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Abstract— Wireless sensor networks promise a fundamentally
new approach for gathering information about the physical world
via a distributed network of sensors that can communicate
with each other and/or with a (usually distant) fusion center
through radio-frequency wireless links. Limited energy resources
make power conservation essential in these envisioned sensing
systems. Thus, it becomes crucial to strategically decide when,
where and how to collect samples and communicate informa-
tion. Active learning methods adaptively select sample locations
based on previous observations in order to ”learn” a target
function using as few samples as possible, which could clearly
be advantageous in sensor network operations. Compressive
sampling refers to taking non-traditional samples in the form
of randomized projections of data. Recent results show that
compressive sampling can allow one to reconstruct signals from
very few samples, again suggesting promising opportunities for
wireless sensing. This paper compares the theoretical perfor-
mance of adaptive and compressive sampling to conventional
Shannon-Nyquist sampling, and it is shown that for certain
classes of piecewise constant (spatial) signals, both compressive
and adaptive schemes can dramatically outperform conventional
sampling. Furthermore, we show that in high SNR regimes
the performance of compressive sampling approaches that of
adaptive sampling, achieving a near-optimal rate of convergence.

I. I NTRODUCTION

Wireless sensor networks offer a tantalizing new paradigm
for measuring the world around us. These envisioned systems,
however, face highly non-trivial energy and bandwidth lim-
itations that have motivated considerable research into new
and innovative schemes for sampling and communications.
Perhaps the most basic approach to energy conservation is to
simply limit the number of samples acquired and communi-
cated to a bare minimum. While this may seem rather simple-
minded, it turns out that sensor networks allow one consid-
erable flexibility in when, where and how samples are taken.
This paper investigates and compares two strategic sampling
schemes motivated largely by problems arising in wireless
sensor networks. Both schemes are promising alternatives to
traditional Shannon-Nyquist sampling (uniformly-spacedpoint
samples). A major question addressed here is whether or not
adaptation is necessary to achieve optimal reconstructionerror
rates.

Compressive sampling (CS), also calledCompressed Sens-
ing, is the first alternative sampling scheme we consider.
CS involves taking non-traditional samples in the form of

randomized projections, such as random binary, Gaussian, or
Fourier projection vectors. Specifically, the samples of a signal
vectorf ∈ R

n are inner products of the form

yj = φT (j)f , j = 1, . . . , k,

where{φ(j)} are random vectors (e.g., normalizedn-vectors
comprised of i.i.d. binary or Gaussian random variables).
Recent theoretical results indicate that extremely accurate
signal reconstructions are possible from a relatively small
number of noiseless random projections [1], [2]. We extended
these results to show that many signals can be very accurately
recovered from random projections contaminated with noise
[3], in many cases much more accurately than possible using
conventional sampling methods. More recently, similar results
were confirmed using alternative analysis techniques [4]. De-
spite these encouraging results, there seems to be a significant
gap between the performance bounds for the noiseless and
noisy scenarios. This yields unnecessarily loose bounds in
regimes where the SNR is high.

Adaptive sampling (AS), also known asActive Learning
in the machine learning literature, is the second scheme. AS
involves sequential sampling schemes that use information
gleaned from previous observations to guide the sampling
process. Several empirical and theoretical studies have shown
that adaptively selecting samples in order to learn a target
function can outperform conventional sampling schemes, for
example see [5], [6]. In particular, it was shown that adap-
tive sampling can recover certain classes of one-dimensional
piecewise constant functions in noise with an error that de-
cays exponentially fast in the number of samples taken [7].
This is significantly faster than conventional Shannon-Nyquist
sampling schemes whose errors converge at a much slower
polynomial rate, with or without noise present. Similarly
encouraging results have been obtained for the recovery of
multidimensional piecewise constant functions [8], [9], in
which case AS achieves the optimal minimax-rate among all
possible sampling schemes [9].

Both compressive and adaptive sampling suggest promising
opportunities for wireless sensing applications. Consider a
network of n nodes, each of which can sense a spatial field
of interest (e.g., temperature or chemical distribution) at its
location. The sensor readings may be erroneous or noisy. In
addition to sensing, the nodes can wirelessly communicate



information to a distant destination orfusion center with
the ultimate goal of obtaining an accurate estimate of the
function at the fusion center. Adaptive sampling can be
used in a sequential adaptive process, in which the fusion
center selectively queries nodes in order to rapidly locate
changepoints in the piecewise constant function being sensed.
Communications between the fusion center and sensor nodes
could be carried out via digital communications. Compres-
sive sampling offers another promising alternative. A small
number of non-adaptive, but randomized, projections of the
sensor readings can provide sufficient information about the
changepoint locations. Such projections may be communicated
efficiently to the fusion center by organizing the network into a
array and transmitting the projections via analog beamforming.
We will not delve into the details of communications further
in this paper, but additional discussion on this topic can be
found in our related work [10]. The main focus here is on
the reconstruction error decay as a function of the number of
samples taken (and ultimately communicated).

The optimality of adaptive sampling for recovering piece-
wise constant functions from noisy samples suggests an in-
triguing question. Can non-adaptive CS perform comparatively
as well as adaptive sampling in such situations? This paper
provides an affirmative answer to this question. This resultis
remarkable since it is the first theoretical evidence that shows
that compressive sampling, which is non-adaptive, cannot be
significantly outperformed by any other method (including
every possible adaptive sampling procedure), at least in high
SNR regimes. Our results hold only for certain classes of
piecewise constant functions, but this is a quite rich family
of signals that has many interesting potential applications.
The results also provide some understanding about the gap
between existing error bounds for CS in the noiseless [1], [2]
and noisy scenarios [3], [4]. Our results may also serve as
a starting point for investigations of the optimality of CS in
more general signal spaces.

II. COMPRESSIVE ANDADAPTIVE SAMPLING

We focus our attention on classes of piecewise constant
functions in one dimension. Extensions to multidimensional
classes (images in particular) can be analyzed in a similar
manner [11]. Here we consider a space of one-dimensional
n-point signalsf = (f1, . . . , fn),

F =
{
f : fi = −1{i≤θ} + 1{i>θ}, θ ∈ {0, . . . , n}

}
,

where 1{·} denotes the indicator function. The vectors in
F correspond to step functions. To cast this in the context
of wireless sensor networks, imagine that each element of
a vector f corresponds to a sensor and the value ofθ
corresponds to a changepoint in the spatial field being sensed.
Our primary concern is how well one can recover signals in
this class from noisy samples. Conventional Shannon-Nyquist
sampling involves takingk uniformly-spaced point samples.
It is easy to see that the mean square reconstruction error will
be at least as large as the bias due to undersampling, which in
this case is on the order ofk−1 (since we can only determine

the location of the changepoint to within that resolution).
However, if one allows the possibility of adapting the sampling
locations based on previous observations, that is sequentially
monitoring the sample values and carefully “focusing” samples
near the perceived changepoint location, then it is possible to
achieve an exponential rate of convergence [7]. A constructive
approach for this AS process was proposed in [7], [12] can be
roughly described as “probabilistic bisection,” wherein each
new sample is selected near the median of the posterior
distribution of the changepoint location derived from previous
samples. Using this procedure, the mean square reconstruction
error after takingk samples at adaptively chosen locations is
bounded as

E

[
n−1‖f − f̂k‖2

]
≤ 4n [β(σ2)]k ,

where0 < β(σ2) < 1 is given by

β(σ2) = 1/2 + 1/2 e−1/(2σ2)

andσ2 is the variance of zero-mean, additive white Gaussian
noises contaminating each sample. Moreover, we know from
[7], [12] that the exponential decay of the expected error inthe
number of samplesk is the best one can hope for. This claim
comes from results in information theory: estimation ofθ,
the step location, can be viewed as a communication problem
where we want transmitθ through an additive white Gaussian
noise channel. Due to noise in the channel the accuracy in the
transmission ofθ can decay at most exponentially with the
number of symbols transmitted (analogous to the number of
samples in the AS procedure).

The main result of this paper, stated formally in the theorem
below, shows that non-adaptive CS can have a performance
that is similar to the one of adaptive sampling.

Theorem 1. Suppose that f ∈ F and assume that we take
k ≤ n samples of the form

yj = φT (j)f + wj , j = 1, . . . , k ,

where {φ(j)} are Rademacher random vectors (n-vectors
comprised of i.i.d. random variables taking values ±1/

√
n

with equal probability), and {wj} are i.i.d. Gaussian random
variables with zero mean and variance σ2, and independent
of {φ(j)}. A function estimate f̂k can be derived from
{yj, φ(j)} satisfying the following mean square error bound.

E

[
n−1‖f − f̂k‖2

]
≤ 4n [α(n, σ2)]k ,

where 0 < α(n, σ2) < 1 is given by

α(n, σ2) = max

{
e−

1

2nσ2 ,
1

2
+

1

2
e−

2

nσ2

}

Note that form of the rate parameterα(n, σ2) is quite
similar to that in the AS case,β(σ2), with one important
distinction: the rate parameter for CS depends on the signal
length n. The result of this dependence is that in the high
SNR regimes, CS approaches the performance of AS, but lags
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Fig. 1. Behavior of (normalized) error bounds as a function of SNR (1/σ2).
Signal is ann = 1000 length vector andk = 30 samples are taken
using Shannon-Nyquist sampling (solid), Compressive Sampling (dashed), and
Adaptive Sampling (dot-dashed).

significantly behind in lower SNR situations. This effect can be
intuitively understood by noting that, due to the non-adaptive
nature of the random projections, CS spreads energy evenly
across the entire signal space, whereas AS focuses the energy
of its sampling process in the vicinity of the signal subspace.
Fig. 1 depicts the behavior of the error bounds as a function
of SNR.

III. S IGNAL RECONSTRUCTIONALGORITHM

Each elementf ∈ F is parameterized byθ ∈ {0, . . . , n},
that is f ≡ f (θ). Let y1, . . . , yj denote samples acquired
either by the AS method of [7] or the CS method described
above. The basic reconstruction algorithm used is the max-
imum likelihood estimator ofθ. For analysis purposes it is
convenient to formulate the algorithm in a Bayesian way: Let
p(j) ≡ {p0(j), . . . , pn(j)} parameterize the posterior afterj
measurements, that is

Pr(θ = l|y1, . . . , yj , φ(1), . . . φ(j)) ≡ pl(j).

We start with a uniform prior onθ, that is,pl(0) = 1/(n+1)
for all l ∈ {0, . . . , n}. Whenever we get a new measurement
we update the posterior using Bayes rule. This amounts
simply to multiplication by the likelihood of the measurement
(because{wi}j

i=1 are all independent) followed by a normal-
ization, therefore

pl(j + 1) =

pl(j) exp
(
− 1

2σ2
u

(
yj+1 − φT (j + 1)f(l)

))2

∑n
m=0 pm(j) exp

(
− 1

2σ2
u

(
yj+1 − φT (j + 1)f(m)

))2 ,

whereσ2
u = 2σ2 for reasons stated in the next section. We

consider the maximuma posteriori (MAP) estimator

θ̂k ≡ argmax
l

pl(k).

Note that the outcome of the estimator does not depend on
σ2

u as long asσ2
u > 0. Finally our estimate off is simply

f̂k ≡ f(θ̂k). One final point, the AS method of [7] selects
the j + 1 sample near the median ofpl(j).

IV. PROOF OFTHEOREM 1

To begin, we consider the one-dimensional classF . The
proof of Theorem 1 employs an analysis technique similar in
spirit to one used in the study of adaptive sampling inF [7].
First define

Mθ(j) =
1 − pθ(j)

pθ(j)
, andNθ(j + 1) =

Mθ(j + 1)

Mθ(j)
.

Noticing that
∑n

l=0 pl(j) = 1 we have

Pr(θ̂(k) 6= θ) ≤ Pr

(
pθ(k) <

1

2

)
= Pr(Mθ(k) > 1)

≤ E[Mθ(k)],

where the last inequality follows from Markov inequality. The
definition of Mθ(j) is chosen to get more leverage out of
Markov’s inequality (akin to Chernoff bounding techniques).
Now we proceed by conditioning

E[Mθ(k)] = E[Mθ(k − 1)Nθ(k)]

= E [Mθ(k − 1)E[Nθ(k)|p(k − 1)]]

...

= Mθ(0)E
[
E[Nθ(1)|p(0)] × · · ·

· · · × E[Nθ(k)|p(k − 1)]
]

≤ Mθ(0)

{
max

j∈{0,...,k−1}
max
p(j)

E[Nθ(j + 1)|p(j)]

}k

.

The remainder of the proof entails upper boundingE[Nθ(j+
1)|p(j)]. Plugging in the definitions we get

E[Nθ(j + 1)|p(j)]

=
1

1 − pθ(j)

∑

m 6=θ

pm(j)E



e
− 1

2σ2
u
(yj+1−φT (j+1)f(m))

2

e
− 1

2σ2
u

(yj+1−φT (j+1)f(θ))2



 .

To evaluate the above summation we consider two separate
cases: (i)m < θ; (ii) m > θ. After some tedious but
straightforward algebra we conclude that

E



e
− 1

2σ2
u
(yj+1−φT (j+1)f (m))2

e
− 1

2σ2
u
(yj+1−φT (j+1)f(θ))

2



 =

E

[
exp

(
− 2

( 1

σ2
u

− σ2

σ4
u

)( ∑

t: m<t≤θ, or

θ<t≤m

φt(j + 1)
)2

)]
.

The above expression is minimized whenσ2
u = 2σ2, justifying

our choice forσ2
u. Although it is not easy to compute the above

expectations for general values ofm and θ, it is relatively
easy to conclude that those are largest when|m − θ| = 1 or



|m − θ| = 2, therefore

E



e
− 1

2σ2
u
(yj+1−φT (j+1)f(m))2

e
− 1

2σ2
u
(yj+1−φT (j+1)f(θ))

2





≤ max

{
e−

1

2nσ2 ,
1

2
+

1

2
e−

2

nσ2

}
≡ α(n, σ2).

ConsequentlyE[Nθ(j + 1)|p(j)] ≤ α(n, σ2) and therefore

Pr(θ̂(k) 6= θ) ≤ n [α(n, σ2)]k.

A bound on the expected error then follows trivially, by
considering a worst case scenario whenθ̂ 6= θ,

E

[
n−1‖f̂k − f‖2

]
≤ 4n [α(n, σ2)]k.

V. CONCLUSIONS

The theory and methods discussed in this paper show that
adaptive and compressive sampling can offer significant ad-
vantages over traditional Shannon-Nyquist sampling in certain
situations (e.g., spatial changepoint detection). Furthermore,
our new result demonstrates that compressive sampling can
be nearly as effective as adaptive sampling in such situations,
provided the SNR is sufficiently high. This is a significant step
forward in our understanding of compressive sampling, since
previous results only demonstrated the optimality of compres-
sive sampling in noiseless conditions. Also, in combination
with the beamforming approach to communications proposed
in [10], CS may be a very attractive form of sampling for
wireless sensor net applications. We also note that the method
of reconstruction employed in our work differs markedly from
the usual reconstruction strategies employed in compressive
sampling (based onl1 minimization techniques). We do not
know whether or not those strategies, in particular the methods
that handle noisy samples proposed in [3], [4], provide the
same near-optimal convergence rates as the Bayesian recon-
struction proposed here. Our future work is aimed at extending
the theory and methods developed in this paper to more general
classes of signals.
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