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Abstract—We describe some of the properties of error-  As examples of choices of codes we mention two cases:
correcting codes that are specific to 2D applications. A con- For video DVDs a product of two Reed-Solomon codes is
struction is presented which combines Reed-Solomon component, ;g (208,192, 17) and (182,172, 11) as part of an encoding
codes and a bipartite connection graph with excellent expansion ' ) ! . ’ ’ .
properties. process that also includes data compression and a run-length

constrained binary code. For 2D labels of various kinds, the
|. INTRODUCTION Data Matrix standard [1] specifies the encoding of square
arrays of various sizes using Reed-Solomon codes. The codes

Some information sources, storage media, and modes 0f jierieaved or shortened versions of codes dv&56)
transmitting information are essentially two-dimensional. E>&— frecting from 2 to 34 errors. Each symbol is mapped to

amples range from various advanced optical and nano-t by 3 configuration of black or white squares (with one

storage media to printed paper and computer screens. SQg.o; missing) and packed diagonally into the area of the
applications like documents, maps, or technical drawings MA¥%el. Both standards are supported by detailed specifications

be thought of as a type of d‘fm_i bz_ises. We use the terpgs alignment and inaccuracies of various kinds, which we
2D media to suggest that the distinction between sources @p%” not discuss in detail

channels is not always natural. However, as different as these applications are, they show

The symbols in a 2D field do not have any natural ©0t@yne common properties of error-correcting codes for 2D
ordering. In some contexts they are read in a specific (‘causgfb i

dia:
order, i.e. line by line, but this is an arbitrary choice, and the

content of the field may guide the user to access it in a different” | cc0.S0lomon codes are used because of their robustness
order Y9 to clustered errors

In a single dimension, data are often organized in frames' Long codes with relatively low decoding complexity are

for the purpose of transmission or storage, in 2D we refer to needeq, leading to mterleaveq codes or prqduct codes,

il A " "’ th ivalent o} A relatively Iarge error-correcting capability is used due
asimrar concept. as a page. A page contains the equivalent ot ., ,q non-stationary nature of surface-related defects.
_afr_am_e header, i.e. a page number, a cap_tlon, a _hef_;lder/foote.r In both cases the current standard replaces earlier codes
indicating the context, and a pattern serving to indicate the

_ : : - with much more limited error-correcting capability.
limits of the data an ensuring proper alignment. The limits . g cap Y
the code are typically chosen to coincide with those of t ased on these observations we see the challenges of error-

page correction for 2D media to involve very long codes with

Thé amount of data on a page is often large Howev{iilmited decoding complexity and high reliability. In addition
the finite extent of the page is more noticeable since in t %th? .r_equwement.s that led FO the codes in current use, the
%OSSIblllty of selectively decoding part of the data may become

orderv/N of N symbols are near one of the edges. This f5; ; : . . :
in itself one of the reasons why stationary models are n%pnterest. The following section describes a construction that
?ets these demands.

as appropriate. In addition, documents are often composeong)
areas with significantly different properties, indicated by théll. ComPOSITECODESDEFINED BY BIPARTITE GRAPHS

lay-out of pages. Error-correcting codes can be related to graphs in several
ways. The approach taken here is related to a structure
suggested by Tanner [2], and studied in detail by Barg and
Zémor [3]. We assume that the graph is regular and bipartite

The impairments in the reading of a 2D medium includeith S right and left nodes and degree The graph should be
defects in the original surface, later degradation of the surfagegood expander. The symbols of the code are associated with
imperfect alignment, and noise in the reading / transmissitime branches, and symbols that meet in a node have to satisfy
process. While the sources of the errors are not very differdhe constraints of the component code. We shall consider only
from the one-dimensional case, the large page size and laélck case ofq, k, d) Reed-Solomon component codes over the
of stationarity have led to choices of code structures that dreld F'(q), although the field is most likely a binary extension
different from standard transmission codes. field and symbols are represented as binary vectors.

II. PROPERTIES OFERROR-CORRECTINGCODES FOR2D
FIELDS



A product code can be interpreted as a special case of sudheafirst step in the construction, a one-to-one linear mapping
code where the connection graph is a complete bipartite graplom a plane to a specific point in the plane is chosen. The
Such a code has the advantage that the structure facilitdiees are then chosen such that in each plane exactly the lines
the decoding process by simplifying the accessing of relevgrassing through the special point are included. In this way
subsets of the positions and allowing a high degree of paralleere areq + 1 points on each line, angd + 1 lines in the
processing. guadrangle pass through each point.

Longer codes with decoding complexities essentially in- If the nodes of a bipartite graph are associated with the
creasing linearly with the code length can be obtained by usipgints (or planes) and the lines of the generalized quadrangle,
connection graphs that have more nodes while the order of the expansion property of the graph can be described in a
nodes is kept constant. If the graph is generated in a randeimple way: From any point node, we can reach 1 line
way or it is constructed to have good expansion propertigmdes in a single transition. From these nodgs,+ 1) new
excellent performance is still predicted using the recent resuftsint nodes are reached in the following step. Finally in a third
on highly connected cores in random graphs [4]. step we can reach exactly all remainigitfg + 1) line nodes.

The connection graph4, will be derived from anS by S Similarly we can start from any line node and grow a tree that
incidense matrix,M, for a suitable combinatorial structure.includes all point nodes at depth 3. The shortest cycles in the

The bipartite graph is then described by the matrix generalized quadrangles consist of 4 points and 4 lines, and
0 M thus the girth of the bipartite graph is 8.
A= ( M0 ) The generalized quadrangle has more nodes than we need

for the composite code, but we can get a graph witmodes
where 0 indicates af by S zero matrix. For a regular graph,on each side and exactly the required properties. The graph
all rows and columns have 1s, and the largest eigenvalue iss reduced by removing the plane at infinity from the set of
clearlyn. A good expander is characterized by having a seconddes. We do this in two steps by first selecting a paijtin
largest eigenvalue with absolute value of the orger. the plane, connecting it to the+ 1 lines, and then taking all

For a large code, the connection matrix, even in a spanseints on these lines. The remaining points and planes are then
matrix format, provides an impractical way of performing théhe corresponding Euclidean Geometry. Similarly we select a
steps of the decoding algorithm, and it contains no suggestiore, Lq, which passes through,, and remove this line as well
about ways of indexing the symbols in order to allow thas theg(q + 1) lines containing any point on it. The reduced
checking to be done in parallel. In the code described in thépartite graph is regular with degrgeand hasS = ¢* nodes.
next section, we consider a particular arrangement of the codd he composite code defined on the reduced graph has length
symbols, similar to the format of the product codes. EacN = ¢*, and the parity checks are defined by component
component code operates on symbols within a single raedes. Thus the rate iB > 2k/q — 1. An interesting lower
or column, which significantly simplifies storage access. ThHmund on the minimum distance is given in [3], but if the code
connection graph has near optimal expansion properties. is decoded by iterated decoding of the component codes, the
performance is not limited by the distance.

We want to arrange the codewords of the composite code
asq? by ¢? arrays. In the projective version of the quadrangle,

In [6] we considered composite codes based on the ithere are;?>+q+1 points in the plane at infinity;+1 of which
cidence matrix of points and lines in a finite plane. Witlare onLy. The remainingg? points are each connected ¢o
composite Reed-Solomon codes this approach leads to ctides in the reduced graph. Each such set of point nodes will
lengths of the orderg®. To get codes approximating therepresent the parity checks on a column in the array. Similarly
parameters and performance that would be of real interest consider the? lines in the projective quadrangle that do
for 2D applications, we assume that the component codes ag¢ containP, and are not used in the reduced graph. These
(¢, k) and the composite codeword is¢d by ¢* array. It lines are connected to sets @points, which define the rows
is preferable that the symbols of each code are confined tofahe array. In this way the symbol on a branch of the bipartite
single row or column. As indicated in the previous section, ttgraph is assigned a row and column index.
performance of the code can be maintained with such relativelyTheorem: With the chosen labeling of the rows and columns,
short component codes, and thus the structure has the potemtiahique symbol is assigned to each position in the array.
of combining large pages with low decoding complexity. Using Proof: Assume on the contrary that two branches are as-
short component codes has the added potential of allowigsigghed the same row and column index. We can then trace the
decoding of a selected subset of information symbols, paths back to the same point and line nodes defining these
particular if the number of errors in small. indices, and we obtain a cycle of length 6 contradicting that

We derive the required connection graph from a combintiie girth of the graph is 8.
torial structure known as a generalized quadrangle [5]. ThisThus the theorem shows that the code is represented by a
structure consists of all points and a subset of the lineguare array where the symbols in each row and column are
in projective 3-space over the fiel#(q). Thus there are divided into ¢ disjoint sets, each set being a codeword from
¢ +q%+q+1 points, and the same number of lines is used. Ake Reed-Solomon code.

IV. A CONNECTION GRAPH FROM GENERALIZED
QUADRANGLES



V. THE SECOND EIGENVALUE OF A REFERENCES

Since A is bipartite, the eigenvalues with largest absolutfe] International Standard ISO/IEC 1602250, 2000.

values are+a. The expander property of the araph is reldl M. _Tanner,"A recursi_ve approach to low complexity coddEEE Trans-
q P property grap actions on Information Theorwol. IT-27, no. 5, pp. 533 - 547, Sep.

lated to the next eigenvalue, which we find by considering ;gg;.
MM’ Multiplying (1,0, 0,0, ...) by this matrix we first obtain [3] A. Barg and G. Zmor,"Concatenated codes: serial and parall@FE

(q,l,l,l,...,0,0,0,...) where the number of 1 entries is 'zl'(r)%r:ssactions on Information Theqgryol IT-51, no. 5, pp.1625-1634, May
Q(q - 1)- In the bipartite graph this corresponds to Staft'”g] B. Pittel, J. Spencer, and N. Wormald,” Sudden emergence of a giant

at a particular node, making to transitions¢aodes on the k-core in a random graph,J. Comb. TheorySeries B 67, pp. 111-151,

i i i i 1996.
Other.SIde’ and then returning to the. or!glnal n(.)de] |way/s [5] C.T. Benson, "On the structure of generalized quadrangléstirnal of
or going tog(g — 1) new nodes. Multiplying again by/ M Algebra vol. 15, pp.443-454, 1970.
we get two contributions to the first entry? from repeating [6] J. Justesen and T. Hoeholdt,"From concatenated codes to graph codes”,
the connections considered before, atigd — 1) by returning 'gCEth'ggma“O” Theory Workshop 2008an Antonio, pp. 13-16, 24-29

from the new nodes reached in the previous stage. In order
to get an eigenvector for the second eigenvalue, we start out
from a balanced vectof1,0,0,0,...) — (1,1,1,1,1,..)/¢>.
Multiplying by MM’ and normalizing, we can obtain the
eigenvector by iteration. The entries in the resulting vector may
be written ag(¢—1)2, (¢—1), (¢—1), ...) whereq(qg—1) entries
areq — 1, and the remaining are:(¢ — 1) or 1. Multiplying

this vector byM M’ thus gives a first entry diq(¢—1)2, and

the eigenvalue i&q. For the original connection matrit, the
eigenvalue is the square root of this value, which is what we
expect from a good expander graph.

VI. CONCLUSION

The construction presented in Section IV generalizes prod-
uct Reed-Solomon codes in a way that would make them suit-
able for large 2D data sets. They offer a favorable combination
of performance and low decoding complexity, including simple
access to the relevant symbol sets for parallel processing.
In addition it is possible to use iterative decoding of the
component codes for recovering a subset of the data, in
particular when the full error- correcting capability is not
required.

A minimal example of such a code is a 256 by 256 array
over F'(16), more realistic sizes would be= 64 or ¢ = 256.



