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Abstract— Wireless sensor networks promise a fundamentally randomized projections, such as random binary, Gaussfan, o

new approach for gathering information about the physical vorld  Fourier projection vectors. Specifically, the samples dfjaa
via a distributed network of sensors that can communicate vector f € R” are inner products of the form

with each other and/or with a (usually distant) fusion cente
through radio-frequency wireless links. Limited energy resources y; = ¢T Nf, i=1,...,k,

make power conservation essential in these envisioned sergs

systems. Thus, it becomes crucial to strategically decidehen, where{¢(j)} are random vectore@., normalizedn-vectors
where and how to collect samples and communicate informa- comprised of i.i.d. binary or Gaussian random variables).
tion. Active learning methods adaptively select sample l@tions  pocant theoretical results indicate that extremely ateura
based on previous observations in order to "learn” a target . . . .

function using as few samples as possible, which could clégr signal recons_tructlons are poss_lble_ from a relatively smal
be advantageous in sensor network operations. Compressivenumber of noiseless random projections [1], [2]. We extende
sampling refers to taking non-traditional samples in the fom these results to show that many signals can be very acouratel
of randomized projections of data. Recent results show that recovered from random projections contaminated with noise
compressive sampling can allow one to reconstruct signalsom 31 in many cases much more accurately than possible using
very few samples, again suggesting promising opportunitgefor ’ fi | i thods. M tlv. similacits
wireless sensing. This paper compares the theoretical penf conven |or_1a samp_mg metho _S' ore repen Ys §|m|au S
mance of adaptive and compressive sampling to conventional Were confirmed using alternative analysis techniques [4}. D
Shannon-Nyquist sampling, and it is shown that for certain spite these encouraging results, there seems to be a sigific
classes of piecewise constant (spatial) signals, both coregsive gap between the performance bounds for the noiseless and

and adaptive schemes can dramatically outperform convertnal iy scenarios. This yields unnecessarily loose bounds in
sampling. Furthermore, we show that in high SNR regimes . AN
regimes where the SNR is high.

the performance of compressive sampling approaches that of . - . .
adaptive sampling, achieving a near-optimal rate of convegence. Adaptive sampling (AS), also known aictive Learning
in the machine learning literature, is the second scheme. AS
involves sequential sampling schemes that use information
gleaned from previous observations to guide the sampling
Wireless sensor networks offer a tantalizing new paradigpnocess. Several empirical and theoretical studies hawersh
for measuring the world around us. These envisioned systetimat adaptively selecting samples in order to learn a target
however, face highly non-trivial energy and bandwidth limfunction can outperform conventional sampling schemes, fo
itations that have motivated considerable research int® nexample see [5], [6]. In particular, it was shown that adap-
and innovative schemes for sampling and communicatiotise sampling can recover certain classes of one-dimeakion
Perhaps the most basic approach to energy conservation ipitrewise constant functions in noise with an error that de-
simply limit the number of samples acquired and communtays exponentially fast in the number of samples taken [7].
cated to a bare minimum. While this may seem rather simpl€his is significantly faster than conventional Shannon-iNgg
minded, it turns out that sensor networks allow one considampling schemes whose errors converge at a much slower
erable flexibility in when, where and how samples are takepolynomial rate, with or without noise present. Similarly
This paper investigates and compares two strategic sagplancouraging results have been obtained for the recovery of
schemes motivated largely by problems arising in wirelessultidimensional piecewise constant functions [8], [9, i
sensor networks. Both schemes are promising alternativesatich case AS achieves the optimal minimax-rate among all
traditional Shannon-Nyquist sampling (uniformly-spapetht possible sampling schemes [9].
samples). A major question addressed here is whether or noBoth compressive and adaptive sampling suggest promising
adaptation is necessary to achieve optimal reconstruetimm opportunities for wireless sensing applications. Conside
rates. network of n nodes, each of which can sense a spatial field
Compressive sampling (CS), also callédmpressed Sens-  of interest (e.g., temperature or chemical distributionjta
ing, is the first alternative sampling scheme we considéocation. The sensor readings may be erroneous or noisy. In
CS involves taking non-traditional samples in the form dadddition to sensing, the nodes can wirelessly communicate

|I. INTRODUCTION



information to a distant destination dusion center with the location of the changepoint to within that resolution).
the ultimate goal of obtaining an accurate estimate of tl#owever, if one allows the possibility of adapting the saingpl
function at the fusion center. Adaptive sampling can Hecations based on previous observations, that is seguignti
used in a sequential adaptive process, in which the fusioronitoring the sample values and carefully “focusing” séap
center selectively queries nodes in order to rapidly locatear the perceived changepoint location, then it is possdl
changepoints in the piecewise constant function beingesbnsachieve an exponential rate of convergence [7]. A constrict
Communications between the fusion center and sensor nodpproach for this AS process was proposed in [7], [12] can be
could be carried out via digital communications. Compreseughly described as “probabilistic bisection,” whereicle
sive sampling offers another promising alternative. A $matew sample is selected near the median of the posterior
number of non-adaptive, but randomized, projections of thiéstribution of the changepoint location derived from poexs
sensor readings can provide sufficient information aboeat teamples. Using this procedure, the mean square reconsitruct
changepoint locations. Such projections may be commuadcatrror after takingk samples at adaptively chosen locations is
efficiently to the fusion center by organizing the networtoin  bounded as

array and transmitting the projections via analog beamifogm _ ~

We will not delve into thepdetails of communications further E [” HIF = Fill?|) < AnlBe®)*

in this_paper, but additional discussion on this topic can %ereo <8
found in our related work [10]. The main focus here is on

the reconstruction error decay as a function of the number of B(0?) = 1/2+1/2 e /)
samples taken (and ultimately communicated).

The optimality of adaptive sampling for recovering piec
wise constant functions from noisy samples suggests an
triguing question. Can non-adaptive CS perform compaghtiv : | )
as well as adaptive sampling in such situations? This pagifmPer of samples is the best one can hope for. This claim
provides an affirmative answer to this question. This reisult ©MeS from results in information theory: estimation éof
remarkable since it is the first theoretical evidence thatsh e Step location, can be viewed as a communication problem

that compressive sampling, which is non-adaptive, cansot ‘gh.ere we want transmit t_hrOl_Jgh an additive white Gaus&_an
oise channel. Due to noise in the channel the accuracy in the

significantly outperformed by any other method (including e , )
every possible adaptive sampling procedure), at leastgh hi ransmission ofj can deca)_/ at most exponentially with the
pmber of symbols transmitted (analogous to the number of

SNR regimes. Our results hold only for certain classes B8

piecewise constant functions, but this is a quite rich fgmiS@mPles in the AS procedure). _
of signals that has many interesting potential application The main result of this paper, stated formally in the theorem

The results also provide some understanding about the J&peWV: ;hq\llvs tha:] non—adeflptive CS can hlf"“’e a performance
between existing error bounds for CS in the noiseless [1], [2'2t IS similar to the one of adaptive sampling.

and noisy scenarios [3], [4]. Our results may also serve #eorem 1. Suppose that f € F and assume that we take
a starting point for investigations of the optimality of C$ i 1 < » samples of the form

more general signal spaces. , ,
yJ:¢T(]).f+wJ5 ]:17"'7k7

. . . where {¢(j)} are Rademacher random vectors (n-vectors

We focus our attention on classes of piecewise const%r&nprised of i.i.d. random variables taking values +1//n
functions in one dimension. Extensions to multidimensiona.., equal proﬁébility) and {w,} arei.i.d. Gaussian random
classes (images in particular) can be analyzed in a Simi\%r{iableswith 2600 méan and \iariance. '02' and independent
manner [11]. Here we consider a space of one—dimensima? {6(j)}. A function estimate ?k can'be derived from

n-point signalsf = (f1..... fn), {y;, ()} satisfying the following mean square error bound.
F = {.ffz* 1{z§9}+1{z>9}7 96{0,...,71}}, E|:n_1||‘f_’f\k”21| §4n[a(n,02)]k 7

where 1;, denotes the indicator function. The vectors in
F correspond to step functions. To cast this in the contewhere 0 < a(n,o?) < 1 is given by
of wireless sensor networks, imagine that each element of L1 1 )

2 1 _
a vector f corresponds to a sensor and the value dof a(n,o”) = maX{e 2m?,§ + ¢ w?}
corresponds to a changepoint in the spatial field being sense
Our primary concern is how well one can recover signals in
this class from noisy samples. Conventional Shannon-Nyqui Note that form of the rate parameter(n,o?) is quite
sampling involves taking: uniformly-spaced point samples.similar to that in the AS case3(c?), with one important
It is easy to see that the mean square reconstruction erllor wistinction: the rate parameter for CS depends on the signal
be at least as large as the bias due to undersampling, whicheimgth n. The result of this dependence is that in the high
this case is on the order &f! (since we can only determine SNR regimes, CS approaches the performance of AS, but lags

(0?) < 1 is given by

cand o2 is the variance of zero-mean, additive white Gaussian
ises contaminating each sample. Moreover, we know from
[7], [12] that the exponential decay of the expected errdh@n
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f+ = f(0x). One final point, the AS method of [7] selects
’ | the j + 1 sample near the median pf(5).

IV. PROOF OFTHEOREM 1

To begin, we consider the one-dimensional classThe
proof of Theorem 1 employs an analysis technique similar in

spirit to one used in the study of adaptive samplingFir7].
Y ] First define

________________________ —_— 1— j Mp(5+1
Mo(g) = 229 gy 4 1) = Mo D)

Po(7) My (35)
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Erv Noticing that}";" ; pi(j) = 1 we have

Fig. 1. Behavior of (normalized) error bounds as a function of SNRE).

A 1
Signal is ann. = 1000 length vector and: = 30 samples are taken Pr(@(k) 7 9) < Pr (pg(k) < 5) - Pr(Mg(k) >1)
using Shannon-Nyquist sampling (solid), Compressive Jagfdashed), and < EIM.(k
Adaptive Sampling (dot-dashed). = [ 9( )]7

where the last inequality follows from Markov inequalityhd
significantly behind in lower SNR situations. This effechdze  definition of My(j) is chosen to get more leverage out of
intuitively understood by noting that, due to the non-aikapt Markov’s inequality (akin to Chernoff bounding technigues
nature of the random projections, CS spreads energy evegW we proceed by conditioning

across the entire signal space, whereas AS focuses theyener

of its sampling progess inpthe vicinity of the signal subgac gE[MG(k)] = E[My(k — 1)Np(k)]
Fig. 1 depicts the behavior of the error bounds as a function

E[My(k — 1)E[Ny(k)|p(k — 1)]]
of SNR.
IIl. SIGNAL RECONSTRUCTIONALGORITHM _ Me(O)E[E[Ne(l)IP(O)] S

Each elementf € F is parameterized by € {0,...,n}, -+ x E[Ny(k)|p(k — 1)]]
that is f = f(6). Let y1,...,y,; denote samples acquired &
either by the AS method of [7] or the CS method described < MQ(O){ max  maxE[Ny(j + 1)|p(j)]} )
above. The basic reconstruction algorithm used is the max- 7€{0,....k=1} p(j)
imum likelihood estimator of). For analysis purposes it is

convenient to formulate the algorithm in a Bayesian way: L% ﬁ?ﬁergﬁmdg oifntr;ﬁep:jo;:rﬁggaglssxgpeétboun: o (7+
p(j) = {po(4),...,pn(j)} parameterize the posterior aftgr LAV 99ing 9
measurements, that is E[Ny(j + 1)|p(j)]
PI‘(G = l|yla e Yy, ¢(1)a o ¢(.7)) Epl(])

1 e—ﬁ(’!/j+1—¢T(j+1)f(m))2
) . . . - n(GE

We start with a uniform prior o, that is,p;(0) = 1/(n+1) 1 —pe(4) ,%:gp n(7) e—ﬁ(yj+1—¢7"(j+1)f(9))2

for all I € {0,...,n}. Whenever we get a new measurement "

we update the posterior using Bayes rule. This amountg evaluate the above summation we consider two separate
simply to multiplication by the likelihood of the measuremie cases: ()m < 6; (i) m > 6. After some tedious but

(becausdw;}?_, are all independent) followed by a normalstraightforward algebra we conclude that
ization, therefore

p(i+1) = o 37 (=¢GN F(m)?
. T 2 . — 52 (v 6T G+ £ ()
m(@)exp (=52 (v = ¢7 G+ DFD)) e >
) ]_ 2 2
o v exp (o2 (v — @G+ DFm)) E exp(—2(g—3—j—3)( > ali+) )]

. . t: m<t<@, or
wherec? = 202 for reasons stated in the next section. We

. . .. . o<t<m
consider the maximum posteriori (MAP) estimator

0, = argmlaxpl(k). The above expression is minimized wheh= 202, justifying

our choice forr2. Although it is not easy to compute the above
Note that the outcome of the estimator does not depend expectations for general values of and 6, it is relatively

o2 as long ass2 > 0. Finally our estimate off is simply easy to conclude that those are largest when- 6| = 1 or



|m — 0| = 2, therefore [10]

— 5z (v =T G+ F(m))”

e
E 3
e—ﬁ(wﬂ—ﬂ(mme)) [11]
1
< max {e Bno? 5 + ienfr?} = a(n,o?). [12]

ConsequentlfE[Ny(j + 1)|p(j)] < a(n,o?) and therefore
Pr(d(k) # 6) < n [a(n, o).

A bound on the expected error then follows trivially, by
considering a worst case scenario wieg 6,

E [n71|\f;€ ffHQ} < 4n [a(n, o2)]".

V. CONCLUSIONS

The theory and methods discussed in this paper show that
adaptive and compressive sampling can offer significant ad-
vantages over traditional Shannon-Nyquist sampling itader
situations (e.g., spatial changepoint detection). Funtioee,
our new result demonstrates that compressive sampling can
be nearly as effective as adaptive sampling in such sitagtio
provided the SNR is sufficiently high. This is a significargyst
forward in our understanding of compressive sampling,esinc
previous results only demonstrated the optimality of caespr
sive sampling in noiseless conditions. Also, in combiratio
with the beamforming approach to communications proposed
in [10], CS may be a very attractive form of sampling for
wireless sensor net applications. We also note that theadeth
of reconstruction employed in our work differs markedlyrfro
the usual reconstruction strategies employed in commessi
sampling (based oy minimization techniques). We do not
know whether or not those strategies, in particular the ogh
that handle noisy samples proposed in [3], [4], provide the
same near-optimal convergence rates as the Bayesian recon-
struction proposed here. Our future work is aimed at extendi
the theory and methods developed in this paper to more denera
classes of signals.

REFERENCES

E. Candes and T. Tao, “Near optimal signal recovery frandom
projections: Universal encoding strategies?,” Tech. Répltech, 2004.
D. Donoho, “Compressed sensing,” Tech. Rep., Stanfa@@4.

J. Haupt and R. Nowak, “Signal reconstruction from norsydom
projections,” inProceedings of the IEEE Satistical Sgnal Processing

Workshop, 2005, long version submitted {&EE Trans. Info. Th..

E. J. Candes and T. Tao, “The dantzig selector: stagiséstimation
when p is much larger than n.,” Tech. Rep., Caltech, 2005.

Y. Freund, H. S. Seung, E. Shamir, and N. Tishby, “Infotiom

prediction, and query by committee,” Proc. Advances in Neural

Information Processing Systems, 1993.

K. Sung and P. Niyogi, “Active learning for function ampimation,”

Proc. Advances in Neural Information Processing Systems, vol. 7, 1995.
M. V. Burnashev and K. Sh. Zigangirov, “An interval esttion problem
for controlled observations Problems in Information Transmission, vol.

10, pp. 223-231, 1974.

A. P. Korostelev, “On minimax rates of convergence in gaanodels
under sequential design3atistics & Probability Letters, vol. 43, pp.
369-375, 1999.

R. Castro, R. Willett, and R. Nowak, “Faster rates in Bsgion via active
learning,” in Proceedings of Neural Information Processing Systems

(NIPS), 2005.

(1]
(2]
(3]

(4]
(5]

(6]
(7]

(8]

El

W. Bajwa, A. Sayeed, and R. Nowak, “Matched source-oleén
communication for field estimation in wireless sensor neks® in
Proceedings of the Fourth International Symposium on Information
Processing in Sensor Networks (IPSN'05), 2005.

R. Castro, J. Haupt, and R. Nowak, “Compressed senssgag-
tive learning,” in Proceedings of |IEEE International Conference on
Acoustics, Speech and Sgnal Processing (ICASSP), 2006.

M. Horstein, “Sequential transmission using noiselésedback,”|EEE
Trans. Info. Th., vol. 9, pp. 136-143, 1963.



