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Abstract— We describe some of the properties of error-
correcting codes that are specific to 2D applications. A con-
struction is presented which combines Reed-Solomon component
codes and a bipartite connection graph with excellent expansion
properties.

I. I NTRODUCTION

Some information sources, storage media, and modes of
transmitting information are essentially two-dimensional. Ex-
amples range from various advanced optical and nano-tech
storage media to printed paper and computer screens. Some
applications like documents, maps, or technical drawings may
be thought of as a type of data bases. We use the terms
2D media to suggest that the distinction between sources and
channels is not always natural.

The symbols in a 2D field do not have any natural total
ordering. In some contexts they are read in a specific (’causal’)
order, i.e. line by line, but this is an arbitrary choice, and the
content of the field may guide the user to access it in a different
order.

In a single dimension, data are often organized in frames
for the purpose of transmission or storage, in 2D we refer to
a similar concept as a page. A page contains the equivalent of
a frame header, i.e. a page number, a caption, a header/footer
indicating the context, and a pattern serving to indicate the
limits of the data an ensuring proper alignment. The limits of
the code are typically chosen to coincide with those of the
page.

The amount of data on a page is often large. However,
the finite extent of the page is more noticeable since in the
order

√
N of N symbols are near one of the edges. This is

in itself one of the reasons why stationary models are not
as appropriate. In addition, documents are often composed of
areas with significantly different properties, indicated by the
lay-out of pages.

II. PROPERTIES OFERROR-CORRECTINGCODES FOR2D
FIELDS

The impairments in the reading of a 2D medium include
defects in the original surface, later degradation of the surface,
imperfect alignment, and noise in the reading / transmission
process. While the sources of the errors are not very different
from the one-dimensional case, the large page size and lack
of stationarity have led to choices of code structures that are
different from standard transmission codes.

As examples of choices of codes we mention two cases:
For video DVDs a product of two Reed-Solomon codes is
used,(208, 192, 17) and(182, 172, 11) as part of an encoding
process that also includes data compression and a run-length
constrained binary code. For 2D labels of various kinds, the
Data Matrix standard [1] specifies the encoding of square
arrays of various sizes using Reed-Solomon codes. The codes
are interleaved or shortened versions of codes overF (256)
correcting from 2 to 34 errors. Each symbol is mapped to
a 3 by 3 configuration of black or white squares (with one
corner missing) and packed diagonally into the area of the
label. Both standards are supported by detailed specifications
for alignment and inaccuracies of various kinds, which we
shall not discuss in detail.

However, as different as these applications are, they show
some common properties of error-correcting codes for 2D
media:

• Reed-Solomon codes are used because of their robustness
to clustered errors

• Long codes with relatively low decoding complexity are
needed, leading to interleaved codes or product codes.

• A relatively large error-correcting capability is used due
to the non-stationary nature of surface-related defects.

• In both cases the current standard replaces earlier codes
with much more limited error-correcting capability.

Based on these observations we see the challenges of error-
correction for 2D media to involve very long codes with
limited decoding complexity and high reliability. In addition
to the requirements that led to the codes in current use, the
possibility of selectively decoding part of the data may become
of interest. The following section describes a construction that
meets these demands.

III. C OMPOSITECODESDEFINED BY BIPARTITE GRAPHS

Error-correcting codes can be related to graphs in several
ways. The approach taken here is related to a structure
suggested by Tanner [2], and studied in detail by Barg and
Zémor [3]. We assume that the graph is regular and bipartite
with S right and left nodes and degreen. The graph should be
a good expander. The symbols of the code are associated with
the branches, and symbols that meet in a node have to satisfy
the constraints of the component code. We shall consider only
the case of(q, k, d) Reed-Solomon component codes over the
field F (q), although the field is most likely a binary extension
field and symbols are represented as binary vectors.



A product code can be interpreted as a special case of such a
code where the connection graph is a complete bipartite graph.
Such a code has the advantage that the structure facilitates
the decoding process by simplifying the accessing of relevant
subsets of the positions and allowing a high degree of parallel
processing.

Longer codes with decoding complexities essentially in-
creasing linearly with the code length can be obtained by using
connection graphs that have more nodes while the order of the
nodes is kept constant. If the graph is generated in a random
way or it is constructed to have good expansion properties,
excellent performance is still predicted using the recent results
on highly connected cores in random graphs [4].

The connection graph,A, will be derived from anS by S
incidense matrix,M , for a suitable combinatorial structure.
The bipartite graph is then described by the matrix

A =
(

0 M
M ′ 0

)
where 0 indicates anS by S zero matrix. For a regular graph,
all rows and columns haven 1s, and the largest eigenvalue is
clearlyn. A good expander is characterized by having a second
largest eigenvalue with absolute value of the order

√
n.

For a large code, the connection matrix, even in a sparse
matrix format, provides an impractical way of performing the
steps of the decoding algorithm, and it contains no suggestion
about ways of indexing the symbols in order to allow the
checking to be done in parallel. In the code described in the
next section, we consider a particular arrangement of the code
symbols, similar to the format of the product codes. Each
component code operates on symbols within a single row
or column, which significantly simplifies storage access. The
connection graph has near optimal expansion properties.

IV. A C ONNECTION GRAPH FROMGENERALIZED

QUADRANGLES

In [6] we considered composite codes based on the in-
cidence matrix of points and lines in a finite plane. With
composite Reed-Solomon codes this approach leads to code
lengths of the orderq3. To get codes approximating the
parameters and performance that would be of real interest
for 2D applications, we assume that the component codes are
(q, k) and the composite codeword is aq2 by q2 array. It
is preferable that the symbols of each code are confined to a
single row or column. As indicated in the previous section, the
performance of the code can be maintained with such relatively
short component codes, and thus the structure has the potential
of combining large pages with low decoding complexity. Using
short component codes has the added potential of allowing
decoding of a selected subset of information symbols, in
particular if the number of errors in small.

We derive the required connection graph from a combina-
torial structure known as a generalized quadrangle [5]. This
structure consists of all points and a subset of the lines
in projective 3-space over the fieldF (q). Thus there are
q3+q2+q+1 points, and the same number of lines is used. As

the first step in the construction, a one-to-one linear mapping
from a plane to a specific point in the plane is chosen. The
lines are then chosen such that in each plane exactly the lines
passing through the special point are included. In this way
there areq + 1 points on each line, andq + 1 lines in the
quadrangle pass through each point.

If the nodes of a bipartite graph are associated with the
points (or planes) and the lines of the generalized quadrangle,
the expansion property of the graph can be described in a
simple way: From any point node, we can reachq + 1 line
nodes in a single transition. From these nodes,q(q + 1) new
point nodes are reached in the following step. Finally in a third
step we can reach exactly all remainingq2(q + 1) line nodes.
Similarly we can start from any line node and grow a tree that
includes all point nodes at depth 3. The shortest cycles in the
generalized quadrangles consist of 4 points and 4 lines, and
thus the girth of the bipartite graph is 8.

The generalized quadrangle has more nodes than we need
for the composite code, but we can get a graph withq3 nodes
on each side and exactly the required properties. The graph
is reduced by removing the plane at infinity from the set of
nodes. We do this in two steps by first selecting a point,P0 in
the plane, connecting it to theq + 1 lines, and then taking all
points on these lines. The remaining points and planes are then
the corresponding Euclidean Geometry. Similarly we select a
line, L0, which passes throughP0, and remove this line as well
as theq(q + 1) lines containing any point on it. The reduced
bipartite graph is regular with degreeq and hasS = q3 nodes.

The composite code defined on the reduced graph has length
N = q4, and the parity checks are defined by2q3 component
codes. Thus the rate isR ≥ 2k/q − 1. An interesting lower
bound on the minimum distance is given in [3], but if the code
is decoded by iterated decoding of the component codes, the
performance is not limited by the distance.

We want to arrange the codewords of the composite code
asq2 by q2 arrays. In the projective version of the quadrangle,
there areq2+q+1 points in the plane at infinity,q+1 of which
are onL0. The remainingq2 points are each connected toq
lines in the reduced graph. Each such set of point nodes will
represent the parity checks on a column in the array. Similarly
we consider theq2 lines in the projective quadrangle that do
not containP0 and are not used in the reduced graph. These
lines are connected to sets ofq points, which define the rows
of the array. In this way the symbol on a branch of the bipartite
graph is assigned a row and column index.

Theorem: With the chosen labeling of the rows and columns,
a unique symbol is assigned to each position in the array.

Proof: Assume on the contrary that two branches are as-
signed the same row and column index. We can then trace the
paths back to the same point and line nodes defining these
indices, and we obtain a cycle of length 6 contradicting that
the girth of the graph is 8.

Thus the theorem shows that the code is represented by a
square array where the symbols in each row and column are
divided into q disjoint sets, each set being a codeword from
the Reed-Solomon code.



V. THE SECOND EIGENVALUE OF A

SinceA is bipartite, the eigenvalues with largest absolute
values are±q. The expander property of the graph is re-
lated to the next eigenvalue, which we find by considering
MM ′. Multiplying (1, 0, 0, 0, ...) by this matrix we first obtain
(q, 1, 1, 1, ..., 0, 0, 0, ...) where the number of 1 entries is
q(q − 1). In the bipartite graph this corresponds to starting
at a particular node, making to transitions toq nodes on the
other side, and then returning to the original node inq ways
or going toq(q − 1) new nodes. Multiplying again byMM ′

we get two contributions to the first entry,q2 from repeating
the connections considered before, andq(q − 1) by returning
from the new nodes reached in the previous stage. In order
to get an eigenvector for the second eigenvalue, we start out
from a balanced vector(1, 0, 0, 0, ...) − (1, 1, 1, 1, 1, ..)/q3.
Multiplying by MM ′ and normalizing, we can obtain the
eigenvector by iteration. The entries in the resulting vector may
be written as((q−1)2, (q−1), (q−1), ...) whereq(q−1) entries
areq− 1, and the remaining are±(q− 1) or ±1. Multiplying
this vector byMM ′ thus gives a first entry of2q(q−1)2, and
the eigenvalue is2q. For the original connection matrixA, the
eigenvalue is the square root of this value, which is what we
expect from a good expander graph.

VI. CONCLUSION

The construction presented in Section IV generalizes prod-
uct Reed-Solomon codes in a way that would make them suit-
able for large 2D data sets. They offer a favorable combination
of performance and low decoding complexity, including simple
access to the relevant symbol sets for parallel processing.
In addition it is possible to use iterative decoding of the
component codes for recovering a subset of the data, in
particular when the full error- correcting capability is not
required.

A minimal example of such a code is a 256 by 256 array
overF (16), more realistic sizes would beq = 64 or q = 256.
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