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Abstract—In the late 1950’s and early 1960's, finite fields weight~; and (3) no two rows (or two columns) have more
were successfully used to construct linear block codes, especiallythan one place where they both hawenzerocomponents.
cyclic codes, with large minimum distances for correcting ran- Such a parity-check matrix is said to be, p)-regular and the

dom errors with algebraic decoding, such as Bose-Chaudhuri- deC ai by it I . lled lar LDPC
Hocgenghem (BCH) and Reed-Solomon (RS) codes. Recently itCO0eC given Dy Its null space Is calle @; p)-regular

has been shown that finite fields can also be used successfullc0de. Structural property (3) is a constraint on the rows and

to construct binary quasi-cyclic (QC)-LDPC codes that perform columns of the parity-check matrid and is referred to as

very well not only over the AWGN channel but also over the the row-column (RC)-constraintlf the columns and/or rows

binary erasure channel with iterative decoding, besides being of H havevarying weightsthen the null space df gives an

efficiently encodable. This paper is concerned with constructions . L

of nonbinary QC-LDPC codes based on finite fields. irregular LDPC code. Ag-ary QC'!‘DPC code is given by the
null space of ararray of sparse circulantover GFg) of the

[. Introduction same size.
The Tanner graph [11] of a-ary LDPC code given by the

LDPC codes, discovered by Gallager in 1962 [1], were Il space of a sparse parity-check matkk — [, ,] over

rediscovered and shown to form a class of Shannon-li . .
(@) consists of two levels of nodewariable and check

approaching codes in the late 1990’s and early 2000’s [2-7]. ;
Ever since their rediscovery, a great deal of research effort osdes Variable nodes correspond to the columnskbfand

been expended in the design and construction of these codk SECk nodes correspond to the rowsHf The jth variable

However, most of the research effort has been focused on ﬂ10de is connected to thith check node by an edge if and

design and construction of binary LDPC codes, very little o_rﬁy If the entry hi; at the Intersection of theéth row an_d
the design and construction of nonbinary LDPC codes. Jth column is a nonzero element in Gff(The RC-constraint

Nonbinary LDPC codes and their iterative decoding usi@nsures that: (1) the minimum distance of the LDPC code

) ) - . ven by the null space dfl is at leasty + 1 [7, 12]; and (2)
the sum-product algorithm (SPA) were first investigated e Tanner graph of the code is free of cycles of lergtnd

Davey and MacKay in 199.8 [8]' Since their _work, very IImehe ce its girth is at least For an LDPC code to perform well
progress has been made in either construction or decoquNo

nonbinary LDPC codes. Most recentlvEast Fourier Trans- ith iterative decoding, its Tanner graph must not contain short
form bas?a/dq-ary SPA ha.s been devise)(/:i by Barnault Declerccrﬁldes' The shortest cycles that affect the code performance the

and Fossorier [9,10] for decodingtary LDPC codes. This ost are the cycles Of length Thereforg, cycle:'s qf length
new decoding algorithm, called FET-QSPA, is more effectiv4 must be prevented in code. construction. This is the case
! ' for every method of constructing LDPC codes that has been

than theg-ary SPA (QSPA) devised by Davey and MacKa3éro osed

[8]. It significantly reduces the computational complexity o P '

QSPA without performance degradation. This new effective ||, Special Vector Representations of Finite Field
decoding algorithm for nonbinary LDPC codes may motivate Elements

more research effort on the construction of nonbinary LDPC

Consider the Galois field GE(. Let o be a primitive
lement of GF{). Then the powers ofy,a™>® £ 0,a° =
Ca,...,a%2 give all the elements of GFanda?~! = 1.
The ¢ — 1 nonzero elements of G&)Yform the multiplicative
group of GF(g) under the multiplication operation. For each
nonzero element’ in GF(g) with 0 <i < ¢ — 1, we form a
(q — 1)-tuple over GF¢), z(a*) = (20, 21, ..., 24—2), Whose
components correspond to tiie 1 nonzero elements of G,
where theith component; = o' and all the other components

*This research was supported by NASA under the Grant NNGO05GD13®% € equal to zero. The We'ght G(O‘Z) IS equal tO_ one. This
and NSF under the Grants CCR-0117891 and ECS-0121469. (¢ — 1)-tuple over GF{) is called theg-ary location-vector

codes.

This paper is concerned with algebraic constructions of Q¢
LDPC codes with symbols from nonbinary finite fields.

Let GF(g) be a finite field withg elements wherg is a
power of a prime. Ag-ary regular LDPC code is given
by the null space over Gk) of a sparse parity-check matrix
H = [h;;] over GFg) that has the following structural
properties: (1) each row has weight (2) each column has



of the field element’. The g-ary location-vector of thé)- itself). This row expansion is referred to as the— 1)-fold
element of GR{) is defined as the all-zer¢q — 1)-tuple, vertical expansiorof w;.

z(0) = (0,0,...,0). For 0 < i < m, replacing each entry iW; by its ¢-
Let § be a nonzero element in Gfj( Then theg-ary ary location-vectors, we obtain @ — 1) x n(qg — 1) matrix
location-vectorz(«) of the field element is theright cyclic-  Q; overGF(q), Q; = [Qi,0, Qi,1, - - - Qi.n—1], Which consists

shift (one place to the right) of the location vectaf) of &6 of a row of n (¢ — 1) x (¢ — 1) submatrices ovef7F(q),
multiplied by «. Form a(qg — 1) x (¢ — 1) matrix A over Q;o, -, Q;n—1, Wherejth submatrixQ; ; is formed by the
GF(g) with the g-ary location-vectors of, a4, ...,a?"2§ as g¢-ary location-vectors of thg — 1 entries of thejth column
rows. Each row (or each column) & has one and only one of W, as rows. If the first component; ; of the jth column
nonzero element. The MatriA is a special type of circulant of W, is a nonzero element i¢:F(q), Q;; is ag-ary a-
permutation matrixn which each row is the right cyclic-shift multiplied (¢ — 1) x (¢ — 1) circulant permutation matrix over
of the row above it multiplied byx and the first row is the GF'(q), otherwise it is al¢ — 1) x (¢ — 1) zero matrix. The
right cyclic-shift of the last row multiplied byr. We call A replacement of the entries 8V, by theirg-ary location-vector
a g-ary a-multiplied circulant permutation matrixThis type is referred to ag-ary horizontal expansiorNext, we form the
of matrices will serve as the backbone for our construction @llowing mxn array(¢—1) x (¢—1) submatrices ove& F'(q):
g-ary LDPC codes.

Qo Qoo Qon1 - Qon—
Il. A General Construction of g-ray QC-LDPC Codes ¢y _ Q _ Qo Qui - Qun
Let o be a primitive element of*F'(¢). The code construc- ' : : - :
tion begins with anm x n matrix W over GF(q), Qm—1 Qrn-10 Qm-11 * Qm-1,n-1
in which each submatrixQ; ; is either ag-ary a-multiplied
Wo wWo,0 wo,1 vt Won—1 (g—1) x (g—1) circulant permutation matrix ove¥F'(q) or a
Wi w1,0 w1 o Win-d (g—1)x (¢g—1) zero matrix. It is ann(g—1) xn(g—1) matrix

‘'over GF'(q). It follows from the structural properties oV
andg-ary location-vectors of field elements tHdtsatisfies the
RC-constraintH is obtained by the combination @§ — 1)-
which has the following structural properties: (1) forc i <  fold vertical andg-ary horizontal expansions &. Each entry
mand0 < k,l < ¢ —1 andk # [, o*w,; anda'w; differ in in W is dispersed into either gary o-multiplied (¢ — 1) x
at leastn — 1 places (i.e.o*w; andalw; have at most one (¢ — 1) circulant permutation matrix or & — 1) x (¢ — 1)
place where they both have the same symbol fi@ii(q) ); zero matrix. We callH the g-ary (¢ — 1)-fold dispersionof
(2) for0 < i,j <m, i # jand0 < k,l < q— 1, oFw; :

and o'w; differ in at leastn — 1 places. Structural property For any pair(y, p) of integersy andp with 1 < v < m
(1) implies that each row oWV has at most oné-element of and1 < r < n, let H(v,p) be a subarray oH such that
GF(q). Structural property (2) implies that any two rows ireach column contains at least apary a-multiplied circulant
W differ in at leastn — 1 places. The structural properties (1)P€rmutation matrix and each row contains at least@agy a-
and (2) are constraints on the rows W and referred to as multiplied circulant permutation matrid(~, p) also satisfies

Wm—1 Wm—-1,0 Wm-1,1 -~ °° Wm—1,n—1

the a-multiplied row-constraints1 and 2. the RC-constraint. Then the null space 0@ (¢) of H(v, p)
For each roww,; of W with 0 < i < m, we form the gives ag-ary QC-LDPC code of length 0f(¢ — 1) whose
following (¢ — 1) x n matrix W, over GF(q): Tanner graph has a girth of at least 6.

The above constructions gfary QC-LDPC codes are based
on the (¢ — 1)-fold dispersion of a specific matri¥v over
GF(q) whose rows satisfy two row-constraints. The ma¥k

: . is called thebase matrix There are a number of methods for
2w, a®2w; 5 a9 2w -+ ol 2w, constructing base matrices that satisfy thenultiplied row-
constraints, 1 and 2. Three of these methods are presented in

It follows from the a-multiplied row-constraint-1 ofW that the next three sections.
any two different rows ofW, differ in at leastn — 1 places. )
We also note that fob < j < n, if w; ; is a nonzero element IV. First Class of g-ary QC-LDPC Codes
of GF(q), then theq — 1 entries of thejth column form the  Suppose; — 1 is not a prime. We can facter— 1 into two
g — 1 nonzero elements afF(q). However, ifw; ; = 0, the relatively prime factors: andm such thaty — 1 = km. Let
q — 1 entries of jth columns are all zeros. It follows from3 = o* and§ = a™. ThenB = {3 =1,3,--- ,3m™~ '} and
the a-multiplied row-constraint-2 that any two rows,*w; D ={®=1,4,---,5*1} form two cyclic subgroups of the
anda'w;, from two different matriceS¥; and W differ in  multiplicative group ofGF(¢q) andB(\ D = {1}. For0 < i <
at leastn — 1 places. The matridW, is simply obtained by k, §'B £ {§%,6°3,--- ,5'3™~ 1} forms amultiplicative coset
expanding theith row w; of W ¢ — 1 times (includingw; of B. Form the followingk x (m + 1) matrix overGF(q):

W; W; .0 W;, 1 ce Wi n—1
aw; aw; o Qw; 1 . QWip—1



wo 0 B-1 . prlon 1
w1 §—1 §6—1 - spmto1 -1
. . : _ . . (4)

W1 6k71 -1 5k71ﬂ -1 ... 5k71ﬁm71 -1 -1

WO has the following structural properties: (1) two rowst the expense of a larger decoding computational complexity.
differ in exactly m places; (2) any two columns differ in AA
every position; (3) all thé elements in a column (except the
last column) are different; (4) All the elements in a row are
different; (5) except for the element "-1" in the last column,
every other element offF'(¢q) appears once and only once;
and (6) the zero element @¥F'(q) appears at the upper left
corner of WY, It can be readily proved that the rows (1)
satisfy thea-multiplied row-constraint-1 and -2.

If we disperse matrixW (1) with (¢ — 1)-fold vertical and
horizontal expansions, we obtainka< (m + 1) arrayH(!) =
Q. ;] of k(m+1)—1 a-multiplied (¢ —1) x (¢ —1) circulant
permutation matrices over Gfj(and a singl€g—1) x (¢—1)
zero matrixQo o at the upper left corner of the arraff") is
k(g—1) x (m+1)(g— 1) matrix over GF{). The firstq — 1 0’
columns ofH(") have weights equal tb— 1 and all the other )
columns have weights equal to The firstg — 1 rows of H(!) T A
have weights equal te» and all the other rows have weights
equal tom + 1. Fig. 1.  The performance of th€567,333) QC-LDPC code over

For any pair of integersy andp, with 1 <~ < k and1 < GF(2°) given in Example 1
p < m+1, letH®Y (v, p) be ay x p subarrayl»). HM (v, p)
is ay(qg—1) x p(q— 1) matrix over GFg). If H( (v, p) does V. Second Class ofj-ary QC-LDPC Codes
not contain the zero submatri®o,0, H" (v, p) is a regular  Again we consider the Galois field Gfj( Let o be a
matrix with column and row weights and p, respectively, primitive element of GRf). Then theg — 1 nonzero elements,
otherwise, it has two column weights-1 and~y and two row 0 — 1 o, ..., a9~2, form the multiplicative group of GFj.
weights,p —1 andp. The null space over G of H (v, p)  Define the following(¢q — 1)-tuple over GF(), wo = (a® —
gives a QC-LDPC codé€ over GF() of lengthp(q —1) with 1 o —1 ... a2-2 —1). Form the following(q— 1) x (¢ — 1)
rate at leastp— )/ and minimum distance at leagt-1 for matrix W2 over GR¢) with w, and itsq — 2 right cyclic-

10™ T T

L — Uncéded BP! l‘(
- 64-ary LDPC(567,333) BER
" 64-ary LDPC(567,333) SER
64-ary LDPC(567,333) BLER
(567,333) over GF(2') BER

- RS 10
o RS(567,333) over GF(2'°) SER
o RS(567,333) over GF(2!%) BLER
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regular case and for irregular case. The above constructiohifts, w, .. ., W,_2, aS FOWS:

gives a class of nonbinary QC-LDPC codes. 0 o2
Example 1:Consider the field7F'(25). We can factoR® — wo a@ 1 @ 1 ... «a . 1

1 = 63 into two relatively prime factors 7 and 9. Let= 7 and  y(2) _ Wi B B e TR

m = 9. We can construct ax 10 arrayH'" = [Q, ;] of 69 a- B : N : : _ :

multiplied 63 x 63 circulant permutation matrices ovétF(2°) Wy o a—1 a2—-1 ... a%—1

and a single63 x 63 zero matrixQgo. Choosey = 4 and (5)

p = 9. We take at x9 subarrayH (") (4,9) from H"), avoiding Label the columns oW (2 from 0 to ¢ — 2. The matrixW

the zero matrixQo o, say taking the first 4 rows dI(M and has the following structural properties: (1) any two rows differ
deleting the first columrH () (4, 9) is a252 x 567 matrix over in all positions; (2) any two columns differ in all positions; (3)
GF(25) with column and row weights 4 and 9, respectivelyall g — 1 elements in each column (or in each row) are distinct
The null space ovelGF(25) of H(V(4,9) gives a64-ary elements in GR(); (4) each row (or each column) contains
(567,333) QC-LDPC code& with rate 0.5873. Assume BPSKone and only one 0-element; and (5) all the 0-elements lie on
transmission over the AWGN channel. Each code symbol tise main diagonal oW . Property (1) implies that the rows of
expanded intd bits. The performance of this code decode®V (?) satisfy the row-constraint-1 defined in Section IV. The
with the FFT-QSPA is shown in Figure 1. Also included irrows of W(2) also satisfy the row-constraint-2 whose proof is
Figure 1 is the performance of @67,333,235) shortened given in Lemma 1.

RS code [13] ovet: F(2!°) decoded with Euclidean algorithm Lemma 1:For 0 < i,j,k,l < q — 1 with i # j, the two
[12]. At the BER (bit-error rate) or SER (symbol-error rate) ofg — 1)-tuplesa*w; and o'w, can not have more than one
10~9, the 64-ary QC-LDPC code achieves a 2.7 dB coding position with identical components, i.e., they differ in at least
gain over the567, 333, 235) shortened RS code ov&rF'(21%) ¢ — 2 positions.



Proof: Suppose there are two different positions, say Figure 2. Also included in Figure 2 is the error performance of
andt with 0 < s,t < ¢ — 1, wherea®fw; and a'w; have a(225,173,53) shortened RS code over GF) decoded with
identical components. Thea*(a*~" — 1) = of(a®*7 — 1) the Euclidean algorithm. We see that at the BER or BLER
anda®(at~i—1) = al(at~7 —1). These two equalities imply (block-error rate) ofl0~¢, the 16-ary(225,173) QC-LDPC
thati = j or s = ¢t which contradict the assumptions thatode achieves a 2.1 dB coding gain over the5,173,53)

i # 7 ands # t. This proves the theorem. m shortened RS code over GE). This coding gain is achieved

It follows from the structural properties and Lemma 1 that the expense of a larger computational complexity. However,
W satisfies both row-constraints, 1 and 2. Dispersifg? the shortened RS code over @F) has a much larger symbol
with (¢ — 1)-fold vertical and horizontal expansions as desize than the 16-ary QC-LDPC code. In terms of bits, the
scribed in Section 111, we obtain the following —1) x (¢—1) shortened RS code over GF) is twice as long as the 16-ary

array of (¢ — 1) x (¢ — 1) submatrices over Gy, QC-LDPC code. AA
O Qo Qo,q—2
Qo2 O Qo,q-3 o o
H (2) — . . A s (6) —o— Eg?ggjzngak) 16-ary BER
. . . o =0~ ' LDPC(225,173) 16-ary SER
" " . e = © = LDPC(225,173) 16-ary BLER |
Tl —O— Rs(225,173,53) GF(2°) BER
QOJ QO,2 O =Q= ' RS(225,173,53) GF(2®) SER
102 = @ = RS(225,173,53) GF(2") BLER| |

where the submatrices on the main diagonal(arel) x (¢—1)
zero matrices and all the other submatrices @multiplied

(¢ — 1) x (¢ — 1) circulant permutation matriced ) is a

(g —1)% x (g — 1)? matrix over GF{) with both column and
row weightsq — 2. SinceW (2) satisfies both row-constraints,
1 and 2,H® satisfies the RC-constraint and consequently its
associated Tanner graph is free of cycles of length 4.

For any pair of integers(vy, p), with 1 < ~,p < ¢, let
H® (v, p) be ay x p subarray ofH(?). ThenH(?) (v, p) is a
v(g—1) x p(q—1) matrix over GKq). If H®) (v, p) lies above

. . (2) . .
or below the main diagonal &'+, it does not contain any of Fig. 2. Performances of the 16-af§25, 173) QC-LDPC code and

the Z€ro SmeatriC@? dfi(® and hence it is éy,p)-regular the (225, 173, 53) shortened RS code over GF) over the AWGN
matrix over GKq) with column and row weightsy and p, channel.

respectively. Sinc#1(?) satisfies the RC-constraifd(?) (v, p)

also satisfies the RC-constraint. Consequently, the null spac&xample 3:In Example 2, suppose we choose= 4 and
over GRq) of H®) (v, p) gives ag-ary regular QC-LDPC code p = 8. Take the4 x 8 subarrayH(?) (4, 8) at the upper right
C of lengthp(q — 1) with rate at leasfp—~)/p and minimum corner of H® as the parity-check matrix. This parity-check
distance at least + 1, whose Tanner graph has a girth of atnatrix is a60 x 120 matrix over GF2*) with column and
least 6. IfH(?)(v, p) contains some zero submatriceslf*  row weights 4 and 8, respectively. The null space ove(XtF
but not all, it has two different column weights,— 1 and~, of H(®(4,8) gives a 16-ary(120,71) QC-LDPC code with
and it may have two different row weightg,— 1 and p. In  rate 0.5917. The performance of this code decoded with the
this case, the null space over G of H(®)(v, p) gives a near- FFT-QSPA with 50 iterations is shown in Figure 3 which
regularg-ary QC-LDPC code with minimum distance at leasélso includes the performance of &0, 71, 50) shortened RS
7. For a given field Glg), a family of structurally compatible code over GR2”) decoded with the Euclidean algorithm for
g-ary QC-LDPC codes of various lengths, rates and minimugsmparison. We see that at the BER or SER®f¢, the 16-
distances can be constructed. ary (120,71) QC-LDPC code achieves®25 dB coding gain

Example 2:Let GH2*) be the code construction field.over the(120,71,50) shortened RS code over GF). AA

bitlsymbol/block error rate

10°

5
Eb/NO(dB)
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Based on (5) to (6), we can constructiax< 15 arrayH®) of a-
multiplied 15 x 15 circulant permutation matrices over GF).
Suppose we choose= 4 andp = 15. Take a4 x 15 subarray
H®)(4,15) from H,., say the first 4 rows of-multiplied
circulant permutation matrices d(?). Then H(®) (4, 15) is
a 60 x 225 matrix over GF2*) with row weight 15 and two
different column weights 3 and 4. The null space ove(BF
of H®)(4,15) gives a 16-ary(225, 173) QC-LDPC code with

Example 4:Let GH2°) be the code construction field.
Based on this field, we can construcézix 63 array H®) of
a-multiplied 63 x 63 circulant permutation matrices. Set= 4
and p = 32. Take a4 x 32 subarrayH?) (4,32) from H(®
that does not contain zero submatricesHf). H®) (4, 32)
is 252 x 2016 matrix over GF2°) with column and row
weights 4 and 32, respectively. The null space ove(2%Fof
H®) (4, 32) gives a(2016, 1779) QC-LDPC code over GR%)

rate 0.7689. Assume BPSK transmission (each symbol with rate 0.8824. The performance of this code decoded with
GF(2%) is expanded into 4 bits) over the AWGN channel. Ththe FFT-QSPA is shown in Figure 4 which also includes the
error performance of this code decoded with the FFT-QSRerformance of thé€2016, 1779, 238) shortened RS code over

with a maximum number of iterations set to 50 are shown @F(2'!) decoded with the Euclidean algorithm. We see that



10°
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G\ == uncoded BPSK
—e—LDPC(120,71) 16-ary BER
%] -0~ LDPC(120,71) 16-ary SER |3
- e -LDPC(120,71) 16-ary BLER
——RS(120,71,50) GF(2") BER
-0 RS(120,71,50) GF(27) SER
-4 -RS(120,71,50) GF(2") BLER
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Fig. 3. Performances of th@20,71) 16-ary QC-LDPC code and
the (120, 71,50) shortened RS code over GF) over the AWGN
channel.

at the SER ofl0~, the (2016,1779) QC-LDPC code over
GF(2%) achieves & dB coding gain over th€016, 1779, 238)
RS code over GR'1). AN

pesssase mese

== uncoded BPSK

—e— LDPC(2016,1779) 64-ary BER

--0- LDPC(2016,1779) 64-ary SER

- e -LDPC(2016,1779) 64-ary BLER

{ —0—RS(2016,1779,238) GF(2'Y) BER

-0- RS(2016,1779,238) GF(2*Y) SER

- ¢ -RS(2016,1779,238) GF(2'!) BLER |4
o Z

~
s

bit/symbol/block error rate

10

5
Eb/NO(dB)

Fig. 4. Performances of th@016,1779) 64-ary QC-LDPC code
and the(2016, 1779, 238) shortened RS code over GR') over the
AWGN channel.

VI. Third Class of ¢g-ary QC-LDPC Codes

Again consider the Galois field Gf). Let m be the largest
prime factor ofg — 1 andg — 1 = c¢m. Let o be a primitive
element of GIfg) and3 = a°. Theng is an element in Gg)

of orderm, i.e., m is the smallest positive integer such that(11]

g™ = 1. The setgG,, = {1,3,4?,...,3m 1} form acyclic
subgroupof the multiplicative group of Gfg). Forl <t < m,

we form the following matrix over Gfg):

- 15 gm-1
wo | o[ @ @
w1 1 g (B (8!

7)
where the power of is taken modulan. W) is simply the
parity-check matrix of arfm, m —t, t+ 1) nonprimitive cyclic
RS code over Gfg). It can be proved thaW () satisfies the
row constraints, 1 and 2 as given in Section IIl. Hence it can
be dispersed to form parity-check matrices of a clasg-afy
QC-LDPC codes. These codes are referred to as dispersed RS
codes.

VII.

In this paper, we have presented a general approach for con-
structing nonbinary QC-LDPC codes based on dispersing row
constrained matrices over finite fields usifag— 1)-fold verti-
cal and horizontal expansions. Based on this general approach,
we have presented two specific methods for constructing two
classes of;-ary QC-LDPC codes. Examples have been given.
Codes given in these examples have large coding gains over
their corresponding RS codes (the same lengths and rates)
decoded algebraically. The coding gains are achieved at the
expense of larger computational complexities. There are other
methods can be used for constructing nonbinary QC-LDPC
codes. For examples, we can construct nonbinary QC-LDPC
codes based on additive subgroups of finite fields, primitive
elements of finite fields, and lines of finite geometries.

Conclusion and Remarks
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