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Abstract— The cutoff rate is a multi-faceted parameter of in effect equivalent to a “guessing game” with the assistanc
communication with relations to the computational complexty  of a helpful genie. The questions that the sequential decode

of sequential decoding, the union bound on the probability & can ask are of the type “Is this node the correct node at level

error in communication systems in general, and to certain tpes e . . - A P
of guessing problems. We present a survey of selected resuilt N?2" to which the genie provides a truthful “yes” or “no

on the cutoff rate with the goal of bringing forth the fact that answer. Every false guess increases the complexity counter
the cutoff rate is not a conservative quantity and hence need by one unit and the search continues until the sequential
to be interpreted carefully. We begin by reviewing Jacobs ad  decoder finds the correct node and advances to the next level
Berlekamp's result on the computation problem in sequentia i, yhe tree. The result in [3] states that (under certainriizt
decoding. Then, we review an example by Massey that shows o .

that the cutoff rate can be “created” by splitting a quaternary conditions), th(_a number of questiofis that the decoder m_ust
erasure channel into two binary erasure channels. Finallywe ask to determine the correct node at leyélhas a Paretian

show that such gains can be achieved for other channels if one distribution,
combines multiple independent copies of a given channel and
uses a coding scheme that is suitable for successive-catatén P(Cy>L)ZL°
decoding. ~

I. INTRODUCTION where the parameter > 0 is determined by the rat& of
e code. ForR < Ry, p > 1 and the expectation of'y
bounded for allv > 1. On the other hand, foR > Ry,
p < 1 and the expectation af'y grows without bound as&v

The cutoff rate of a discrete memoryless channel (DM(IEé1
W with an input alphabett, output alphabef), transition
probabilitiesW (y|z) is defined as

is increased.
2 In part due to its role as the cutoff rate of sequential
Ro(W) = —log » lz Q(z)v/ W(y|$)] decoding and in part due to its appearance in the union
y€eY Lrex bound on the probability of error for communication systems

whereQ is a probability distribution ont, chosen to max- in general, the parametei, appeared prominently in the
imize the right hand side. The cutoff rate is a multi-facetegPmmunications engineering literature in sixties and sges.
parameter of communication that owes its significance in pdhe classical book by Wozencraft and Jacobs [4] uBgs
to its relation to sequential decoding. Sequential deqpitin extensively as a practical measure of quality for signaling
a decoding algorithm for tree codes invented by Wozencra&itstems. Sequential decoding also was discussed in gtedt de
[1] with important later contributions by Fano [2]. The majo by the information theory and coding books that were written
drawback of sequential decoding is that the decoding coffi- this period, notably, [4], [5], [6]. The argument in favor
plexity is a random variable. of Ry as a practical parameter of communication was put
In a seminal paper, Jacobs and Berlekamp [3] gave #rward lucidly in [7] and [8]. Communication at rates neay
elegant proof that the distribution of computation in sedizé appeared a reasonable and practically viable objectivéewhi
decoding follows a Paretian distribution with a mean th&chieving channel capacity appeared an unrealistic goal.
becomes unbounded as the coding rate approaches the channBte notion of cutoff rate as a practical limit to achievable
cutoff rate. To derive this result, they formalized seqiant rates has been challenged from the very beginning. PinSker [
decoding as a constrained search problem. They focusedgave a method that combined sequential decoding and block
the operations by the sequential decoder at an arbitrary lsgdes to achieve channel capacity. Falconer [10] also eevis
fixed depthN branches into the code tree from the root. Fax system using Reed-Solomon codes and sequential decod-
a tree code with rateR bits/branch, there ar@V® nodes ing that achieved channel capacity. Although these methods
at level N. One of these nodes lies on the correct (actualBhowed that the cutoff rate was not a fundamental barrier,
transmitted) path, and the task of the sequential decoderthisy were too complicated at the time to have much practical
to find this correct node without looking ahead beyond levénpact.
N. For a sequential decoder that eventually finds the correctA paper by Massey [11] revealed a truly interesting aspect
node (possibly after several false attempts), the seasthisa of the cutoff rate by showing that it could be “created” by



simply splitting a given channel into componential subehan
nels. Massey noticed that the cutoff rate of Aafary erasure 18
channel could be improved by splitting it into = log, (M)
binary erasure channels (BEC). Massey’'s example did ni
involve any sophisticated coding schemes (unlike Pinsker @ 14
and Falconer’s) to improve the cutoff rate; simply splitin
a given channel lead to an improved sum cutoff rate. If :
channellV is split into two subchanneld’;, W5, the channel
capacity function always satisfigs(W1) + C(Ws3) < C(W).
Massey’s example demonstrated the possibility fgfii; ) +
Ro(W3) > Ro(W). In light of Massey’s example, Gallager
[5] concluded that “the cutoff rate is not really a fundanaént
parameter of communication.”

In the rest of this presentation, we discuss Massey’s examfp oz
and suggest a method for achieving cutoff rate gains fc ‘ ‘ ‘ ‘
arbitrary DMC'’s. The emphasis is on simple schemes the oo er o es e prggabmty% 07 08 09 1
can be implemented in practice. The methods presented here
have common elements with well-known coded-modulation
technigues, namely, Imai and Hirakawa’'s [13] multi-level
coding scheme and Ungerboeck’s [14], [15] set-partitignin
idea. These connections are discussed in [16].
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Fig. 1. Capacity and cutoff rate for the splitting of a QEC.

be expected due to Gallager's parallel channels theorem [5,
II. MASSEY S EXAMPLE p.149]. On the other hand, it is not clear if an arbitrary afen
can be readily split into subchannels, as the QEC was spiit in
two BEC's. To facilitate channel splitting, we propose chain
combining as a preliminary step before splitting is appli&e

Consider a quaternary erasure channel (QBE); X; x
Xo — Y1 xYswhereX; = Xp = {0,1}, Y1 = V2 ={0,1,7},

and
illustrate this idea by two examples in this section.
W (y1y2|z122) :{ =6 4 — Example 1 (BEC): Let V : X — Y be a BEC with
& Yryz == alphabetst = {0,1}, Y = {0,1,?7}, and erasure probability

where(0 < € < 1 is the erasure probability. Such a QBZ ¢. Consider combining two copies &f as shown in Fig. 2.
can be decomposed into two BEC's (binary erasure channels):the figure,& denotes addition modulo-2. The combined
W; : X; — Y, i = 1,2. In this decomposition, a transitionchannel is a DMOV : X2 — Y2 with transition probabilities
(z1,22) — (y1,y2) over the QEC is viewed as two transitionsW (y1y2|uiu2) = V(yi|ui & u2)V (y2|ue). For cutoff rate
r1 — y1 and zo — yo, taking place on the respective

component channels, with

Wiltler) = {

These BEC'’s are fully correlated in the sense that an erasure
occurs either in both or in none.

Instead of direct coding of the QEW, Massey suggested U2 | T2 v Y2
applying independent encoding of the component BBC’s
and Wa, ignoring the correlation between the two channels.

l—e€ yi=u
— U x
€, Y =7 1 1 Y1

The second alternative presents significant advantages wit %%
respect to the cutoff rate criterion. A simple computation
shows that the sum of the cutoff rates of the two component Fig. 2. Combining two binary-input channels.

BEC'’s obtained by splitting the given QEC &R,(BEC) = _ _ N R

2[1 — log(1 + €)]; this exceeds the cutoff rate of the QECpaIcuIatlons we need to assign a probability distribution o
Ro(QEC), as shown in Fig. 1. It is remarkable that thdhe inputs(ui,us) of the channelV. We use the assignment
gap between the cutoff rate and the capacity of the QEE€1,U2) ~ Qi(u1)Q2(uz) where @, Q; are uniform on

is bridged significantly by simply splitting the channel.igh {0,1}. This assignment is consistent with a coding scheme

improvement is obtained at no extra system complexity. ~Where the inputs,, andu, of I/ are encoded independently,
as in Massey’s scheme. In Massey's scheme the decoder is

Ill. CUTOFF RATE IMPROVEMENT FORBECAND BSC  3i50 split into two non-communicating decoders; it turng ou
An essential element of achieving gains in the sum cutdfiis is too strong a condition for achieving cutoff rate gain
rate is to split a given channel into (positively) correthtein general. We also split the decoding task, but allow the
subchannels. If the subchannels are independent, no gain dacoders communicate with each other in a decision feed-



forward fashion. The resulting decoder structure is knowi
generally as asuccessive cancellatiatecoder. !
Under successive cancellation, the achievable cutoffsratt

vol C(BEC)

by the first and second stage decoders are given by R,(U,Y,Y,lU,)
0.8
Ro(U1; Y1Ye) =1 — log(1 4 2e — 62)
R()(UQ; Y1Y2U1) —1_ log(l + 62) o7r (W2) Ry ((U,U,Y,Y,)

where in the second lin€&; (the input of the first channel)
is regarded as side-information available perfectly togbe-  § os-
ond decoder. A successive cancellation decoder with teliab S = s
estimates at each stage comes close to achieving this 'perf 5
side-information assumption. o3f Ry (UY,Y))
Some insight can be gained into this example by notin
that the subchanneld; — Y1Ys andUs; — Y;Y,U; created
by splitting the combined channel are themselves BEC's. T o1
see this observe that givéf Y, user 1 can determing; with

R,(BEC)

certainty only if neithef; norY; is an erasure. If eithér; or 0 1 02 03 04 05 06 07 08 09 !
. . . . Erasure probability

Y, is an erasure, due to randomization By, U; is equally

likely to be 0 or 1, i.e., it is erased. So, this is an erasure Fig. 3. Cutoff rates for the splitting of BEC.

channel with erasure probability 2 1 — (1—€)? =2¢— €%

On the other hand, decoder 2 obser¥§%,U; and fails to

decodel/; with certainty only if tiothYl andY; are erasures, | _. ande, respectively. Decoder 1 sees effectively the channel

which occurs with probability; = € Uy — U@ E, @ Es», which is a BSC with crossover probability
Notice that the average afi and e, equalse. This con- ¢, = 2¢(1 — €) and has cutoff rate

servation of erasure rates is explained by noting that the

mutual information terms for the channels under considterat Ro(U1;Y1Ys) =1 —log(1 + v(e2))

satisfy I(U1;Y1Y2) = 1 — €1, [(Ugy; Y1Y2U1) = 1 — ey,

I(U1Us; Y1Y2) = 2(1 — €). But by the chain rule for mutual

information,I(UlUQ; le/g) = I(Ul, le/g) +I(U2, Y1}/2|U2)

(Here, I(Uy; Y1Y2|Us) = I(Us; Y1Y2Us) sinceU; andU, are

Decoder 2 sees the chan@gl — Y1 Y>Uq, which is equivalent
to the channely; — (Y1 & Uy,Y2) = (Ux @ E1,Us & E»),
which in turn is a BSC with diversity order 2 and has cutoff

. rate
independent.)
The sum cutoff rate under this scheme is given by Ro(Ug; Y1YoUp) = 1 — log(1 + 7(6)2)
Ro,5(U1U2; V1Y) = 2 — [log(1 + €1) + log(1 + €2)] Thus, the sum cutoff rate with this splitting scheme is given

which is to be be compared withR, (V) = 2(1 —log(1+¢)). BY

These cutoff rates are shown in Fig. 3. The figure shows th ) _ o 2

the sum cutoff rate is improved for all < ¢ < 1. This is %t iUz NYe) =2 [log(l () + log(L +7(¢) )]

to be expected since the functidn- log(1 + €) is a convex which is larger tha2Ry(V) for all 0 < € < 1/2, as shown

function of 0 < ¢ < 1 and by the conservation of erasurem Fig. 4.

€= 1(e1 +€2). Extensions of these channel combining methods can be
Example 2 (BSC): Let V : X — ) be a BSC withX¥ = found in [17] and [16]. The above examples illustrate thermai

Y = {0, 1} and crossover probability < e < 1/2. The cutoff point that significant gains in cutoff rate can be achievetth wi

rate of the BSC is given by negligible extra system complexity.
Ro(V) =1 —log(1+7(e)) IV. SUMMARY
where~(d) := y/46(1 —¢) for 0 < § < 1. We have given a brief survey of the notion of cutoff rate

We combine two copies of the BSC using the same methad regards its fundamental nature for communication system
as in Fig. 2 and use the same input probability assignmeWe pointed out the fundamental nature of the cutoff rate in
(U1,U2) ~ Q1(x1)Q2(x2) where @1, Q2 are uniform on relation to the computation problem in sequential decoding
{0,1}. The cutoff ratesRy(U1;Y1Y2) and Ryo(Usz; Y1Y2U1) by citing the main result of [3]. Next, we reviewed Massey’s
can be obtained by direct calculation; however, it is indiue example to show that the cutoff rate can be exceeded without
to obtain them by the following argument. The input andny difficulty even by sequential decoding itself if one uses
output variables of the chann8l" are related byy; = U; @ more than one sequential decoder. Finally, we have given a
Us @ E; andY, = Y, @ Ey whereE; and B are independent brief description of a general method for improving the ¢uto
noise terms, each taking the values 0 and 1 with probabsilitisates of arbitrary DMC’s.
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Fig. 4. Cutoff rates for the splitting of BSC.

REFERENCES

J. M. Wozencraft and B. ReiffenSequential Decoding. M.L.T. Press:

Cambridge, Mass., 1961.

R. M. Fano, “A heuristic discussion of probabilistic @eling,” IEEE
Trans. Inform. Theory, vol. IT-9, pp. 64—74, April 1963.

I. M. Jacobs and E. R. Berlekamp, “A lower bound on to th&trithution
of computation for sequential decodindEEE Trans. Inform. Theory,
vol. IT-13, pp. 167-174, April 1967.

(4]
(5]
(6]
(7]

(8]

El
[10]

(11]

(12]

(23]

[14]

[15]

[16]

(17]

J. M. Wozencraft and I. M. Jacob<Principles of Communication
Engineering. Wiley: New York, 1965.

R. G. Gallager]nformation Theory and Reliable Communication. Wiley:
New York, 1968.

A. J. Viterbi and J. K. OmuraPrinciples of Digital Communication and
Coding. McGraw-Hill: New York, 1979.

J. M. Wozencraft and R. S. Kennedy, “Modulation and deniation for
probabilistic coding,”|EEE Trans. Inform. Theory, vol. IT-12, pp. 291—
297, July 1966.

J. L. Massey, “Coding and modulation in digital commuation,” in
Proc. Int. Zurich Seminar on Digital Communication, (Zurich, Switzer-
land), pp. E2(1)-E2(24), 1974.

M. S. Pinsker, “On the complexity of decodingProblemy Peredachi
Informatsii, vol. 1, no. 1, pp. 113-116, 1965.

D. D. Falconer, “A hybrid coding scheme for discrete noephess
channels,’Bell Syst. Tech. J., pp. 691-728, March 1969.

J. L. Massey, “Capacity, cutoff rate, and coding for aedi-detection
optical channel,”IEEE Trans. Comm., vol. COM-29, pp. 1615-1621,
Nov. 1981.

R. G. Gallager, “A perspective on multiaccess chanheBEE Trans.
Inform. Theory, vol. IT-31, pp. 124-142, March 1985.

H. Imai and S. Hirakawa, “A new multilevel coding methading error
correcting codes,JEEE Trans. Inform. Theory, vol. IT-23, pp. 371-377,
May 1977.

G. Ungerboeck, “Trellis-coded modulation with redandl signal sets,
Part |: Introduction,”IEEE Commun. Mag., vol. 25, pp. 5-11, February
1987.

G. Ungerboeck, “Trellis-coded modulation with redandl signal sets,
Part II: State of the art/JEEE Commun. Mag., vol. 25, pp. 12-21,
February 1987.

E. Arikan, “Channel combining and splitting for cutaffite improve-
ment,” |[EEE Trans. Inform. Theory, vol. IT-52, February 2006.

E. Arikan, “Channel combining and splitting for cutaffite improve-
ment,” in Proc. 2005 IEEE Int. Symp. Inform. Theory, (Adelaide,
Australia), 4-9 September 2005.



