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Abstract— By a “communication trellis”, we mean a trellis
whose edges are labelled in order that the trellis may be used
for any of the following three communication tasks: (i) error-
correction encoding, (ii) modulation, or (iii) quantization for
source coding. We view the design of such a labelled trellis as a
two-step procedure: Step 1 consists of the design of one or more
patterns which potential sequences of trellis edge labels must
conform to; in Step 2, an objective function suited to whichever
of communication tasks (i)-(iii) is the design goal is used to select a
sequence of trellis edge labels conforming to the pattern(s) chosen
in Step 1. In this paper, we introduce the concept of subspace
ring, which will be useful to us in the future in performing Step 1.
To this end, each possible pattern of trellis edge labels is specified
via a subspaceS of some fixed dimension of a vector spaceV ; by
letting S vary, we obtain all possible allowable patterns. We show
how some of these subspaces can be grouped together to form
our subspace rings. We illustrate how some properties useful in
communication trellis design can be characterized in termsof
the subspace ring concept.

I. I NTRODUCTION

In Fig. 1, the lefthand trellis stage is labelled to yield
a rate 1=2 convolutional encoder ([1], p. 277), the middle
trellis stage is labelled to yield a trellis-coded modulation
scheme ([2], p. 117), and the righthand trellis stage is labelled
to yield a trellis-coded quantizer ([4], p. 133; the labelsDi are called “subcodebooks”, but the significance of the
subcodebook concept need not concern us here).0=001=110=101=010=111=000=011=10������������������������HHHHHHHHHHHH 0=001=100=011=110=101=000=111=01������������������������HHHHHHHHHHHH 0=D01=D20=D11=D30=D21=D00=D31=D1������������������������HHHHHHHHHHHH
Fig. 1: Trellis-based convolutional encoder, trellis-coded

modulator, and trellis-coded quantizer (left to right)

Each trellis edge label in the Fig. 1 trellises is of the formi=j, wherei is an “input label” andj is an “output label”.
The input labels are trivial because of the convention in trellis
labelling that the upper of the two edges from each trellis state
receives input label0 and the lower of the two edges receives
input label1. It is only the output labels that are significant in

Fig. 1. In each of the Fig. 1 trellises, suppose we read off the
sequence of edge output labels, traversing the edges from top
to bottom. Doing this, we obtain the following three sequences
of length 8: 00; 11; 10; 01; 11; 00; 01; 10 (1)00; 10; 01; 11; 10; 00; 11; 01 (2)D0; D2; D1; D3; D2; D0; D3; D1 (3)

The pattern corresponding to each of the three sequences of
edge labels (1)-(3) isa; b; ; d; b; a; d; : (4)

For example, reading (1) from left to right, the first distinct
label we see is assigned the pattern symbol “a”, the second
distinct label we see is assigned the pattern symbol “b”, etc.,
resulting in the sequence (4).

Our point in this introduction is that whether a trellis is used
in communications for (i) error-correction encoding (leftmost
trellis in Fig. 1), (ii) modulation (middle trellis in Fig. 1), or
(iii) quantization in lossy source coding (rightmost trellis in
Fig. 1), thepatternfollowed by the trellis edge labels may be
independent of whichever of the three types of communication
trellises (i)-(iii) that one is designing. Therefore, it makes sense
to find a procedure to select good patterns for trellis label
sequences. Once such patterns have been isolated (Step 1), one
can address as a separate problem (considered elsewhere) the
problem (Step 2) of selecting a particular trellis label sequence
suited to one of the applications (i)-(iii), whose pattern will
be one of those selected in Step 1.

II. SUBSPACES ANDPATTERNS

In most trellis codes, the cardinality of the pattern symbol
alphabet is a power of two> 2. Due to limited space, we
concentrate throughout on the simplest (but nontrivial) case in
which this cardinality is equal to4; accordingly, we take the
pattern symbol alphabet to befa; b; ; dg. Let Vn denote the
vector space of dimensionn over the binary field, realized as
the set of all binaryn-tuples. Suppose we have a subspaceS of Vn of codimension two. Then there are four cosets
of S, including S itself. As in [3], we assign symbola to
each member ofS and assign symbolsb; ; d (respectively) to
each member of each of the other three cosets (respectively),



thereby obtaining a pattern for labelling the edges of the usual
de Bruijn graph based trellis; this trellis has2n�1 states and2n edges (two outgoing edges per state), and its edges are in
natural one-to-one correspondence with the vectors inVn.

Example 1.We represent each vector inV4 as the 4-bit
expansion of an integer between0 and 15, inclusively. We
show how to label the edges of an8-state trellis usingS = f0 = (0000); 5 = (0101); 11 = (1011); 14 = (1110)g;

(5)
a subspace ofV4 of codimension two. The16-bit “indicator
sequence” ofS is 1000010000010010; (6)

where the1’s in (6) occur in positions0; 5; 11; 14, correspond-
ing to the vectors inS in (5). (We number positions in indicator
sequences of subspaces ofV4 from left to right, starting with
position 0 and ending with position15.) Consider the set of
four sequences fabd; bad; dab; dbag: (7)

Partition indicator sequence (6) into four 4-bit blocks andthen
convert these blocks according to the following algorithm:1000 ! abd0100 ! bad0010 ! dab0001 ! dba
Following this procedure, the indicator sequence (6) is con-
verted into the patternabdbaddbadab. We have used this
pattern to label the edges of the lefthand trellis in Fig. 2.

d

c

b

a

d

c

a

b

b

a
d

c
a

b

c

d
d

c

a

b

b

a
d

c

a

b
c

d
c

d

a

b

Fig. 2: Reverse Pair of Trellis Codes For 8-State Trellis

Consider the permutation0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15# # # # # # # # # # # # # # # #0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15
obtained by reversing each4-bit expansion. Applying this
permutation to the pattern in the lefthand trellis in Fig. 2,one

obtains the pattern imposed on the righthand trellis in Fig.2.
The two labelled trellises in Fig. 2 are called areverse pair
of trellis codes (or each of the codes is said to be thereverse
codeof the other code). What this concept means physically
is that you obtain either code in Fig. 2 from the other one
by running the trellis backward in time instead of forward in
time.

With a bit of work, it can be shown that the35 subspaces ofV4 of codimension two yield21 reverse pairs of trellis codes
(some code pairs consist of two identical codes). The patterns
of these pairs are (row by row, with the patterns of the Fig. 2
pair of codes in the first row)abdbaddbadab abddbadabbadaaaabbbbdddd abdabdabdabdaabbaabbdddd ababddababddaabbbbaadddd abddababddabaabbddaabbdd aabbddaabbddaabbddbbaadd abdbadabdbadaabbddddaabb abbaddabbaddaabbddddbbaa abddbaabddbaababababdddd ababababddddababbabadddd abdabddabdabababddbabadd abdabdbadbadababddddabab abbaabbaddddababddddbaba abdabddbadbaabbabaabdddd abddabdababdabbaddbaabdd abdbadbadabdabbaddddabba abbaddddabbaabbaddddbaab abddbadbaabdabdbaddabdba abdbaddabdbaabddabbaddba abddabbaddbaabddabdbabad abddabdbabadabddbabaddab abddbabaddab:

III. SUBSPACES ANDPARITY CHECK MATRICES

Let S be a subspace ofVn of codimension two. ThenS?,
the orthogonal complement ofS, is a subspace ofVn of
dimension 2. Forming a matrix consisting of the three nonzero
vectors inS?, we define this matrix to be theparity check
matrix of S. The parity check matrix is uniquely defined up
to ordering of the rows (the way in which the rows are ordered
makes no difference). Given a trellis code, by which we mean
a labelling of the edges of the2n�1-state de Bruijn graph with
labels fromfa; b; ; dg corresponding to a subspaceS of Vn,
we define the parity check matrix of this code to be the parity
check matrix ofS.

The parity check matrixH of a subspaceS of Vn of
codimension two obeys the following rules:

(i): There are three rows ofH , which are each nonzero
vectors inVn.

(ii): The three rows ofH sum to the zero vector.
(iii): Any two of the rows ofH are linearly independent.

Conversely, suppose we have any matrixH satisfying prop-
erties (i)-(iii). Then there is a unique subspaceS of Vn of
codimension two whose parity check matrix isH . There is



thus a one-to-one correspondence between subspacesS of Vn
of codimension two and matricesH satisfying (i)-(iii).

Example 2.The parity check matrices of the reverse pair of
trellis codes in Fig. 2 are24 1 1 0 11 0 1 00 1 1 1 35 ; 24 1 0 1 10 1 0 11 1 1 0 35 ;
respectively. In general, reverse pairs of codes always have
parity check matrices which are left-to-right reversals ofeach
other.

IV. SUBSPACERINGS

It is possible to form sets of subspaces which we can
make into rings by appropriately defining the ring addi-
tion/multiplication operations; the parity check matrices of the
subspaces in a subspace ring will all have some fixed row in
common.

We will define three types of subspace rings.

A. Type 1 Subspace Rings

We will call a binary sequencev a Type 1 sequence if it
begins and ends with1. Let v 2 Vn be a Type 1 sequence.
Then the Type 1 ringR(v) consists of all subspacesS of Vn
of codimension2 whose parity check matrix hasv as one of
its rows together with the subspace ofVn of codimension1
whose orthogonal complement is the subspace spanned byv.
We discuss how we makeR(v) into a ring. Suppose we index
the coordinates ofv asv = (vn�1; vn�2; � � � ; v1; v0);
wherevn�1 = v0 = 1. Let pv(x) be the polynomialpv(x) = vn�1xn�1+vn�2xn�2+ � � �+v2x2+v1x+v0; (8)

a polynomial of degreen� 1. Consider the residue class ringR = GF (2)[x℄= < pv(x) > :
We can consider the members ofR to be the2n�1 polynomials
of degree at mostn� 2 which have binary coefficients. If we
multiply two such polynomials and then compute the remain-
der modulopv(x), we obtain the multiplication operation in
ring R. If we add two such polynomials in the usual way we
add polynomials, we obtain the addition operation in ringR.
We will make use of a one-to-one correspondence betweenR and R(v) to carry over the ring operations onR into
ring operations onR(v). Supposeq(x) = Pn�2i=0 aixi is a
polynomial inR. The subspace inR(v) corresponding toq(x)
is the subspace ofVn whose parity check matrix is24 1 vn�2 � � � v1 10 an�2 � � � a1 a01 vn�2 + an�2 � � � v1 + a1 1 + a0 35 :
The numbersa0; a1; � � � ; an�2 are arbitrary binary parameters.

Example 3.We consider the Type 1 ringR(1100111), which
consists of certain subspaces ofV7. For each subspaceS inR(1100111), let H(S) denote the parity check matrix ofS.

Let us denote the additive identity of ringR(1100111) by O.
Then H(O) = 24 1 1 0 0 1 1 10 0 0 0 0 0 01 1 0 0 1 1 1 35 :
This is one instance in which we depart from our restriction
that the three rows of a parity check matrix be of rank two. In
this case, we have a zero row, which means that the subspaceO
is of codimension1 instead of codimension2. The parity check
matrix of any other member ofR(1100111) will be of the
usual form, i.e., corresponding to a subspace of codimension2. For example, the identity elementI of R(1100111) (the
multiplicative identity) is the subspace ofV7 for whichH(I) = 24 1 1 0 0 1 1 10 0 0 0 0 0 11 1 0 0 1 1 0 35 :
B. Type 2 Subspace Rings

We will call a binary sequencev a Type 2 sequence if either

(a): it begins with01 and ends in1; or
(b): it begins with1 and ends with10.

Corresponding to each Type 2 sequencev 2 Vn, we will
define a ringR(v) of 2n�2 subspaces ofVn of codimension
two. We callR(v) a Type 2 ring. The Type 2 ringR(v) is
defined differently depending upon whether (a) or (b) above
is satisfied. In the following, we treat these cases separately.

1) Type 2 RingR(v) under assumption (a):Throughout
this subsection, we takev 2 Vn to be a Type 2 sequence
satisyfing (a) above. Then Type 2 subspace ringR(v) consists
of the 2n�2 subspaces ofVn of codimension two whose
parity check matrices each havev as a row and have linearly
independent leftmost and next to leftmost columns. Writingv = (vn�1; vn�2; vn�3; � � � ; v1; v0), with vn�1 = 0 andvn�2 = v0 = 1, the general form of the parity check matrix
for subspaces inR(v) is24 0 1 vn�3 � � � v1 11 0 an�3 � � � a1 a01 1 vn�3 + an�3 � � � v1 + a1 1 + a0 35 : (9)

Then� 2 binary numbersa0; a1; � � � ; an�3 are arbitrary.
In order to define the addition and multiplication inR(v)

that will makeR(v) a ring, we make use of a one-to-one
correspondence betweenR(v) and the residue ringR =GF (2)[x℄= < pv(x) >, wherepv(x) is the polynomial form ofv defined by (8). (Here,pv(x) is a polynomial of degreen�2.)
The members ofR can be regarded as being all polynomials
in GF (2)[x℄ of degree less than or equal ton�3. Let us refer
to the general form of parity check matrix in (9). We explain
how to form the polynomial inR corresponding to this. First,
we remark that(1; vn�3) coincides either with the first two
entries of the second row of (9) or the third row of (9). Pick
whichever of these two rows for which this is true, and letq(x)
be the polynomial form of this row. Then the polynomial inR corresponding to (9) isq(x) + xpv(x) (which is of degree
at mostn�3 since thexn�1; xn�2 terms inq(x) must cancel



with the xn�1; xn�2 terms inxpv(x)). Now that we have a
one-to-one correspondence betweenR(v) andR, we use this
correspondence to carry over the addition/multiplicationin R
to addition/multiplication inR(v).

Example 4.We examine the ringR(0101001). The zero
elementO is given byH(O) = 24 0 1 0 1 0 0 11 0 1 0 0 1 01 1 1 1 0 1 1 35 :
Notice that the second row is just a cyclic shift of the first
row. The identity elementI is given byH(I) = 24 0 1 0 1 0 0 11 0 1 0 0 1 11 1 1 1 0 1 0 35 :
SupposeH(S1) = 24 0 1 0 1 0 0 11 0 1 1 1 1 11 1 1 0 1 1 0 35 ;H(S2) = 24 0 1 0 1 0 0 11 0 0 1 1 0 11 1 0 0 1 0 1 35 :
We computeH(S1�S2) andH(S1
S2), where� and
 de-
note, respectively, the addition and multiplication operations inR(0101001). Since the second and third entries of(0101001)
are 10, we focus on the second row ofH(S1) andH(S2),
which have polynomial formsx6 + x4 + x3 + x2 + x+ 1; x6 + x3 + x2 + 1: (10)

For v = (0101001), we havexpv(x) = x6 + x4 + x:
Adding xpv(x) to each of the polynomials in (10),
we obtain the following polynomials in the residue ringGF (2)[x℄= < x5 + x3 + 1 >:x3 + x2 + 1; x3 + x2 + x+ 1:
We add and multiply these two polynomials as members of
the residue ring:(x3 + x2 + 1) + (x3 + x2 + x+ 1) = x;(x3 + x2 + 1) � (x3 + x2 + x+ 1) = x4 + x3 + 1:
We can convert these two results to rows ofH(S1 � S2) andH(S1 
 S2), respectively, by addingx6 + x4 + x to them,
obtaining the following polynomials and their vector forms:x+ (x6 + x4 + x) $ (1010000);x4 + x3 + 1 + (x6 + x4 + x) $ (1001011):
Therefore,H(S1 � S2) = 24 0 1 0 1 0 0 11 0 1 0 0 0 01 1 1 1 0 0 1 35 ;H(S1 
 S2) = 24 0 1 0 1 0 0 11 0 0 1 0 1 11 1 0 0 0 1 0 35 :

2) Type 2 RingR(v) under assumption (b):Throughout
this subsection, we takev 2 Vn to be a Type 2 sequence
beginning with1 and ending with10. Then Type 2 subspace
ringR(v) consists of the2n�2 subspaces ofVn of codimension
two whose parity check matrices each havev as a row and have
linearly independent rightmost and next to rightmost columns.
Writing v = (1; vn�2; � � � ; v2; 1; 0), the general form of the
parity check matrix for subspaces inR(v) is24 1 vn�2 � � � v2 1 00 an�2 � � � a2 a1 11 vn�2 + an�2 � � � v2 + a2 1 + a1 1 35 ; (11)

where then�2 binary numbersa1; a2; � � � ; an�2 are arbitrary.
Let u be the sequenceu = (1; vn�2; vn�3; � � � ; v2; 1);

consisting of all but the last term ofv. Then pu(x), the
polynomial form ofu, is of degreen � 2, and the residue
class ringR = GF (2)[x℄= < pu(x) > consists of the2n�2 polynomials inGF (2)[x℄ of degree at mostn� 3. We
define a natural one-to-one correspondence betweenR(v) andR. Given the general form (11) of parity check matrix for
subspaces inR(v), form the vectorb = (an�2; an�3; � � � ; a2; a1) + (1; vn�2; � � � ; v3; v2):
Writing the entries ofb asb = (bn�3; bn�2; � � � ; b1; b0);
the polynomialpb(x) = Pn�3i=0 bixi is the element ofR
corresponding to (11). Using the one-to-one correspondence
just defined, we can carry over addition/multiplication inR to
addition/multiplication inR(v), makingR(v) into a ring.

Example 5.In the Type 2 ringR(1001010), the zero elementO and the identity elementI are given byH(O) = 24 1 0 0 1 0 1 00 1 0 0 1 0 11 1 0 1 1 1 1 35 ;H(I) = 24 1 0 0 1 0 1 00 1 0 0 1 1 11 1 0 1 1 0 1 35 :
C. Type 3 Rings

A Type 3 sequence is a binary sequence that starts with01
and ends with10. Let v 2 Vn be a Type 3 sequence. Then
we will define a ringR(v) called a Type 3 ring.R(v) will
consist of the2n�3 subspaces ofVn of codimension two such
that the corresponding parity check matrices each satisfy the
properties

(1): v is a row of the parity check matrix.
(2): The first two columns of the parity check matrix are

linearly independent.
(3): The last two columns of the parity check matrix are

linearly independent.



Letting v = (0; 1; vn�3; � � � ; v2; 1; 0), we see that the general
form of parity check matrix for a subspace inR(v) is24 0 1 vn�3 � � � v2 1 01 0 an�3 � � � a2 a1 11 1 vn�3 + an�3 � � � v2 + a2 1 + a1 1 35 :

(12)
In the preceding,a1; a2; � � � ; an�3 are arbitrary binary param-
eters. Let u = (1; vn�3; vn�4; � � � ; v3; v2; 1);
the sequence we obtain fromv by removing the first and
last coordinates fromv. The polynomial formpu(x) of u is
of degreen � 3, and the elements of the residue class ringR = GF (2)[x℄= < pu(x) > are the2n�3 polynomials inGF (2)[x℄ of degree at mostn � 4. We define a natural one-
to-one correspondence betweenR(v) and R. Starting with
(12), the general form of parity check matrix for subspaces
in R(v), the corresponding member ofR is simply the
polynomial form of the vector(an�3; an�4; � � � ; a1). Using
this correspondence, we carry addition/multiplication inR
over to addition/multiplication onR(v). This makesR(v) into
a ring.

V. TRELLIS CODE PROPERTIESV IA SUBSPACERINGS

In the design of communication trellises, various properties
of trellis codes are commonly employed as restrictions on the
type of trellis code that the designer must choose from. In this
our concluding section, we present two such properties which
each have a nice characterization in terms of subspace rings:� The property that a trellis code besystematic.� The property that a trellis code satisfy theset-partitioning

principle.

Definition. We define a trellis code to besystematicif and
only if the two leftmost rows of its parity check matrix are
linearly independent and the two rightmost rows of its parity
check matrix are linearly independent.

Theorem 1.A trellis code belongs to at least one subspace
ring if and only if the left and right column of the parity
check matrix are both nonzero vectors. A trellis code belongs
to exactly three subspace rings if and only if it is systematic.

Example 6.The systematic code on the128-state trellis
whose parity check matrix is24 1 1 1 1 1 0 1 11 0 1 1 0 1 0 10 1 0 0 1 1 1 0 35 (13)

belongs to the three subspace ringsR(11111011),R(10110101), R(01001110).
Definition. We say that a trellis code for a2k-state trellis

satisfies the set-partitioning principle if and only if there is
only onek-edge path in the trellis whosek edge labels are all
equal toa.

Example 7.For the8-state trellises in Fig. 2, let us number
the eight states1; 2; 3; 4; 5; 6; 7; 8 from the top down. Then for

each of the two trellis codes in Fig. 2, the only3-edge path
with edge labelsa; a; a is the path1! 1! 1! 1: (14)

Therefore, each of these codes satisfies the set-partitioning
principle. On the other hand, consider the8-state trellis code
whose labels on the16 edges in Fig. 2 (top down) areabdbaddabdba. Then the path8! 8! 8! 8
has edge labelsa; a; a and so does the path (14); therefore,
this trellis code does not satisfy the set-partitioning principle.

Definition.We say that a code in a subspace ringR(a) is a
unit in R(a) if and only if it possesses a multiplicative inverse.
The set of units inR(a) forms a multiplicative group (which
is sometimes a cyclic group).

Theorem 2. A trellis code satisfies the set-partitioning
principle if it belongs to a subspace ring in which it is a
unit. Conversely, if a trellis code obeys the set-partitioning
principle, it belongs to at least one subspace ring and is a
unit in each subspace ring containing it.

Example 8.Consider the systematic code� whose parity
check matrix is (13). We show that� satisfies the set-
partitioning principle by showing that� is a unit in the ringR(11111011). From the factorizationp(x) = x7+x6+x5+x4+x3+x+1 = (x2+x+1)(x5+x2+1);
it follows that the ringR(11111011) is isomorphic to the
direct product ringR(111)�R(100101).R(111) is the Galois
field GF (4) andR(100101) is the Galois fieldGF (32). SinceGF (4) possesses3 units andGF (32) possesses31 units,
it follows that R(11111011) possesses93 = 3 � 31 units.
This set of units forms a cyclic groupG whose generator is
the code� 2 R(11111011) corresponding to the polynomialx 2 GF (2)[x℄= < p(x) >. The elements ofG consist of all
powers�i, i = 0; 1; 2; � � � ; 92. With the aid of a computer, one
can show that� is the unit�33. (The multiplicative inverse
of � is �93�33 = �60.) Similarly, one can also show that� is a unit in the ringR(10110101) and a unit in the ringR(01001110): Indeed, any systematic code satisfying the set-
partitioning principle (such as�) will be a unit in each of the
three subspace rings to which it belongs.

Final Remark. It has been our purpose in this paper
merely to introduce the reader to the new concept of subspace
ring. In a subsequent paper, we will push further, designing
communication trellises using subspace rings as a powerful
tool.
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