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Abstract— The cutoff rate is a multi-faceted parameter of
communication with relations to the computational complexity
of sequential decoding, the union bound on the probability of
error in communication systems in general, and to certain types
of guessing problems. We present a survey of selected results
on the cutoff rate with the goal of bringing forth the fact that
the cutoff rate is not a conservative quantity and hence needs
to be interpreted carefully. We begin by reviewing Jacobs and
Berlekamp’s result on the computation problem in sequential
decoding. Then, we review an example by Massey that shows
that the cutoff rate can be “created” by splitting a quaternary
erasure channel into two binary erasure channels. Finally,we
show that such gains can be achieved for other channels if one
combines multiple independent copies of a given channel and
uses a coding scheme that is suitable for successive-cancellation
decoding.

I. I NTRODUCTION

The cutoff rate of a discrete memoryless channel (DMC)
W with an input alphabetX , output alphabetY, transition
probabilitiesW (y|x) is defined as

R0(W ) = − log
∑

y∈Y

[

∑

x∈X

Q(x)
√

W (y|x)

]2

whereQ is a probability distribution onX , chosen to max-
imize the right hand side. The cutoff rate is a multi-faceted
parameter of communication that owes its significance in part
to its relation to sequential decoding. Sequential decoding is
a decoding algorithm for tree codes invented by Wozencraft
[1] with important later contributions by Fano [2]. The major
drawback of sequential decoding is that the decoding com-
plexity is a random variable.

In a seminal paper, Jacobs and Berlekamp [3] gave an
elegant proof that the distribution of computation in sequential
decoding follows a Paretian distribution with a mean that
becomes unbounded as the coding rate approaches the channel
cutoff rate. To derive this result, they formalized sequential
decoding as a constrained search problem. They focused on
the operations by the sequential decoder at an arbitrary but
fixed depthN branches into the code tree from the root. For
a tree code with rateR bits/branch, there are2NR nodes
at level N . One of these nodes lies on the correct (actually
transmitted) path, and the task of the sequential decoder is
to find this correct node without looking ahead beyond level
N . For a sequential decoder that eventually finds the correct
node (possibly after several false attempts), the search task is

in effect equivalent to a “guessing game” with the assistance
of a helpful genie. The questions that the sequential decoder
can ask are of the type “Is this node the correct node at level
N?” to which the genie provides a truthful “yes” or “no”
answer. Every false guess increases the complexity counter
by one unit and the search continues until the sequential
decoder finds the correct node and advances to the next level
in the tree. The result in [3] states that (under certain technical
conditions), the number of questionsCN that the decoder must
ask to determine the correct node at levelN has a Paretian
distribution,

P (CN > L) ' L−ρ

where the parameterρ ≥ 0 is determined by the rateR of
the code. ForR < R0, ρ > 1 and the expectation ofCN

is bounded for allN ≥ 1. On the other hand, forR > R0,
ρ < 1 and the expectation ofCN grows without bound asN
is increased.

In part due to its role as the cutoff rate of sequential
decoding and in part due to its appearance in the union
bound on the probability of error for communication systems
in general, the parameterR0 appeared prominently in the
communications engineering literature in sixties and seventies.
The classical book by Wozencraft and Jacobs [4] usesR0

extensively as a practical measure of quality for signaling
systems. Sequential decoding also was discussed in great detail
by the information theory and coding books that were written
in this period, notably, [4], [5], [6]. The argument in favor
of R0 as a practical parameter of communication was put
forward lucidly in [7] and [8]. Communication at rates nearR0

appeared a reasonable and practically viable objective while
achieving channel capacity appeared an unrealistic goal.

The notion of cutoff rate as a practical limit to achievable
rates has been challenged from the very beginning. Pinsker [9]
gave a method that combined sequential decoding and block
codes to achieve channel capacity. Falconer [10] also devised
a system using Reed-Solomon codes and sequential decod-
ing that achieved channel capacity. Although these methods
showed that the cutoff rate was not a fundamental barrier,
they were too complicated at the time to have much practical
impact.

A paper by Massey [11] revealed a truly interesting aspect
of the cutoff rate by showing that it could be “created” by



simply splitting a given channel into componential subchan-
nels. Massey noticed that the cutoff rate of anM ’ary erasure
channel could be improved by splitting it inton = log2(M)
binary erasure channels (BEC). Massey’s example did not
involve any sophisticated coding schemes (unlike Pinsker’s
and Falconer’s) to improve the cutoff rate; simply splitting
a given channel lead to an improved sum cutoff rate. If a
channelW is split into two subchannelsW1, W2, the channel
capacity function always satisfiesC(W1) + C(W2) ≤ C(W ).
Massey’s example demonstrated the possibility thatR0(W1)+
R0(W2) > R0(W ). In light of Massey’s example, Gallager
[5] concluded that “the cutoff rate is not really a fundamental
parameter of communication.”

In the rest of this presentation, we discuss Massey’s example
and suggest a method for achieving cutoff rate gains for
arbitrary DMC’s. The emphasis is on simple schemes that
can be implemented in practice. The methods presented here
have common elements with well-known coded-modulation
techniques, namely, Imai and Hirakawa’s [13] multi-level
coding scheme and Ungerboeck’s [14], [15] set-partitioning
idea. These connections are discussed in [16].

II. M ASSEY’ S EXAMPLE

Consider a quaternary erasure channel (QEC),W : X1 ×
X2 → Y1×Y2 whereX1 = X2 = {0, 1},Y1 = Y2 = {0, 1, ?},
and

W (y1y2|x1x2) =

{

1 − ǫ, y1y2 = x1x2

ǫ, y1y2 =??

where0 ≤ ǫ ≤ 1 is the erasure probability. Such a QECW
can be decomposed into two BEC’s (binary erasure channels):
Wi : Xi → Yi, i = 1, 2. In this decomposition, a transition
(x1, x2) → (y1, y2) over the QEC is viewed as two transitions,
x1 → y1 and x2 → y2, taking place on the respective
component channels, with

Wi(yi|xi) =

{

1 − ǫ, yi = xi

ǫ, yi =?

These BEC’s are fully correlated in the sense that an erasure
occurs either in both or in none.

Instead of direct coding of the QECW , Massey suggested
applying independent encoding of the component BEC’sW1

and W2, ignoring the correlation between the two channels.
The second alternative presents significant advantages with
respect to the cutoff rate criterion. A simple computation
shows that the sum of the cutoff rates of the two component
BEC’s obtained by splitting the given QEC is2R0(BEC) =
2[1 − log(1 + ǫ)]; this exceeds the cutoff rate of the QEC,
R0(QEC), as shown in Fig. 1. It is remarkable that the
gap between the cutoff rate and the capacity of the QEC
is bridged significantly by simply splitting the channel. This
improvement is obtained at no extra system complexity.

III. C UTOFF RATE IMPROVEMENT FORBEC AND BSC

An essential element of achieving gains in the sum cutoff
rate is to split a given channel into (positively) correlated
subchannels. If the subchannels are independent, no gain can
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Fig. 1. Capacity and cutoff rate for the splitting of a QEC.

be expected due to Gallager’s parallel channels theorem [5,
p.149]. On the other hand, it is not clear if an arbitrary channel
can be readily split into subchannels, as the QEC was split into
two BEC’s. To facilitate channel splitting, we propose channel
combining as a preliminary step before splitting is applied. We
illustrate this idea by two examples in this section.

Example 1 (BEC): Let V : X → Y be a BEC with
alphabetsX = {0, 1}, Y = {0, 1, ?}, and erasure probability
ǫ. Consider combining two copies ofV as shown in Fig. 2.
In the figure,⊕ denotes addition modulo-2. The combined
channel is a DMCW : X 2 → Y2 with transition probabilities
W (y1y2|u1u2) = V (y1|u1 ⊕ u2)V (y2|u2). For cutoff rate

+ V

V
u2

u1

x2

x1

y2

y1

W

Fig. 2. Combining two binary-input channels.

calculations we need to assign a probability distribution on
the inputs(u1, u2) of the channelW . We use the assignment
(U1, U2) ∼ Q1(u1)Q2(u2) where Q1, Q2 are uniform on
{0, 1}. This assignment is consistent with a coding scheme
where the inputsu1 andu2 of W are encoded independently,
as in Massey’s scheme. In Massey’s scheme the decoder is
also split into two non-communicating decoders; it turns out
this is too strong a condition for achieving cutoff rate gains
in general. We also split the decoding task, but allow the
decoders communicate with each other in a decision feed-



forward fashion. The resulting decoder structure is known
generally as asuccessive cancellationdecoder.

Under successive cancellation, the achievable cutoff rates
by the first and second stage decoders are given by

R0(U1; Y1Y2) = 1 − log(1 + 2ǫ − ǫ2)

R0(U2; Y1Y2U1) = 1 − log(1 + ǫ2)

where in the second lineU1 (the input of the first channel)
is regarded as side-information available perfectly to thesec-
ond decoder. A successive cancellation decoder with reliable
estimates at each stage comes close to achieving this perfect
side-information assumption.

Some insight can be gained into this example by noting
that the subchannelsU1 → Y1Y2 and U2 → Y1Y2U1 created
by splitting the combined channel are themselves BEC’s. To
see this observe that givenY1Y2 user 1 can determineU1 with
certainty only if neitherY1 nor Y2 is an erasure. If eitherY1 or
Y2 is an erasure, due to randomization byU2, U1 is equally
likely to be 0 or 1, i.e., it is erased. So, this is an erasure
channel with erasure probabilityǫ1

∆
= 1− (1 − ǫ)2 = 2ǫ− ǫ2.

On the other hand, decoder 2 observesY1Y2U1 and fails to
decodeU2 with certainty only if bothY1 andY2 are erasures,
which occurs with probabilityǫ2

∆
= ǫ2.

Notice that the average ofǫ1 and ǫ2 equalsǫ. This con-
servation of erasure rates is explained by noting that the
mutual information terms for the channels under consideration
satisfy I(U1; Y1Y2) = 1 − ǫ1, I(U2; Y1Y2U1) = 1 − ǫ2,
I(U1U2; Y1Y2) = 2(1 − ǫ). But by the chain rule for mutual
information,I(U1U2; Y1Y2) = I(U1; Y1Y2)+I(U2; Y1Y2|U2).
(Here,I(U2; Y1Y2|U2) = I(U2; Y1Y2U2) sinceU1 andU2 are
independent.)

The sum cutoff rate under this scheme is given by

R0,S(U1U2; Y1Y2) = 2 −
[

log(1 + ǫ1) + log(1 + ǫ2)
]

which is to be be compared with2R0(V ) = 2(1− log(1+ ǫ)).
These cutoff rates are shown in Fig. 3. The figure shows that
the sum cutoff rate is improved for all0 < ǫ < 1. This is
to be expected since the function1 − log(1 + ǫ) is a convex
function of 0 ≤ ǫ ≤ 1 and by the conservation of erasures
ǫ = 1

2
(ǫ1 + ǫ2).

Example 2 (BSC): Let V : X → Y be a BSC withX =
Y = {0, 1} and crossover probability0 ≤ ǫ ≤ 1/2. The cutoff
rate of the BSC is given by

R0(V ) = 1 − log(1 + γ(ǫ))

whereγ(δ) :=
√

4δ(1 − δ) for 0 ≤ δ ≤ 1.
We combine two copies of the BSC using the same method

as in Fig. 2 and use the same input probability assignment,
(U1, U2) ∼ Q1(x1)Q2(x2) where Q1, Q2 are uniform on
{0, 1}. The cutoff ratesR0(U1; Y1Y2) and R0(U2; Y1Y2U1)
can be obtained by direct calculation; however, it is instructive
to obtain them by the following argument. The input and
output variables of the channelW are related byY1 = U1 ⊕
U2⊕E1 andY2 = Y2⊕E2 whereE1 andE2 are independent
noise terms, each taking the values 0 and 1 with probabilities
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Fig. 3. Cutoff rates for the splitting of BEC.

1−ǫ andǫ, respectively. Decoder 1 sees effectively the channel
U1 → U1⊕E1⊕E2, which is a BSC with crossover probability
ǫ2 = 2ǫ(1 − ǫ) and has cutoff rate

R0(U1; Y1Y2) = 1 − log(1 + γ(ǫ2))

Decoder 2 sees the channelU2 → Y1Y2U1, which is equivalent
to the channelU2 → (Y1 ⊕ U1, Y2) = (U2 ⊕ E1, U2 ⊕ E2),
which in turn is a BSC with diversity order 2 and has cutoff
rate

R0(U2; Y1Y2U1) = 1 − log(1 + γ(ǫ)2)

Thus, the sum cutoff rate with this splitting scheme is given
by

R0,S(U1U2; Y1Y2) = 2 −
[

log(1 + γ(ǫ2)) + log(1 + γ(ǫ)2)
]

which is larger than2R0(V ) for all 0 < ǫ < 1/2, as shown
in Fig. 4.

Extensions of these channel combining methods can be
found in [17] and [16]. The above examples illustrate the main
point that significant gains in cutoff rate can be achieved with
negligible extra system complexity.

IV. SUMMARY

We have given a brief survey of the notion of cutoff rate
as regards its fundamental nature for communication systems.
We pointed out the fundamental nature of the cutoff rate in
relation to the computation problem in sequential decoding
by citing the main result of [3]. Next, we reviewed Massey’s
example to show that the cutoff rate can be exceeded without
any difficulty even by sequential decoding itself if one uses
more than one sequential decoder. Finally, we have given a
brief description of a general method for improving the cutoff
rates of arbitrary DMC’s.
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