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Abstract— We propose and analyze two models of networks
in which pairs of nodes communicate over a shared wireless
medium. We are interested in the maximum total aggregate
traffic flow that is possible through the network. Our first model
differs substantially from most existing models in that the channel
connections in our network are entirely random: we assume that,
rather than being governed by geometry and a decay law, the
strength of the connections between nodes is drawn independently
from a common distribution. The next model is more general
and works at two scales. At a local scale, characterized by
nodes being within a distance r from each other, connections
are drawn independently from some distribution, but at a global
scale, characterized by nodes being further apart from each other
than a distance r, channel connections are governed by a Rayleigh
distribution, with the power satisfying a distance-based decay law.

For both models we show that an appropriate distribution
for the channel strengths and other parameters can give a
throughput that scales almost linearly in the number of nodes of
the network. This is a significant improvement over the square-
root scaling that has been shown in several previous works.

I. INTRODUCTION

Sensor and ad hoc networks have seen much research
activity in recent times. An early major result of the field
was by Kumar and Gupta [9] where a network of n nodes
was studied. Strengths of the connections between two nodes
were determined entirely by the distance between them and
followed a deterministic power scaling law. With this model,
it was shown that a throughput that scaled like

√
n was the

best possible. This implied that the throughput per user fell
like 1√

n
which was a rather discouraging result. Except when

nodes were allowed to approach each other [5], similar scaling
laws were shown to hold [1], [8], [4], [7], [12], [10] for similar
random and deterministic models.

From the study of multi-antenna links [3], [11], it is now
generally believed that a rich scattering environment, once
thought to be detrimental to wireless communications, may
actually be beneficial. We show that a similar effect may hold
for the expected aggregate data traffic in a wireless network.

Random models may be preferred over distance-based ones
since decay laws of the form 1/rα are usually valid in far-
field approximations and may not hold for networks of small
physical size that are designed with minimum and maximum
distances in mind. Additionally, automatic gain control can
mitigate many distance effects. Thus, important signal-strength
effects are often due to random fluctuations in the medium.
For example, [6], [17] start out with very different models
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and show that in the presence of obstructions and unreliable
channels, the probability of good links between nodes that
are far apart increases. Therefore we propose a model in
which channel connections are independently and identically
distributed (i.i.d.) according to some probability distribution
function (pdf). This was first proposed in [14], [15].

While the throughput that is possible with this model
depends very strongly on the distribution that the channel
strengths are drawn from, several distributions, including the
Bernoulli and some heavy-tailed distributions led to through-
puts that were almost linear in n. Thus the introduction of
randomness changes the behavior of the system significantly.

In practice, we expect neither the deterministic model of
[9] nor the random model of [15] to hold. A combination
of distance-dependent connections and random connections
would perhaps make for a better model. Therefore we also
propose and analyze such a model. In the two-scale model we
assume that nodes are randomly and uniformly distributed on
a sphere of radius R. At the local scale, nodes that are within a
distance r from each other are connected by channels that are
distance-independent. These channel strengths are assumed to
be drawn i.i.d. from a distribution, f(·). At a global scale, for
nodes that are further apart than r, the channel connections
obey a Rayleigh distribution with a mean power that depends
on the distance between them and follows a distance-decay
law, say g(·).

Such a model incorporates the far field effects at a global
level through the decay law, but also recognizes that obstuc-
tions play a role at a local scale. Furthermore, appropriate
choices of r and R can help model a full spectrum of networks,
from the purely geometric ones of [9] to the purely random
ones of [15]. Not surprisingly, a combination of the techniques
found in [9] and [15] are employed to study this model.

II. RANDOM NETWORK MODEL

Consider a network with n nodes labeled 1, . . . , n. Every
pair of nodes {i, j} (i 6= j) is connected by a channel, denoted
by the random variable hi,j = hj,i. We assume that the
channel strengths, γi,j = |hi,j |2 are drawn i.i.d. according to
some probability density function (pdf) fn(γ). Once drawn,
these channel variables do not change with time.

Node i wishes to transmit signal xi. We assume that xi

is a complex Gaussian random variable with zero mean and
unit variance. Each node is permitted a maximum power of P
watts.

We incorporate interference and additive noise in our model
as follows. Assume that k nodes i1, i2, . . . , ik are simultane-



ously transmitting signals xi1 , xi2 , . . . , xik
respectively. Then,

the signal received by node j(6= i1, . . . , ik) is given by

yj =

k
∑

t=1

√
Phit,jxit + wj (1)

where wj represents additive noise. The additive noise vari-
ables w1, . . . , wn are i.i.d., drawn from a complex Gaussian
distribution of zero mean and variance σ2 (wj ∼ CN (0, σ2)).
The noise is statistically independent of xi.

A. Successful communication

In equation (1), suppose that only node i1 wishes to
communicate with node j and the signals xi2 , . . . , xik

are
interference. Then the signal-to-interference-plus-noise ratio
(SINR) for node j is given by

ρj =
Pγi1,j

σ2 + P
∑k

l=2 γil,j

We assume that transmission is successful if and only if the
SINR exceeds some threshold ρ0.

III. NETWORK OPERATION AND OBJECTIVE

We suppose that k nodes, denoted as s1, . . . sk, are randomly
chosen as sources. For every si, a destination node di is chosen
at random, thus making k source-destination pairs. We assume
that these 2k nodes are all distinct and therefore k ≤ n/2.
Source si wishes to transmit message Mi to destination di

and has encoded it as signal xi.

A. Communicating with Hops

In general, we suppose that the source-destination pair
(si, di) communicates using a sequence of relay nodes
ri,1, ri,2, . . . , ri,h−1. (h = 1, 2, . . . represents the number of
hops.) Define ri,0 = si and ri,h = di. The path from si to
di is then ri,0 = si, ri,1, . . . , ri,h−1, ri,h = di. In time slot
t+1 we have nodes r1,t, . . . , rk,t transmitting simultaneously
to nodes r1,t+1, . . . , rk,t+1 respectively. We ask that nodes
r1,t+1, . . . , rk,t+1 decode their respective signals x1, . . . , xk

and transmit them to the next set of relay nodes in the (t+2)th
time slot, and so on. A natural condition to impose is that the
relay nodes that are receiving (or transmitting) messages in
any time slot be distinct, i.e., the messages do not collide. In
addition, we ask that relay nodes not receive and transmit at
the same time. We refer to these conditions together as the
property of no collisions in the rest of the paper.

B. Throughput

With the above procedure, we have k simultaneous com-
munications occurring in h time slots. Message Mi reaches
the intended destination di successfully if it can be decoded
by each relay ri,t. Assume that a fraction 1 − ε of messages
reach their intended destinations in this way. Then, we define
the throughput as

T = (1 − ε)
k

h
log(1 + ρ0) (2)

d1r1,h−1

s2 r2,1 r2,2 r2,h−1

r1,1 r1,2

d2

s1

rk,2rk,1sk rk,h−1 dk

Fig. 1. Schedule of relay nodes: Source si communicates with destination di

using relays ri,1, . . . , ri,h−1 . The solid lines indicate intended transmissions
and the dashed lines indicate potential interference. The conditions on a
schedule are that no node have to receive or transmit more than one message
in any time slot and that no node have to perform transmission and reception
simultaneously.

The number of source-destination pairs k, the fraction of
dropped messages ε, the SINR threshold ρ0 and hence the
throughput T depend on n and we sometimes denote them
by kn, εn, ρ0,n and Tn. Typically, we force εn to go to zero.
We demonstrate a scheme for choosing the relay nodes and
analyze the throughput as well as the performance for this
scheme. Thus, we give an achievability result for Tn. We begin
by stating this result.

IV. MAIN RESULT FOR RANDOM NETWORKS

Theorem 1: Consider a network on n nodes whose edge
strengths are drawn i.i.d. from a probability distribution
function fn(γ). Let Fn(γ) denote the cumulative distribution
function corresponding to fn(γ) and define Qn(γ) = 1 −
Fn(γ). Choose any βn such that Qn(βn) = log n+ωn

n
, where

ωn → ∞ as n → ∞. Then there exists a positive constant α
such that a throughput of

T = (1−εn) αkn(βn)
log(nQn(βn))

log n
log

(

1 +
anβn

σ2

P
+ (kn(βn) − 1)µγ

)

(3)
is achievable for any positive an such that an ≤ 1 and any
kn(βn) that satisfy the conditions:

kn(βn) ≤ αn
log(nQn(βn))

log n
(4)

εn ≤ a2
n

α(1 − an)2
(kn(βn) − 1)σ2

γ

(σ2

P
+ (kn(βn) − 1)µγ)2

log n

log(nQn(βn))
→ 0

(5)
where µγ and σ2

γ are the mean and variance of γ respectively.
The SINR threshold ρ0 is given by anβn

σ2

P +(kn(βn)−1)µγ

.

Channels stronger than the parameter βn will be called good
and will allow us to schedule communications. Condition (4) is
needed to ensure that we may obtain a non-colliding schedule
of relays. (See Section V.) Once the schedule is obtained, we
incorporate the effects of interference between non-colliding
transmissions and analyze the error, εn, in Section VI. Con-
dition (5) forces εn to go to zero. We combine the results of
Sections V and VI to prove the theorem. We show how to
apply the theorem and choose βn in Section VII where we



give several examples. Following that, the two-scale model is
proposed and analyzed in Sections VIII and IX.

V. SCHEDULING TRANSMISSIONS

With a view to meeting a minimum SINR of ρ0 at every
relay node at every hop, we impose the condition that each
transmitting link be stronger than some threshold βn. We
require that γri,t,ri,t+1

≥ βn, where βn is a design parameter.
We call links that satisfy γi,j ≥ βn as good. We require the
path from si to di to use only good links.

Define pn = P(γ ≥ βn) (for convenience, we drop the
subscript n in the rest of this section). Using our wireless
communication network, we define a graph on n vertices as
follows: For (distinct) vertices i and j of the graph, draw an
edge (i, j) if and only if γi,j ≥ βn in the network. Call the
resulting graph G(n, p). The graph G(n, p) then becomes an
instance of a model called G(n, p) on n vertices in which
edges are chosen independently and with probability p [2].
This graph shows the possible paths from si to di using only
good links, but does not show the interference between paths.
We examine this interference in Section VI.

Graphs taken from the model G(n, p) have many known
properties regarding their connectivity, maximum minimum
distance (called diameter) etc. [2]. We invoke a relatively
recent result regarding vertex-disjoint paths for this model
[13].

A. Scheduling using vertex-disjoint paths in G(n, p)

Two paths that do not share a vertex are called vertex-
disjoint. Note that any two paths that are vertex-disjoint satisfy
our “no-collisions” property; however, the reverse statement is
not true. Thus, the vertex-disjoint condition is stronger than
our requirement of non-colliding paths. For a set of k (disjoint)
pairs of vertices (si, di), the question of whether there exists
a set of vertex-disjoint paths connecting them is addressed
in [13]. Their result states that, under certain randomness
conditions, with high probability, for every set of k pairs
(si, di) and k not greater than αn log np

log n
, where α is a constant,

there exists a set of vertex-disjoint paths. It turns out that the
randomness conditions required for their result are easily met
in our network setup. Here we state a simplified version of
their result that can be directly used for our purposes.

Theorem 2: Suppose that G = G(n, p) and p ≥ log n+ωn

n
,

where ωn → ∞. Then there exists a constant α > 0 such that,
with probability approaching 1, there are vertex-disjoint paths
connecting si to di for any set of disjoint, randomly chosen
source-destination pairs

F = {(si, di)|si, di ∈ {1, . . . , n}, i = 1, . . . , k}
provided k = |F | is not greater than αn log np

log n
.

The constant α in this theorem is the same α required in
Theorem 1. It is not explicitly specified. It is now easy to
reach a conclusion regarding the lengths that these k paths
can have. We state it without proof in the following lemma.

Lemma 1: Almost all of the k = αn log np
log n

vertex-disjoint
paths obtainable under Theorem 2 have lengths that grow no
faster than log n

α log np
.

Hence the number of hops h is (asymptotically) at most
log n

α log np
. We use this fact in the error analysis in the following

section.

VI. PROBABILITY OF ERROR

Algorithms that choose non-colliding paths without using
information regarding the edges between vertices along one
path to vertices along another have the property that these
edges are i.i.d. Bernoulli distributed with parameter p. An
example of a randomized algorithm that does this can be found
in [13]. From this we conclude that the channel connections
between nodes along different paths in the network are i.i.d.
with distribution fn(γ).

We now consider the probability that a particular message
fails to reach its intended destination. Destination di fails
to receive message Mi if the SINR falls below ρ0 at any
of the h relay nodes ri,1, . . . , ri,h = di. Denote by Et the
event that relay node ri,t does have an SINR greater than
ρ0. Note that the events E1, . . . , Eh are identical. Using a
simple union bound, we get that the probability of error in
the communication of message Mi, called εn, is bounded by
hP (∼ E1). We can then bound P (∼ E1) using a Chebyshev
bound and get

εn ≤ hP(∼ E1) ≤
log n

α log np

σ2
γ

(k − 1)(Pβn−ρ0σ2

(k−1)Pρ0
− µγ)2

. (6)

We force the last expression to go to zero. In order to apply
the Chebyshev bound we need the condition ρ0 ≤ βn

σ2

P +(k−1)µγ

to hold.
We have the condition k ≤ αn log np

log n
from Theorem 2

(this gives us (4)), the condition ρ0 ≤ βn

σ2

P +(k−1)µγ

and the
condition that the upperbound on εn from (6) go to zero.
With these we need to maximize the throughput. Putting these
together, we obtain Theorem 1. For details refer to [15].

VII. EXAMPLES

Table I lists some distributions of common interest and the
throughputs obtained using Theorem 1 on them.

1) We see that the simple Bernoulli distribution, in which
nodes are connected by a channel of strength 1 with
probability pn and not connected with probability (1 −
pn) gives an almost linear throughput provided pn is
chosen optimally, namely, p∗n = log n+ωn

n
for any ωn

going to infinity. This optimum connection probability
is surprisingly low, in fact, it is just enough to ensure
that the network is connected.

2) A network where the channel strengths are drawn from
the exponential distribution suffers from being very
strongly connected and dominated by interference. It
only gives a throughput of log n.

3) Suppose that we are working with a network in which
nodes are randomly placed at lattice points with edge
distance d in a circular arrangement. Assume that the
density of nodes is fixed as ∆. Assume that a power
decay law of 1/rm, m > 0 holds, where r is the
distance. When a node at the center of this disk transmits



Distribution fn(γ) Throughput

1 Shadow (1 − p∗n)δ(γ) + p∗nδ(γ − 1) 1
wn

log2(log n)
log3 n

n

2 Exponential e−γ log n

3 Decay 4π∆
nm

1

γ
1+ 2

m

,m > 2 1
wn

log2(log n)

(log n)2+m/2
n

4 Heavy Tail c
1+γ4

log log n

log4/3 n
n1/3

TABLE I
AGGREGATE NETWORK THROUGHPUT FOR VARIOUS CHOICES OF fn(γ).

with power P = 1, the marginal distribution of the signal
powers received by other nodes is given by the Decay
pdf mentioned in the table. We see that for the decay
exponent being greater than 2, we get almost linear
throughput. We see that almost linear throughput can be
obtained for m ≥ 2. This differs substantially from the
O(

√
n) results obtained for the structured deterministic

model with the same decay law. Our results show that it
is not the marginal distribution of the power that impedes
the throughput in a geometric power-decay network, but
rather the spatial distribution of these powers.

4) The table also lists a heavy tail distribution that gives a
throughput polynomial in n.

Thus we see that the throughput varies drastically depending
on the precise choice of the pdf. It can go from almost linear
to only logarithmic, especially if the interference dominates.

VIII. TWO SCALE NETWORKS

The random model that has been presented and analyzed is
at the oppposite end of the spectrum from the deterministic
model of [9]. We now propose another model that works
like the random model at the local scale and the deter-
ministic model at the global scale. By choosing parameters
appropriately in this model we can obtain the random or
the deterministic model as special cases. Also, we use a
combination of the techniques used in [9] and [15] to analyze
the throughput.

Consider a network with N nodes that are uniformly and
randomly distributed on the surface of a sphere of radius
R. We use a sphere rather than a planar disk to separate
edge effects and have symmetry between all nodes. Also, the
standard convention of measuring distances along great circles
will be followed.

The channel between nodes i and j is denoted by hi,j = hj,i

as before. The channel strength is γi,j = |hi,j |2, also as before.
The average channel strength is assumed to be distance-
dependent for nodes that are more than a certain distance,
say r, apart and independent of distance for nodes that are
within a distance r.

More precisely, for nodes that are within a distance r, the
channel strengths are drawn i.i.d., according to a p.d.f., say
f(γ). Let the expected value corresponding to this be denoted
by µγ .

If nodes i and j are at a distance l(i, j) > r from each
other, we model hi,j to be a Rayleigh distributed random
variable with its power (or second moment), E|hi,j |2, given
by cg(l(i, j)) where g(x) is used to model the distance-
dependence and c is a constant. This gives us that the corre-
sponding γi,j is drawn from an exponential distribution with

cg(x) as its mean, i.e., cg(x) exp(−γ/cg(x)). Typically, g(x)

is a decreasing function such as 1
xm with m > 2 or e−δx

xm and
c is chosen such that cg(r) equals µγ . This is done to ensure
that the expected value of γi,j does not change abruptly as
the distance between i and j changes from being less than r
to being greater than r. Therefore, c =

µγ

g(r) . In this paper we
use g(x) = 1

xm with m > 2.
Denote by px(γ) the distribution from which the channel

strength between two nodes with distance x between them is
drawn. Then we have

px(γ) =

{

f(γ) if x ≤ r
µγrm

xm exp(−γ xm

µγrm ) if x > r
.

The notion of interference and an SINR threshold of ρ0 for
successful communication are as before. However, we will
use K to denote the number of source destination pairs and
H to denote the maximum number of time slots required for
a message to reach its destination. With this, the througput
expression is (1 − ε)K

H
log(1 + ρ0) and we seek to maximize

this as before. As for the random model we first investigate the
scheduling (Section IX) The error analysis follows and leading
to a result regarding the achievable throughput in Section X.

IX. SCHEDULING FOR TWO SCALE NETWORKS

Once again, we need to find a set of non-colliding paths
connecting the source-destination pairs. In order to accomplish
this, we establish a Voronoi tessellation of the surface of our
sphere such that each cell of the tessellation can contain a disk
of radius r/12 and can be contained in a disk of radius r/6.
From [9], we know that this is always possible. For such a
tessellation, we can contain any particular cell, say Si, and all
its neighbors in a disk of diameter r. Therefore all the channel
connections in such a group of cells is drawn i.i.d. from f(γ).
Denote by Li the line segment connecting them. This segment
passes through several cells in order as it traverses from si

to di. Note that the maximum number of cells it can pass
through is M = c1

R
r

for some constant c1. Denote these
cells, in sequence, by si ∈ Si,0, Si,1, Si,2, . . . , Si,M 3 di.
(Some sequences may, in actuality, be shorter than M .) We
will refer to the set of cells S1,t, S2,t, . . . , SK,t as the t-th layer
of cells. For each occurence of a cell in the same layer or two
successive layers, we would like to assign distinct nodes in
the cell to do the job of relaying. We can show that this is
possible if the condition K ≤ N/(8 cos2 r

24R
) is met. Denote

the node that acts as the relay for message i in layer t by
si,t ∈ Si,t. We will call the K sequences si, si,1, . . . , si,M to
be the superschedule.

The relays required for transmitting message Mi from si,t

to si,t+1 are determined through the subschedule. We assume
that this takes at most h hops. In order to accomplish this we
group the cells of the network into cell aggregates such that
each aggregate lies entirely in a disk of diameter r. In fact,
each aggregate is obtained by considering a cell and some of
its neighbors in a specific manner. Time slots are considered in
blocks of h time slots each. In any particular block, commu-
nications take place only within each aggregate and not across



aggregates. Within each aggregate we expect to have atleast
n = c2N sin2 r

24R
nodes and atmost n = c2K sin2 r

12R
pairs

of relays from successive layers of the superschedule that wish
to communicate messages to each other. But this is exactly the
scheduling problem that we solved for the random network
model in Section V using the notion of good edges, the random
graph model G(n, p) and the result on vertex-disjoint paths
from [13]. We use the same procedure here to obtain a vertex-
disjoint subschedule that operates over h = log n

α log np
time slots,

provided the condition K ≤ αN log np/(logn · cos2 r
24R

)
holds. Thus, with a particular grouping of cell aggregates,
some of the communications from the t-the layer to the (t+1)-
th layer get scheduled. In order for every communication from
the t-the layer to the (t + 1)-th layer to get scheduled we
repeat the process with a different set of randomly chosen
cell aggregates. It can be shown that repeating the process
log N times ensures (with probability going to 1) that all the
communications from the t-th layer to the (t + 1)-th layer get
accomplished. Details can be found in [16].

To conclude, all K communications can be scheduled using
hM = log n

α log np
·c1

R
r

hops in hM log N time slots provided the
conditions K ≤ N/(8 cos2 r

24R
) and K ≤ αN log np/(logn ·

cos2 r
24R

) hold.

X. ACHIEVABLE THROUGHPUT AND EXAMPLE

Next we do a probability of error analysis which involves
a calculation of P(ρi,l ≤ ρ0), where ρi,l is the SINR at the
l-th relay of message i. We do this calculation using a value
of ρ0 = Pβ

σ2+a′(Pkµγ+PK
r2µγ

2R2 )
where a′ ≥ 1. If we wish to

force the probability of message Mi getting through to its
destination to go to 1, we get the condition log n

α log np
c1

R
r

1
a′

→ 0.
As for the error analysis of the random network done earlier,
this condition comes from using a union bound over the
number of hops and bounding the probability P(ρi,l ≤ ρ0),
this time through a Markov inequality.

Putting together the scheduling and probability of error
results, we get the following theorem.

Theorem 3: Consider a network of N nodes, uniformly and
randomly distributed over the surface of a sphere of radius
R. For two nodes within a distance r, channel strengths are
drawn i.i.d. from a pdf f(γ) with mean µγ . Otherwise they
are drawn from an exponential distribution with a mean of
µγrm/xm, where x > r is the distance between them. Let
F (γ) denote the cumulative distribution function of f(γ) and
Q(γ) = 1−F (γ). Let n = c2N sin2 r

24R
where c2 is a known

constant. Choose any β such that p = Q(β) = log n+ωn

n
,

where ωn → ∞ as n → ∞. Then a throughput of

T = (1−ε)

αKr log np · log

(

1 + Pβ

σ2+a′(PK sin2 r
4R

µγ+PK
r2µγ

2R2 )

)

log n · c1R · log N

is achievable where α and c1 are constants and K and a′ ≥ 1
are chosen such that the following conditions are satisfied.

1) K ≤ N/(8 cos2 r
24R

).
2) K ≤ αN log np/(log n · cos2 r

24R
).

3) ε ≤ log n
α log np

· R
r
· 1

a′
→ 0

We consider one example to illustrate this theorem. Let f(γ) =
1

(1+γ)t with t > 2 as the distribution from which the channel
strengths are drawn i.i.d. for nodes within a distance r from
each other. We need t > 2 for µγ to be finite. We will assume
that the other connections are exponential with the mean
following a distance decay law of g(x) = 1/xm for m > 2.
For this, we can show that a throughput of T = N

1
t−1 / log2 N

is achievable. For t just greater than 2, this is almost linear
but for t > 3, it falls below

√
N . It is interesting to note that

m plays no role in the final throughput expression.
XI. CONCLUSIONS

We have proposed a random model for a wireless networks
and shown that it can give throughputs that are almost linear in
the number of nodes. We have also proposed a two-scale model
of which the random model is a special case and presented an
achievable throughput for this. We see that these models are
capable of giving throughputs that scale much better than the√

n expected under deterministic distance models.
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