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Abstract—By a “communication trellis”, we mean a trellis Fig. 1. In each of the Fig. 1 trellises, suppose we read off the
whose edges are labelled in order that the trellis may be used sequence of edge output labels, traversing the edges frem to

for any of the following three communication tasks: () ema- 4 hottom. Doing this, we obtain the following three sequesnc
correction encoding, (ii) modulation, or (iii) quantization for ’

source coding. We view the design of such a labelled trellissaa of length 8:

two-step procedure: Step 1 consists of the design of one or meo 00,11,10,01,11,00,01, 10 1)
patterns which potential sequences of trellis edge labels ust

conform to; in Step 2, an objective function suited to whichger 00,10,01,11,10,00,11, 01 2
of communication tasks (i)-(iii) is the design goal is useditselect a

sequence of trellis edge labels conforming to the pattern(ghosen Do, Dy, Dy, D3, Dy, Do, D3, Dr )

in Step 1. In this paper, we introduce the concept of subspace .
ring, which will be useful to us in the future in performing Step 1. 1€ pattern corresponding to each of the three sequences of

To this end, each possible pattern of trellis edge labels ipscified €dge labels (1)-(3) is
via a subspaceS of some fixed dimension of a vector spack; by
letting .S vary, we obtain all possible allowable patterns. We show a,b,c,d,b,a,d,c. (4)

how some of these subspaces can be grouped together to for . . . .
our subspace rings. We illustrate how some properties usefiin "For example, reading (1) from left to right, the first distinc

communication trellis design can be characterized in termsof label we see is assigned the pattern symhd| the second
the subspace ring concept. distinct label we see is assigned the pattern symbjlétc.,
resulting in the sequence (4).
_ i ) ) Our point in this introduction is that whether a trellis iseds

In Fig. 1, the lefthand trellis stage is labelled to yieldy communications for (i) error-correction encoding (teétst
a rate 1/2 convolutional encoder ([1], p. 277), the middigye|jis in Fig. 1), (ii) modulation (middle trellis in Fig.)1 or
trellis stage is labelled to yle_Id a treIhs-c_oded mpdudau (iii) quantization in lossy source coding (rightmost tilin
scheme ([2], p. 117), and the righthand trellis stage isllefbe Fig 1), thepatternfollowed by the trellis edge labels may be
to yield a trellis-coded quantizer ([4], p. 133; the labelg,gependent of whichever of the three types of communinatio
D, are called “subcodebooks”, but the significance of theg|lises (i)-(iii) that one is designing. Therefore, it kes sense
subcodebook concept need not concern us here). to find a procedure to select good patterns for trellis label

0/00 0/00 0/Do sequences. Once such patterns have been isolated (Steyg 1), o

can address as a separate problem (considered elsewtere) th
problem (Step 2) of selecting a particular trellis labelsstce
suited to one of the applications (i)-(iii), whose patterill w
be one of those selected in Step 1.

I. INTRODUCTION

Il. SUBSPACES ANDPATTERNS

In most trellis codes, the cardinality of the pattern symbol
1/10 1/01 1/Dy alphabet is a power of twe> 2. Due to limited space, we
concentrate throughout on the simplest (but nontriviateca
which this cardinality is equal td; accordingly, we take the
pattern symbol alphabet to He, b, ¢, d}. Let V,, denote the
Each trellis edge label in the Fig. 1 trellises is of the formector space of dimensian over the binary field, realized as
i/7, wherei is an “input label” and; is an “output label”. the set of all binaryn-tuples. Suppose we have a subspace
The input labels are trivial because of the convention itligre S of V,, of codimension two. Then there are four cosets
labelling that the upper of the two edges from each trelligest of S, including S itself. As in [3], we assign symbal to
receives input labed and the lower of the two edges receiveeach member of and assign symbols c, d (respectively) to
input labell. It is only the output labels that are significant ireach member of each of the other three cosets (respectively)

Fig. 1: Trellis-based convolutional encoder, trellis-codd
modulator, and trellis-coded quantizer (left to right)



thereby obtaining a pattern for labelling the edges of thealis obtains the pattern imposed on the righthand trellis in Big.
de Bruijn graph based trellis; this trellis hag—! states and The two labelled trellises in Fig. 2 are calledreverse pair
2" edges (two outgoing edges per state), and its edges ar@fitrellis codes (or each of the codes is said to berdwerse

natural one-to-one correspondence with the vectons,in
Example 1.We represent each vector i, as the 4-bit
expansion of an integer betweénand 15, inclusively. We

show how to label the edges of @pstate trellis using

S = {0 = (0000),5 = (0101),11 = (1011), 14 = (1110)}
(5)

a subspace oV, of codimension two. Thd6-bit “indicator

sequence” ofS is

four sequences

1000010000010010,

{abed, bade, cdab, dcba}.

(6)

where thel’s in (6) occur in position$), 5, 11, 14, correspond-
ing to the vectors irb in (5). (We number positions in indicator
sequences of subspacesigffrom left to right, starting with
position 0 and ending with positior15.) Consider the set of

()

Partition indicator sequence (6) into four 4-bit blocks dinein

convert these blocks according to the following algorithm:

1000
0100
0010
0001

o
=
o
o

Following this procedure, the

verted into the patternbcdbadedcbacdab. We have used this

abcd
bade
cdab
dcba

codeof the other code). What this concept means physically
is that you obtain either code in Fig. 2 from the other one
by running the trellis backward in time instead of forward in

time.

With a bit of work, it can be shown that tt% subspaces of
V4 of codimension two yiel®1 reverse pairs of trellis codes
(some code pairs consist of two identical codes). The pwtter
of these pairs are (row by row, with the patterns of the Fig. 2
pair of codes in the first row)

indicator sequence (6) is-con

pattern to label the edges of the lefthand trellis in Fig. 2.

Fig. 2: Reverse Pair of Trellis Codes For 8-State Trellis

Consider the permutation

2 3
1
4

0 — =

0
1
0 12

obtained by reversing eacibit expansion. Applying this
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permutation to the pattern in the lefthand trellis in Figoge

abcdbadcdcbacdab  abeddcbacdabbadc
aaaabbbbcecedddd  abedabedabedabed
aabbaabbceddcedd  ababededababeded
aabbbbaaccddddcc  abededababededab
aabbceddaabbeedd  aabbeeddaabbeedd
aabbceddbbaaddcc  abedbadeabedbadc
aabbceddecddaabb  abbacddcabbacdde
aabbceddddcecbbaa  abeddebaabeddcba
ababababcdcdceded — ababababedededed
ababbabacdcddede  abedabededabedab
ababcdedbabadede  abedabedbadcbadc
ababcededededabab  abbaabbacddeedde
ababcededdedcbaba  abedabeddebadcba
abbabaabcddcdeed  abededabedababed
abbacddcbaabdced  abedbadcebadcabed
abbacddccddcabba  abbacddccddcabba
abbacddcdcedbaab  abeddcbadcbaabed
abedbadcedabdeba  abedbadecdabdcba
abededabbadedcba  abededabbadedcba
abcdedabdcbabade  abededabdebabadc
abcddcbabadccdab  abeddcbabadecdab.

Ill. SUBSPACES ANDPARITY CHECK MATRICES

Let S be a subspace df,, of codimension two. Thei$*,
the orthogonal complement of, is a subspace of,, of
dimension 2. Forming a matrix consisting of the three nomzer
vectors inS+, we define this matrix to be thparity check
matrix of S. The parity check matrix is uniquely defined up
to ordering of the rows (the way in which the rows are ordered
makes no difference). Given a trellis code, by which we mean
a labelling of the edges of tH&¥ ~!-state de Bruijn graph with
labels from{a, b, ¢, d} corresponding to a subspageof V,,,
we define the parity check matrix of this code to be the parity
check matrix ofS.

The parity check matrixdH of a subspaceS of V,, of
codimension two obeys the following rules:

():  There are three rows aoff, which are each nonzero
vectors inV,,.

(ii):  The three rows ofH sum to the zero vector.

(ii):  Any two of the rows of H are linearly independent.

Conversely, suppose we have any matkixsatisfying prop-
erties (i)-(iii). Then there is a unique subspageof V,, of
codimension two whose parity check matrix is. There is



thus a one-to-one correspondence between subspace¥,, Let us denote the additive identity of rinfg(1100111) by O.

of codimension two and matriceg satisfying (i)-(iii). Then
Example 2The parity check matrices of the reverse pair of [ 1100111 '|
trellis codes in Fig. 2 are HO)=:0 0 0 0 0 0 0.
[ 1100111 J
1 1 01 1 0 11
1 01 0], 010 1], This is one instance in which we depart from our restriction
01 1 1 1 11 0 that the three rows of a parity check matrix be of rank two. In

this case, we have a zero row, which means that the subépace

respectively. In general, reverse pairs of codes alway® hqy o codimension instead of codimensiot The parity check
parity check matrices which are left-to-right reversaleath | oiix of any other member oR(1100111) will be of the

other. usual form, i.e., corresponding to a subspace of codimensio
IV. SUBSPACERINGS 2. For example, the identity elemeditof R(1100111) (the

It is possible to form sets of subspaces which we Camulnpllcatlve identity) is the subspace F for which

make into rings by appropriately defining the ring addi- 11001 11
tion/multiplication operations; the parity check matsa# the HI)=|10 0 0 0 0 0 1 |.
subspaces in a subspace ring will all have some fixed row in 110 01 10
common.

We will define three types of subspace rings. B. Type 2 Subspace Rings

We will call a binary sequencea Type 2 sequence if either

A. Type 1 Subspace Rings (a): it begins with01 and ends int; or

We will call a binary sequence a Type 1 sequence if it (b): it begins withl and ends withl0.
begins and ends with. Let v € V,, be a Type 1 Sequence.corresponding to each Type 2 sequences V,, we will
Then the Type 1 ring?(v) consists of all subspacesof V,,  yefine a ringR(v) of 2"~ subspaces of,, of codimension
pf codimensior2 wh.ose parity check matrix ha§as one of two. We call R(v) a Type 2 ring. The Type 2 rindk(v) is
its rows together with the subspace‘@[ of codimensionl  yefined differently depending upon whether (a) or (b) above
whose orthogonal complement is the subspace spanned bys gatisfied. In the following, we treat these cases sepgrate
We dlscus_s how we mak®(v) into a ring. Suppose we index 1) Type 2 RingR(v) under assumption (a)Throughout
the coordinates ob as this subsection, we take € V, to be a Type 2 sequence

0= (Vp_1,VUn_2, -, v1,00), satisyfing (a) above. Then Type 2 subspace fiig) consists
’ ’ _ of the 2”2 subspaces of/;,, of codimension two whose
wherev,, 1 = vo = 1. Letp,(x) be the polynomial parity check matrices each haveas a row and have linearly
- - independent leftmost and next to leftmost columns. Writing
2) = g 12" op_0x" 24z f vzt v, (8) X
pv( ) ol e ’ ! 0 ( ) v = (Un717vn72-,1)n737"'7U17UO)1 with Up—1 = 0 and

a polynomial of degree — 1. Consider the residue class ringv,,_» = vy = 1, the general form of the parity check matrix

R=GF(2)[z]/ < po(z) > . for subspaces ii(v) is

) ) 0 1 e - 1
We can consider the members@to be the2” ! polynomials [ 10 :1) ° o :] a -‘ (9)
of degree at most — 2 which have binary coefficients. If we nod N N '
1 1 vp,_3+ap—3 -+ vi+ar 14+ag

multiply two such polynomials and then compute the remain-
der modulop, (), we obtain the multiplication operation inThen — 2 binary numbersig, ai, - - -, a, 3 are arbitrary.

ring R. If we add two such polynomials in the usual way we In order to define the addition and multiplication R(v)
add polynomials, we obtain the addition operation in ring that will make R(v) a ring, we make use of a one-to-one
We will make use of a one-to-one correspondence betweggirespondence betweeR(v) and the residue ring? =

R and R(v) to carry over the ring operations oR into GF(2)[x]/ < p,(x) >, wherep,(z) is the polynomial form of
ring operations onR(v). Supposeg(z) = Z?;OZ a;z' is a v defined by (8). (Herey, (x) is a polynomial of degree—2.)
polynomial inR. The subspace i(v) corresponding tq(z) The members of? can be regarded as being all polynomials
is the subspace df,, whose parity check matrix is in GF(2)[z] of degree less than or equalie- 3. Let us refer

to the general form of parity check matrix in (9). We explain

[ 1 Un—2 o 1 1 -‘ how to form the polynomial ink? corresponding to this. First,
[ (1) n-2 o ) do J . we remark that(1,v,_3) coincides either with the first two
Un—2 + dn—2 vitar LA ao entries of the second row of (9) or the third row of (9). Pick
The numbersyg, ay, - - -, a,_» are arbitrary binary parameterswhichever of these two rows for which this is true, andjlet)

Example 3We consider the Type 1 ring(1100111), which  be the polynomial form of this row. Then the polynomial in
consists of certain subspaces6f. For each subspacg in R corresponding to (9) ig(z) + xp, (z) (which is of degree
R(1100111), let H(S) denote the parity check matrix ¢f. at mostn — 3 since thex™ !, 2" ~2 terms ing(z) must cancel



with the 2" 2"~% terms inxzp,(x)). Now that we have a 2) Type 2 RingR(v) under assumption (b)Throughout
one-to-one correspondence betwd®w) and R, we use this this subsection, we take € V,, to be a Type 2 sequence
correspondence to carry over the addition/multiplicatiod®  beginning with1 and ending with10. Then Type 2 subspace

to addition/multiplication inR(v). ring R(v) consists of th@™ 2 subspaces df,, of codimension
Example 4.We examine the ring?(0101001). The zero two whose parity check matrices each haas a row and have
elementO is given by linearly independent rightmost and next to rightmost calam
[ 010100 1 '| Writing v = (1,v,_9, -+, vs,1,0), the general form of the
HO)=!1010010]. parity check matrix for subspaces R(v) is
[ 11110 11 J [ 1 Vo s 1 0 -|
Notice that the second row is just a cyclic shift of the first 0 Ao as ay 11, (11)
row. The identity element is given by [ 1 vp_o+ap_o -+ wvat+ay 1+a; 1 J
[ 010 1001 -‘ where then — 2 binary numbers, as, - - -, a,,_o are arbitrary.
H()={1 0 100 1 1. Let u be the sequence
[ 111 1 0 1 0 J
Suppose u = (17’077/*27/071737"'7’0271)7
[0 1. 01 0 0 1] consisting of all but the last term of. Then p,(z), the
H(S:) = 1 o1 1111}, polynomial form ofu, is of degreen — 2, and the residue
111 1.0 1 1 0] class ringR = GF(2)[z]/ < pu(z) > consists of the
0 1 01 0 0 17 22 polynomials inG F(2)[x] of degree at most — 3. We
H(S,) = 100 1 1 0 1. define a natural one-to-one correspondence beti#ei and
1 10 0 1 0 1 R. Given the general form (11) of parity check matrix for

We computeH (S; ¢ S,) andH (S; ®.52), where® and® de- subspaces if(v), form the vector

note, respectively, the addition and multiplication opierss in
R(0101001). Since the second and third entries(6101001)
are 10, we focus on the second row df(S;) and H(S,), Writing the entries ob as
which have polynomial forms

b= (an_2,an_3, - ,az,a1) + (L, v,_2, -, v3,02).

b= (bp—3,bn—2,--,b1,b0),

B+t +at+a?+r+1, 2P+t +2+10 (10) .
the polynomialp,(z) = > ") bz’ is the element ofR
For v = (0101001), we have corresponding to (11). Using the one-to-one corresporeenc
xpy(z) = 25 + 2* + 2. just defined, we can carry over addition/multiplication/irto
in (10) addition/multiplication inR(v), making R(v) into a ring.

Adding zp,(z) to each of the polynomials X
Example 5In the Type 2 ringR(1001010), the zero element

we obtain the following polynomials in the residue ring

GF@2)[z]) < 2° + 27 +1 > O and the identity element are given by

2+ +1, 2P+ +a+ 1 - -

vt ke 1001010

We add and multiply these two polynomials as members of H(O) = 010010 1

the residue ring: 1101 11 1
(P2 + D)+ @+ +2+1) = (1.0 01 0 1 0]

@B+ D) x @@+ +2+1) = ' +23+1. H(I) = 0100111

1101101

We can convert these two results to rowsmfS; ¢ S2) and - -
H(S; @ S,), respectively, by adding® + 2* + 2 to them, C. Type 3 Rings

obtaining the following polynomials and their vector forms 5 Type 3 sequence is a binary sequence that starts84ith

4 (% +2" +2) < (1010000), and ends with10. Let v € V,, be a Type 3 sequence. Then
A 14 (@S a2t +a) o (1001011). we V\_/|II define zirlngR(v) called a Typg 3 rng(v) will
consist of the2” 3 subspaces oF,, of codimension two such
Therefore, that the corresponding parity check matrices each satigfy t
[0 1. 01 0 0 17 properties
H(S1 & S:) = 1010000 (1): v is a row of the parity check matrix.
L1111 00 1] (2):  The first two columns of the parity check matrix are
[0 1. 01 0 0 17 linearly independent.
H(S®82) = 1001 011 (3): The last two columns of the parity check matrix are
1100 0 1 0 linearly independent.




Lettingv = (0,1,v,-3,---,v2,1,0), we see that the generaleach of the two trellis codes in Fig. 2, the orflyedge path

form of parity check matrix for a subspace R(v) is with edge labelst, a, a is the path
0 1 Vp3 Vo 1 0 1-1—=-1—1. (14)
L0 -3 e ap ap 1. Therefore, each of these codes satisfies the set-panigioni
L1 vy3+ans - vatay l4+a 1 principle. On the other hand, consider tetate trellis code
_ . ) ) whose labels on thd6 edges in Fig. 2 (top down) are
In the precedingq,, as, - - -, a,_3 are arbitrary binary param- abedbadcedabdcba. Then the path
eters. Let

8§28 —+8—>8

w= (13, Ung,, 03,02,1), has edge labels, a,a and so does the path (14); therefore,

the sequence we obtain from by removing the first and this trellis code does not satisfy the set-partitioningipiple.
last coordinates from. The polynomial formp, () of u is ~ Definition.We say that a code in a subspace ritg:) is a

of degreen — 3, and the elements of the residue class ringhitin (a) if and only if it possesses a multiplicative inverse.
R = GF(2)[z]/ < pu(z) > are the2"~3 polynomials in The set of units ink(a) forms a multiplicative group (which
GF(2)[z] of degree at most — 4. We define a natural one-is sometimes a cyclic group).

to-one correspondence betwedfv) and R. Starting with Theorem 2. A trellis code satisfies the set-partitioning
(12), the general form of parity check matrix for subspacdinciple if it belongs to a subspace ring in which it is a
in R(v), the corresponding member a® is simply the unit. Conversely, if a trellis code obeys the set-partitign
polynomial form of the vector(a,_s, an_4,---,a1). Using principle, it belongs to at least one subspace ring and is a
this correspondence, we carry addition/multiplication in Unit in each subspace ring containing it.

over to addition/multiplication o (v). This makesk(v) into ~ Example 8.Consider the systematic cogewhose parity
a ring. check matrix is (13). We show that satisfies the set-

partitioning principle by showing that is a unit in the ring
V. TRELLIS CODE PROPERTIESVIA SUBSPACERINGS R(11111011). From the factorization
In the design of communication trellises, various progsrtip(z) = 2”+2°+2°+a2' +2 +2+1 = (2 +2+1) (2" +2°+1),

of trellis codes are commonly employed as restrictions @ th ¢oiiows that the ring R(11111011) is isomorphic to the

type of treIIi_s code that the designer must choose from. i tr_‘uirect product ringR(111) x R(100101). R(111) is the Galois
our concluding section, we present two such propertieswhigg|q GF(4) andR(100101) is the Galois field7F(32). Since
each have a nice characterization in terms of subspace rin@qp(4) possesse$ units and GF(32) possesse$1 units

« The property that a trellis code lsystematic it follows that R(11111011) possesse93 = 3 x 31 units.
« The property that a trellis code satisfy tbet-partitioning This set of units forms a cyclic grou§ whose generator is
principle. the codex € R(11111011) corresponding to the polynomial

Definition. We define a trellis code to h&ystematidf and = € GF(2)[z]/ < p(z) >. The elements o7 consist of all
only if the two leftmost rows of its parity check matrix argpowersa’, i = 0,1,2,---,92. With the aid of a computer, one
linearly independent and the two rightmost rows of its yarittan show thag is the unita®®. (The multiplicative inverse
check matrix are linearly independent. of B is a?¥733 = %) Similarly, one can also show that

Theorem 1.A trellis code belongs to at least one subspac@ is @ unit in the ringR(10110101) and a unit in the ring
ring if and only if the left and right column of the parityZ2(01001110). Indeed, any systematic code satisfying the set-
check matrix are both nonzero vectors. A trellis code bedongartitioning principle (such as) will be a unit in each of the
to exactly three subspace rings if and only if it is systematithree subspace rings to which it belongs.

Example 6.The systematic code on the28-state trellis ~ Final Remark. It has been our purpose in this paper
whose parity check matrix is merely to introduce the reader to the new concept of subspace

ring. In a subsequent paper, we will push further, designing

11111011 communication trellises using subspace rings as a powerful
10110101 (13) tool.
01 001110
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