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Abstract—The Lagrangian formulations of fixed- The distortion d(z, &) between an input: and a
rate and variable-rate vector quantization can be com- quantized versior: = B(a(z)) is assumed here to
bined into a single formulation involving constraints be the squared error distortidh: — §7H2 If X is

on both entropy and log codebook size. The approach . .
leads to a Lloyd design algorithm and to results on a random vector with density (assumed to be ab-

high-rate or high-resolution quantization. It provides ~solutely continuous with respect to Lebesgue mea-
both a unified view of the traditional results and an sure), theaverage distortioris defined asDs(q) =

approach to studying the implications of Gersho's con- E;d(X,B(a(X))), where E; denotes expectation

jecure, including asymptotic quantizer point density with respect tof. The averageate is defined by

functions. We here describe the approach, preliminary )

results, and open problems. Ry(q) = (1=n)El(a(X))+nIn N(q). Define the
average Lagrangian distortion

I. INTRODUCTION p(f, A n,q) = Ef(d(X, B(a(X)))

o + N1 = n)(a(X)) +nInN()]). (1)

The theory of quantization derives largely from )
Lloyd's work [9], which formalized the optimal Where A > 0 andn € [0,1]. The corresponding
performance and found asymptotic approximatiorf@Ptimization is to characterize
to thg optimal pe_rformance f_or_ _high-rate scalar o(f, \,n) = inf p(f, X\, 1, q). 2
guantization. The ideas were initially extended to 1
vector quantizers by Zador [10]. Zador considerelin this context the high-rate results for the traditional
two separate cases of code constraints: total numis@ses of variable-rate coding £ 0) and fixed-rate
of codewords (fixed-rate codes) and quantizer outpg®ding () = 1) can be considered as special cases
entropy (variable-rate or entropy-constrained code$)f the limiting behavior as\ — 0 of
The fixed-rate results of Zador were generalized _p(fiAm)
and simplified by Bucklew and Wise [1] and Graf 0(f, Am) = ==+ 5 InA ®)
and Luschgy [5]. The entropy-constrained results afhe Lagrangian form of the variable-rate result [6]
Zador were generalized in [6] using the Lagrangiaig that under suitable conditions
formulation of [3]. Extensions to combined con- . _
straints on entropy and codebook size are presented ;li% 0(f, 2,00 = h([) + Ok, “)

on Gersho's conjecture. Details are contained in &hddy 2 infrso 0(u, A, 0), andu is the uniform pdf

paper in progress. See also [7], [8]. on a unit cube. The Lagrangian form of the fixed-
A quantizeror vector quantizery on % can be rate result [8] is

described by the following mappings and sets: an . o k/2

encodera : R¥ — 7, whereZ = {0,1,2,...} is an ;11)%9(]“,)\, D =tk 1l sz 6

index set, an associated partitidéh= {S;:i € 7}, where g A infyo0 0(u, A, 1). The proofs of these

, k — i ,
Si C R, S,CUCh thata(:c_) =iif z € Sl,_adecoder esults tend to be tedious, but they largely follow
6 : 7 — R*, an associated reproduction codebook ; . )
ador’s original approach:

C = {p(i):i € I} of size N(g) = |C|, and a
length function{¢(:) : ¢ € Z} which isadmissiblen Step 1Prove the result for a uniform density on
the sense tha}_, ;e ‘() < 1. Let ¢ denote both a cube.

the collection of mappings and the overall mapping Step 2Prove the result for a pdf that is piecewise
q(z) = Bla(x)). constant on disjoint cubes of equal volume.



Step 3Prove the result for a general pdf on a where H¢(C) and H;(C’) denote the entropies
cube by approximating it by a piecewise of the partitions corresponding to the optimal
constant pdf on small cubes. encoding for codebook and(C’.

Step 4Extend the result for a general pdf on the
cube to general pdfs ofR* by limiting
arguments.

Given a codebooK (or decoders) or partitionS

(or encoderx), the Lloyd properties determine the

remaining components, so optimizing over quantiz-
The uniform densityu on [0,1)* plays a funda- ers is equivalent to optimizing over codebooks or

mental role both as Step 1 and as a simple exampdartitions.

sufficient for developing the properties of the Zador
constants related t@, and ;. IIl. ASYMPTOTICALLY OPTIMAL QUANTIZERS

The form of the Lagrangian approach suggests ait is convenient to consider the quantity defined
conjecture for the asymptotic behavior consistemly normalizing the average Lagrangian distortion by
with the high-rate Lagrangian fixed- and variablex and adding a weighteth \ term. Define

rate cases:
0\, m,8) = ALAS) Ry
Am)  k D4(S) ! ? k
i (522 4 Sn) <ot | @ = 200 gy () 4 V@)

and the related quantitiesd(f, \,n) =
where §(f,n) is finite. Furthermore, the particularinfs 6(f, \,7,S), 8(f,n) = limsup,_q 0(f, A, n),
form of the traditional cases suggests a secomuhd 0(f,7) = liminfy_o0(f,A,n). The main
conjecture—that the asymptotically optimal perforeonjecture (6) is true if and only &#(f,n) = 6(f,n),
mancef(f,n) can be expressed as a sum of twn which case the common value is denotéd, 7).

terms, the first involving an infimum for the uniform | syyma 1:0(f, \,n,S) andé(f, \,n) are mono-
density on a unit cube and the second depending Qfhic nondecreasing, concave, and continuous func-

the specific pdf: tions of .
0(f,n) = bx(n) +h(f,n), where ) Corollary 1: Suppose that for a pdf the con-
jecture (6) holds for ally € [0,1] and hence
bl 2 e (LA L E Y g 1M © nelo 1
A>0 A 2 0(f,n) = lim 6(f, A, )

From the traditional variable-rate and fixed-rate

cases(0) = 0, and h(f,0) = h(f), whereas too 0TS Il e ) o
0, (1) = ¢y andh(f, 1) = In||f|[}/?

k/(k+2) tinuous except possibly at the origin. Furthermore,

0'(f,m) = do(f,n)/dn exists and is finite for all

n € (0,1) except possibly on a set of Lebesgue
For A > 0 andn € (0,1), the Lloyd optimality measure 0.

properties become

Il. LLOYD OPTIMALITY CONDITIONS

If equation (6) holds forf and n, then for
every sequence,, — 0 there exists a sequence of
partitionsS,, for which

e For a given decoderg and length func-
tion ¢, the optimal encoder satisfies(z) =

argmin; (d(z, 5(7)) + Anl(i)) .

e For a given encoder, the optimal decoder Jim O(F, An,m, Sn) = 0(f,m), (10)
satisfies3(i) = argmin, E(d(X,yla(X) = i) in which case we say that the sequenSg is
if the minimum exists. (n, \n)-asymptotically optimal or simply(n, A,)-

e For a given encoderr, the optimal code- a.o. for the pdff.

length is((i) = —InPr(a(X) = i). Therefore ¢ o g (n, A\n)-a.0. for a pdff, then (12) can be

Ept(a(X)) = Hy(q), the Shannon entropy of seq as in the fixed-rate and variable-rate cases to
the quantizer output. show that

e A necessary condition for optimality of a fixed- i 9 ,
rate quantizer; with codebookC is that there be  lim - In <Df(8n)ek[(l —mH;(8) +nln ISH>
no subcodebook’ c C for which nee k
=0(f,n). (11)

. ! _ / !
Dy () + A1 =n)H(C) +nhn|C]] A sequence of partitionsS,, satisfying (11) will
< Dy(C) + AL =n)Hs(C) +nn[C]], (9) pe calledn-asymptotically optimal or briefly-a.o.



for the pdf f. If a sequence ign, A, )-a.0. for any IV. HEURISTIC DERIVATION
sequence\,, then it iseta-a.0. Conversely if it is

1-a.0., then it is(7, A,)-a.0. for somex,, — 0 Gersho'’s conjecture and the associated approx-

- . _imations can be used to derive the basic results

In the _trad|t|onal cases the asymptotic behavigpr joint entropy and codebook size constrained
of distortion and rate can be teased apart from thgantization. This approach, although not rigorous,
linear combination of the two in (10) [7], [8]. Theseproyides insight into the results and a consistency
results can be extended to the combined constragfeck with the rigorous development. An obvious

case using _the foII_owing inequality based on thggification suggests a solution to the general case.
Inr <r —1 inequality: , . . .
Gersho's conjecture involves two assumptions re-

0(f,\n,S) > garding asymptotically optimal sequences of fixed-
k % 211 V(S s rate and variable-rate quantizers. First, it is assumed
3 In <kDf(8)ek[( —MH;(S) +nln] H) (12) that there exists a quantizer point density function

_ o _ A(z) such that a sequence of optimal codes with
with equality if and only ifA = 2D(S)/k. If S, codewords N = 1,2,... will satisfy
is n-a.o. for f, then

1 . .
lim ~ x ( # reproduction vectors in a sét)

N—oo

lim 2Df (Sn)

=1 1
n— o0 k)\n ( 3)

_ / A(@)de; all S, (16)
S

lim (1 —n)H¢(S,) +nln|S,| + Eln /\n> where [, A(z) dz = 1. Second, Gersho assumed
n—00 2 that If fx(x) is smooth andR is large, then
—0(f,n) — ﬁ (14) the minimum distortion quantizer has celfs that
2 are (approximately) scaled, rotated, and translated
If, in addition, we make the assumption of Corollancopies ofS*, the convex polytope that tesselafe$
1 that (6) holds for ally € [0, 1], then we can also with minimum normalized moments of inertia

separate out the behavior 8f;(S,,) andIn|S,,)| in M(S) — 1 |z —y(9)|? d

terms of\,,: (8) = RSEE s vis)
lim (In|S,| — H(S,)) = 6'(f,n). (15) Wherey(S) denotes the centroid of. Specifically,
n—oo define

Perhaps surprisingly, the two growing terimgS,, | = min M(S)

and H(S,,)) differ only by a constant in the limit tesselating convex polytopes

if ¢'(f,n) is finite! Combining the previous resultsunder these assumptions, it can be argued using
yields the following corollary which separates ouRjemann approximations of integrals and sums that
the asymptotic behavior of distortion, entropy, codefor large N
book size, and the difference between the entropy

1
and codebook size. Dy(q) =

o 2/k

1
09— & (st iy )
= InN(q) = H(f||A), (18)

Lemma 2: Suppose that for a pdfthe conjecture
(6) holds for alln < [0,1], henced(f,n) =
limy_0 0(f,\,n) exists forn € [0,1]. Then for

almost alln € (0,1), if S,, is (n, A,)-a.0. then .
where the relative entropy H(f||\) =

2D4(Sn) _ 1 J f(z)In(f(z)/A(z)) dz. Application of Holder's
An inequality to (17) yields the classic fixed-rate result

Hy(q(X))

Q

lim

n—oo

0(f,m) + (1 =m0 (f,n) -

lim (Hf(sn) + gln )\n) -

n—oo

0(f,n) —n0'(f,n) —

nlLrI;O (In|Sn| — Hp(Sy)) =6'(f,m).

and the combination of (17) and (18) with Jensen’s
inequality yields the classic variable-rate result.
Suppose that a quantizer has a quantizer point
density A and a total of N quantization levels for
N large, then
0(f, A, A)

ek By (NA(X))~%/%)

(1—=n)[InN—-H(f|IN)]+nlnN + gln)\.




If the quantizer point densit\ is fixed, then the  Step 2 assumes that the pdfis nonzero on
optimum choice ofN is the that which minimizes the union of a finite numbef/ of disjoint cubes

ckN=2/* By (A(X))~2/k) {C( )- =1,2,..., M} on which it is constant:
' +InN k
)\ Zwmfm Zwma m 37),
5 ko ((2een B (AT (24)
2 k A where>" w,, = 1 and anda” is the volume of
with equality if and only if eachC(m). Design for each cub€(m) a nearly

optimal code with partitiors,,, for the conditionally

k/2
N |2 enEy (A(X))2/k) / 19 uniform pdf f,,, using a Lagrange multipliex,,, and
Tk A : (19) a common value of for all m. For the moment
we leave open the choice of the, except for
Thus the assumption that they are all small enough for
_k kecy, Lemma 2 to apply. After some algebra, the overall
0(f, xn,0) = s ( B > + (1 =mh(f)+ Lagrangian distortion becomes
k —2/k k
5 (Br ((ACO)2) )+ By mAK) s (£ A0, S) ~ () — =+ (1—n)H (w) +hInart

(20) ?
and the goal becomes the minimization of 5271%—(1—77)5 Zw’” In
0(f, A, n,A) over all point density functiona. Ger- "
sho’s conjecture and this heuristic approach imply nan( )
that (1/2) In(kecy,/2) = 0i, = 1, the Zador fixed- m
rate and variable-rate constants are equal, but 89 the goal is to minimize the functiah f,n, 1) =
proof of this result exists except for = 1 and 6,(n) + ¢(w,n, {\.}) over {\,,}. Unfortunately,
asymptotically as: — co. For our purposes we cang is not a convex function of the Lagrangian mul-
identify (k/2) In(kecy, /2) asfx(n) when comparing tipliers. However, transforming variables as, =
(20) with the rigorous results, which results in then(),,/)\) results in a convex optimization problem

conjecture
en MU Eming(fnp) =
HIVIH ((1 - )FO(w7V)+nF1(an))a (25)

k/2

| F —2/k
it [2 n (Ef <(A(X)) )) Fo(w,v) = ¢(w,0,v) Zwme”’"+
+(1 —=n)Ey (InAX))]. (22) 2
This leads to the traditional results when= 0, 1. -5 Z Win Vi + ln — (@6)
V. SOME KNOWN RESULTS Fi(w, v) = b(w, 1, ) =

Conjecture (6) has been proved for uniform den- % Vim —kvm /2 4 a?
sities on cubes [8]. Z“’me + IHZ e 1H —. (@7

Theorem 1: Smce¢(w,n, v)is strlctly convex inv, there must
0 (1) A O(u, A, ) = lim O(u, A, ;) (23) t_)e a un!que minimum. Sino@(w,n,u) is differen-
A>0 A—0 tiable with respect to/, the minimum must be at a
Thus n-a.0. quantizers exist for such densities angoint with 0 gradient, which implies

the previous results Lemma 2 concerning the behav- o= 5vm
ior 6(f,n) apply to0(u,n) = 0x(n). For example, Wme™ = (1 =nwm +n=—7p,—  (28)
from the remarks following conjecture 3 of [7], the done

lemma implies that for almost al, the asymp- Strict convexity of¢(w,n,r) guarantees the exis-
totic quantizer point density function exists and isence of av satisfying this equation and furthermore
uniform for the uniform distribution, extending thethat » minimizes ¢(w,n,v). Unfortunately there
known result for fixed-rate coding to the combinedeems to be no nice closed form solution foin
case. terms ofw.



Combining the above arguments with the carefubhich is the continuous analog of the piecewise con-
limiting arguments proves the following. stant result. Note that as in the piecewise constant

Theorem 2:If f is a piecewise constant pdf of¢@S€, the minimizing: must satisfy

the form given in (24), then /f(x)eu(:};) do — 1. (33)

li 0 A) <0 h 29

“fj’}}p (1, A) < O (n) + h(f,m), (29) Transforming the variables tb using (31) yields the
with h(f,n) given by (25). identical optimization to (22). This suggests that the
arising in the Lagrangian optimization is in fact

This proves the positive part of (6), but to prove théersho's quantizer point density function.

conjecture requires a converse to the effect that
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