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Abstract— The paper considers the effect of link delays on
the capacity of a class of discrete memoryless relay networks.
Sufficient conditions for two relay networks with the same
topology and probabilistic structure but different link delays to
have the same capacity are established. A general cut-set upper
bound on capacity, which takes link delays into consideration is
established. Examples including the classical relay, relay-without-
delay, and a two-relay network are discussed.

I. INTRODUCTION

In recent work [1], [2], it was shown that the capacity
of the classical relay channel can be increased if the relay
transmission at any instant of time is allowed to depend
on its current received symbol in addition to past received
symbols. The resulting channel was referred to as the relay-
without-delay (RWD). It was also shown that the capacity
of the relay-without-delay can exceed the well-known cut-set
bound [3], and a new cut-set bound involving an auxiliary
random variable in place of the relay sender random variable
was established.

The work in this paper is motivated by the observation
that the classical relay channel can be obtained from the
relay-without-delay and vice versa by appropriately adding
transmission delays to the links. Specifically, the classical
relay channel can be obtained from the relay-without-delay
by adding a delay of 1 to the link from the sender to the relay
(instead of adding relay coding delay of 1). Thus, from the
results in [1], [2], we conclude that adding link delay can
reduce capacity. Conversely, the relay-without-delay can be
obtained from the classical delay channel by adding a delay
of 1 to the link from the sender to the receiver (instead of
subtracting off the coding delay). Thus adding link delay can
also increase capacity.

In this paper, we investigate the effect of link delays on
capacity for the general class of relay networks with no
feedback, which we refer to as relay network with delays.
We define a discrete memoryless (DM) relay network with
delays to consist of: (i) a directed acyclic graph (DAG)
(N , E), N = {1, 2, . . . , K}, where node 1 is the sender and
node K is the receiver and the rest are relay nodes, (ii) a
set of random variables associated with each node, where
X1 ∈ X 1 is associated with the sender node 1, Y K ∈ YK is
associated with the receiver node K, and (X i, Y i) ∈ X i ×Y i

is associated with relay sender-receiver pair i along with
a family of conditional probability mass functions (pmfs)
{p(yi|xNi), i = 2, 3, . . . , K}, where Ni = {j ∈ N : (j, i) ∈

E}, i.e., the set of nodes with edges incident on i, and (iii)
a set of edge weights (delays), where the weight of an edge
(i, j) is d(i, j) ∈ {0, 1, 2, . . .}.

Let d(i) and D(i) be the minimum and the maximum path
delay from node 1 to node i, i ∈ N , respectively. The network
is memoryless in the following sense. For any block length
n ≥ 1,
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where x
j

t−d(j,i) is an arbitrary symbol in X j when the sub-
script is not positive.

A (2nR, n) code for the DM relay network with delays con-
sists of: (i) a set of messages {1, 2, . . . , 2nR}, (ii) an encoding
function that maps each message w into a codeword x1

1:n(w)
of length n, (iii) relay encoding functions xi

t = f i
t (y

i
d(i)+1:t)

for i = 2, . . . , K − 1 and t ≥ d(i) + 1, and (iv) a decoding
function that maps each received sequence yK

d(K)+1:D(K)+n

into an estimate ŵ(yK
d(K)+1:D(K)+n). A rate R is achievable if

there exists a sequence of (2nR, n) codes with P
(n)
e = P{Ŵ 6=

W} → 0, as n → ∞. The network capacity C is defined as
the supremum over the set of achievable rates.

To help understand these definitions, consider the following
simple examples:

1) Relay-without-delay: Here N = {1, 2, 3} and E =
{(1, 2), (2, 3), (1, 3)} as in Figure 1. The delays are
d(1, 2) = d(2, 3) = d(1, 3) = 0 and thus d(2) = d(3) =
0. The conditional pmfs are of the form
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2) Classical relay channel. Here N = {1, 2, 3} and E =
{(1, 2), (2, 3), (1, 3)} as in Figure 1. The delays are
d(1, 2) = 1, d(2, 3) = d(1, 3) = 0 and thus d(2) = 1
and d(3) = 0. The conditional pmfs are of the form
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3) Two-relay network (see Figure 2). Here N = {1, 2, 3, 4}
and E = {(1, 2), (1, 3), (2, 4), (3, 4)}. The delays are
d(1, 2) = 2, d(3, 4) = 1, d(1, 3) = d(2, 4) = 0 and



thus d(2) = 2, d(4) = 1 and d(3) = 0. The conditional
pmfs are of the form
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Fig. 1. A network with a single relay node.
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Fig. 2. A network with two relay nodes.

In this paper we present two preliminary results. The first
result concerns the question of when delay does not change the
capacity of a network. The second result provides a new cut-
set upper bound on the capacity of relay networks with delays.
This bound involves auxiliary random variables and coincides
with known results in special cases such as the classical cut-
set bound for the relay channel and the cut-set bound for the
relay-without-delay.

Theorem 1: Consider two relay networks with the same
directed acyclic graph (N , E) and the same set of associated
random variables and conditional probability mass functions
but different link delays {d1(i, j)} and {d2(i, j)}. Let wi(p),
i = 1, 2, be the delay of path p from the sender to the
receiver, i = 1, 2. If there exists an integer m such that
w1(p)−w2(p) = m for every path p, i.e., if all paths in both
networks have the same relative delays, then the two networks
have the same capacity.

It can be shown that the condition in the theorem can be
checked in O(K + |E|) time, although the theorem requires
checking all path delays from node 1 to node K.

We now show the implications of the above theorem for
some simple networks.

1) Consider the relay channel in Figure 1 with d(1, 2) =
d(1, 3) = 1, d(2, 3) = 0. Here there are two paths from
the sender to the receiver with delays 1 and 1. The
relative delays are the same as that for the relay-without-
delay, which has two paths with relative delays 0 and
0. As a result the above result implies that both these
networks have the same capacity.

2) Consider two 2-relay networks N1 and N2 with the same
DAG as shown in Figure 2 and the same associated
random variables. Let the delays for N1 be d(1, 2) =
0, d(1, 3) = 1, d(2, 4) = 0, d(3, 4) = 2, and for N2

be d(1, 2) = 1, d(1, 3) = 4, d(2, 4) = 1, d(3, 4) = 1.
Both networks have two paths from the sender to the
receiver with path delays (0, 3) in N1 and (2, 5) in N2,
respectively. Using the above result, it follows that both
N1 and N2 have the same capacity since the relative
delays in both networks are the same.

We now proceed to establish an upper bound on the capacity
of relay networks with delays. We begin with some needed
notation. Let S be a set of subsets defined as S = {S ⊂ N :
1 ∈ S, K ∈ Sc}. Given S ∈ S, define V1(S) = {i : (i, j) ∈
E , i ∈ S, j ∈ Sc}. That is, V1(S) is the set of nodes in S with
outgoing edges to nodes in Sc. Similarly define V2(S) = {j :
(i, j) ∈ E , i ∈ S, j ∈ Sc}. That is, V2(S) is the set of nodes
in Sc with incoming edges from nodes in S. For i 6= 1, let
Aij = 1 if (i, j) ∈ E is on a shortest path from node 1 to node
j, and i ∈ V2(S) and j ∈ Sc for some S ∈ S; otherwise let
Aij = 0. Define the set A = {i : Aij = 1, for some j ∈ N}.
It turns out that the nodes in A have corresponding auxiliary
random variables in the expression for the upper bound. Let
D∗ = max{d(i, j) − d(j) + 1 : (i, j) ∈ E}. This is used
to ensure that all subscripts (time indices) are positive in the
definitions that follow. We define the following sets of random
variables for a given S ∈ S:

X(S) = {X i
d(j)−d(i,j)+D∗ : i ∈ V1(S), j ∈ V2(S), Aij = 0},

U(S) = {U i
d(i)+D∗ : i ∈ V1(S), j ∈ V2(S), Aij = 1},

X(Sc) = {X i
d(j)−d(i,j)+D∗ : i ∈ Ac ∩ V2(S), j ∈ Sc},

U(Sc) = {U i
d(i)+D∗ : i ∈ A ∩ V2(S), ∃ j ∈ Sc 3 Aij = 1},

Y (Sc) = {Y j

d(j)+D∗
: j ∈ V2(S)}.

The following theorem provides a “single-letter” upper bound
on the capacity of the relay network with delays.

Theorem 2: The capacity of a discrete memoryless relay
network with delays is upper bounded by

C ≤ sup min
S∈S

{I(X(S), U(S); Y (Sc)|X(Sc), U(Sc)},

where the supremum is over all joint distributions of the
random variables constituting X(S), U(S), X(Sc), and U(Sc)
for all S ∈ S, and over all functions such that xi

d(i)+D∗
=

f(ui
d(i)+D∗

, yi
d(i)+D∗

) for all i such that Aij = 1 for some j.

We now apply the above theorem to obtain an upper bound
on the capacity of some networks.



1) Classical relay channel: In this case D∗ = 1, S =
{{1}, {1, 2}}, and A12 = A13 = A23 = 0, and A = ∅.
For S = {1}, we obtain V1(S) = {1} and V2(S) =
{2, 3}. Hence

X(S) = {X1
1}, X(Sc) = {X2

1}, U(S) = U(Sc) = ∅,

Y (Sc) = {Y 2
2 , Y 3

1 }.

Similarly for S = {1, 2}, we obtain V1(S) =
{1, 2}, V2(S) = {3} and hence

X(S) = {X1
1 , X2

1}, X(Sc) = ∅, U(S) = U(Sc) = ∅,

Y (Sc) = {Y 3
1 }.

As a result the upper bound on capacity is given by

sup
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1
,x2

1
)

min{I(X1
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2 , Y 3
1 |X

2
1 ), I(X1

1 , X2
1 : Y 1

3 )}.

This is exactly the same as the upper bound for the
classical relay channel in [3], although the notation is
different. Note that Aij = 0 for all (i, j) and hence
there are no auxiliary random variables, i.e., U(S) =
U(Sc) = ∅.

2) Relay-without-delay: In this case S and D∗ are the same
as for the classical relay channel discussed above and
A13 = A12 = 0, A23 = 1, and A = {2}.
For S = {1}, we obtain V1(S) = {1} and V2(S) =
{2, 3}. Hence

X(S) = {X1
1}, U(S) = X(Sc) = ∅, U(Sc) = {U2

1},

Y (Sc) = {Y 2
1 , Y 3

1 }.

Similarly for S = {1, 2}, we obtain V1(S) = {1, 2} and
V2(S) = {3} and hence

X(S) = {X1
1}, U(S) = {U2

1}, X(Sc) = U(Sc) = ∅,

Y (Sc) = {Y 3
1 }.

As a result, the upper bound on capacity is given by

sup
p(x1

1
,u2

1
),f
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1 : Y 2
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2
1 ), I(X1

1 , U2
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where x2
1 = f(y2

1 , u
2
1).

This is exactly the same as the upper bound for the RWD
channel in [2], but with different notation.

3) A 2-relay network (see Figure 3): In this case S =
{{1}, {1, 2}, {1, 3}, {1, 2, 3}}, D∗ = 2, A12 = A13 =
A34 = 0, A23 = A24 = 1, and A = {2}. The four
elements of S correspond to the four cuts C1, . . . , C4

shown in Figure 3.
For S = {1}, we have V1(S) = {1} and V2(S) =
{2, 3}. Hence

X(S) = {X1
1 , X1

2}, U(S) = ∅, X(Sc) = {X3
3},

U(Sc) = {U2
2}, Y (Sc) = {Y 2

2 , Y 3
3 }.

For S = {1, 2}, we have V1(S) = {1, 2} and V2(S) =
{3, 4}. Hence

X(S) = {X1
1}, U(S) = {U2

2}, X(Sc) = {X3
1},

U(Sc) = ∅, Y (Sc) = {Y 3
3 , Y 4

2 }.

For S = {1, 3}, we have V1(S) = {1, 3} and V2(S) =
{2, 4}. Hence

X(S) = {X1
2 , X3

1}, U(S) = ∅, X(Sc) = ∅,

U(Sc) = {U2
2 }, Y (Sc) = {Y 2

2 , Y 4
2 }.

For S = {1, 2, 3}, we have V1(S) = {2, 3} and V2(S) =
{4}. Hence

X(S) = {X3
1}, U(S) = {U2

2}, X(Sc) = ∅,

U(Sc) = ∅, Y (Sc) = {Y 4
2 }.

As a result the upper bound on capacity is given by

sup
p(x1

1
,x1

2
,x3

1
,u2

2
),f

min{I1, I2, I3, I4},

where x2
2 = f(y2

2 , u
2
2) and

I1 = I(X1
1 , X1

2 ; Y 2
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3 |U
2
2 , X3

3 ),

I2 = I(X1
1 , U2

2 ; Y 3
3 , Y 4

2 |X
3
1 ),

I3 = I(X1
2 , X3

1 ; Y 2
2 , Y 4

2 |U
2
2 ),

I4 = I(X3
1 , U2

2 ; Y 4
2 ).

In this example note that variables X1
1 , X1

2 correspond-
ing to the same sender (node 1) with different time
indices appeared in the upper bound.
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Fig. 3. A network with two relays.
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