). Design for each cubeC(m) a nearly
optimal code with partitionSm for the conditionally
uniform pdffm using a Lagrange multiplierλm and
a common value ofη for all m. For the moment
we leave open the choice of theλm except for
the assumption that they are all small enough for
Lemma 2 to apply. After some algebra, the overall
Lagrangian distortion becomes

θ(f, λ, η,S) ≈ θk(η)− k
2

+(1−η)H(w)+k ln a+

k

2

∑
m

λm

λ
wm − (1− η)

k

2

∑
m

wm ln
λm

λ
+

η ln
∑
m

(λm

λ

)−k/2

.

So the goal is to minimize the functionθ(f, η, µ) =
θk(η) + φ(w, η, {λm}) over {λm}. Unfortunately,
φ is not a convex function of the Lagrangian mul-
tipliers. However, transforming variables asνm =
ln(λm/λ) results in a convex optimization problem

h(f, η) ∆= min
ν
φ(f, η, ν) =

min
ν

(
(1− η)F0(w, ν) + ηF1(w, ν)

)
, (25)

where

F0(w, ν) = φ(w, 0, ν) =
k

2

∑
m

wme
νm+

H(w)− k

2

∑
m

wmνm +
k

2
ln
a2

e
(26)

F1(w, ν) = φ(w, 1, ν) =
k

2

∑
m

wme
νm + ln

∑
m

e−kνm/2 +
k

2
ln
a2

e
. (27)

Sinceφ(w, η, ν) is strictly convex inν, there must
be a unique minimum. Sinceφ(w, η, ν) is differen-
tiable with respect toν, the minimum must be at a
point with 0 gradient, which implies

wme
νm = (1− η)wm + η

e−
k
2 νm∑

n e
− k

2 νn
. (28)

Strict convexity ofφ(w, η, ν) guarantees the exis-
tence of aν satisfying this equation and furthermore
that ν minimizes φ(w, η, ν). Unfortunately there
seems to be no nice closed form solution forν in
terms ofw.



Combining the above arguments with the careful
limiting arguments proves the following.

Theorem 2:If f is a piecewise constant pdf of
the form given in (24), then

lim sup
λ→0

θ(f, η, λ) ≤ θk(η) + h(f, η), (29)

with h(f, η) given by (25).

This proves the positive part of (6), but to prove the
conjecture requires a converse to the effect that

lim inf
λ→0

θ(f, η, λ) ≥ h(f, η). (30)

Unfortunately the converse has proved more dif-
ficult than in either of the traditional cases, but
we conjecture that it holds based on the fact that
a development based on Gersho’s conjecture and
approximations is consistent with our conjecture.

The next step is to generalize from piecewise
constant pdfs on a cube to more general pdfs on
the unit cube. The arguments for the piecewise
continuous case extend to this case and also to
unbounded support sets with a moment condition
and show that

Theorem 3:If f is a pdf satisfying the moment
condition ofEf (‖X‖2+δ) ≤ ∞ for someδ > 0,
then the result of Theorem 2 holds with

φ(f, η, ν) = (1 − η)F0(f, ν) + ηF1(f, ν)

where

F0(f, ν) = φ(f, 0, ν) =
k

2

∫
f(x)

(
eν(x) − ν(x)− 1

)
dx+ h(f)

F1(f, ν) = φ(f, 1, ν) =
k

2

∫
f(x)

(
eν(x) − 1

)
dx+ln

(∫
e−kν(x)/2 dx

)
where

Λ(x) =
e−kν(x)/2∫
e−kν(y)/2 dy

. (31)

φ(f, η, ν) is a strictly convex function ofν. Un-
fortunately, in this infinite dimensional case convex-
ity does not guarantee the existence of a minimizing
ν and hence further assumptions are needed. It
does, however, guarantee that if a minimizingν
exists, it is unique (at least up to a set of measure
zero). In particular, if there is a local minimum of
φ(f, η, ν) with respect toν, then it is the unique
global minimum. By adding more assumptions (in
particular, thatf is such thatφ(f, η, ν) is twice
continuously differentiable), a calculus of variations
argument results in the conditions

f(x)eν(x) = (1− η)f(x)+ η
e−kν(x)/2∫
e−kν(y)/2 dy

, (32)

which is the continuous analog of the piecewise con-
stant result. Note that as in the piecewise constant
case, the minimizingν must satisfy∫

f(x)eν(x) dx = 1. (33)

Transforming the variables toΛ using (31) yields the
identical optimization to (22). This suggests that the
Λ arising in the Lagrangian optimization is in fact
Gersho’s quantizer point density function.
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