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Abstract— In this paper we study the problem of using query
flooding to find a target (e.g., a node or a piece of data) with
unknown location in a network. Specifically, we will consider two
types of flooding search methods, one referred to as controlled
flooding (CF) and the other suppressed flooding (SF). Under both
methods how far the query packet propagates is determined
by a time-to-live (TTL) value, decremented for every hop the
query traverses. The difference is that under CF, after each
failed attempt, the source node times out and initiates a new
round of query packet with a larger TTL value, whereas under
SF, when the TTL value becomes zero upon reaching certain
nodes, those nodes “freeze” or suspend the search and wait for a
suppression message from the source node (in case the target is
found). They time out if this message does not arrive and resume
the propagation of the query packet. We formulate for both
methods a constrained optimization problem where the objective
is to minimize a worst-case cost measure, subject to a worst-case
delay constraint. We derive the solution to this problem under
each method and illustrate the cost-delay trade-off inherent in
the search problem. These results also highlight the conditions
under which one method is preferred over the other.

Index Terms— data query and search, TTL, controlled flooding
search, suppressed flooding search, wireless sensor and ad hoc
networks, constrained optimization, randomized strategy, com-
petitive analysis

I. INTRODUCTION

Query search is an important functionality for many network
applications. Searching for a destination node whose location
is unknown is a prime example frequently encountered by
ad hoc network routing protocols and services, e.g., [1], [2].
Other examples include the search for certain data of interest
in an environmental monitoring sensor network [4], and more
broadly, the search for a shared file in a peer-to-peer (P2P)
network. A good search mechanism should have a short
response time and should incur minimal cost.

There are a variety of mechanisms one may use to conduct
search. These include maintaining a centralized directory
service, or by sending out a query packet that traverses the
network in a certain way [4]. In this paper we focus on two
types of search schemes, both within the class of flooding
search. The first is the conventional controlled flooding (CF)
[6], [7]. Under this scheme the node originating the search
(also referred to as the source node) sends out (broadcasts)
a query packet that carries an integer TTL (time-to-live)
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value. If the search target is found at a neighboring node
(or at anytime during the search process), it will reply to the
source. Otherwise it decrements the TTL value by one and
rebroadcasts the query packet. This continues until the TTL
reaches zero. If the target is not found in this search area, the
source node will eventually time out and initiate another round
of search covering a bigger area using a larger TTL value, and
presumably setting a larger timeout value for that round of
search. This process continues until either the object is found
or the source gives up. Hence the performance of a search
strategy both in terms of cost and delay is determined by the
sequence of TTL values used. Controlled flooding search has
previously been studied in [7], [8], [6], [9]. In particular, in
[9] we derived optimal CF strategies that minimize a worst-
case search cost measure, and in [10] we further considered
the search delay involved in CF strategies.

The second type of flooding is referred to as suppressed
flooding (SF), also using TTL values. Similar to CF, initially
the source node sends out a query packet that is propagated
through the network. The difference is that when the TTL
is decremented to zero at some node, that node will freeze
or suspend the search rather than discarding the query packet.
Such a frozen node then waits for a suppression message from
the source to formally terminate the search process; otherwise
it times out and resumes the search with a new TTL value.
The source only sends out the suppression message if it has
received a reply from the target. Note that under SF, timeouts
occur at the frozen nodes rather than the source node (as in
CF). These timeout values must be set high enough to ensure
that a possible suppression message will reach them before
the next round of search begins. Thus it is possible that using
SF could incur a high delay. On the other hand, SF may have
lower cost than CF, because under CF query packets must
propagate from the source at the start of search round, whereas
under SF the query packets only have to propagate from the
previous round’s frozen nodes to the new set of frozen nodes
for the current round.

The primary goal of this study is to compare controlled
and suppressed flooding strategies in terms of the search
cost and the search delay. Specifically, we will formulate
a constrained optimization problem by minimizing a cost
measure subject to a delay constraint. The rest of the paper is
organized as follows. In Section II we present the model and
relevant assumptions. Section III gives the formulation and
main results, as well as a discussion. Section IV concludes
the paper.



II. NETWORK MODEL

A. Model and Assumptions

We will limit our analysis to the case of searching for a
single target, which is assumed to exist in the network. For the
rest of our discussion we will use the term object to indicate
the target of a search, be it a node, a piece of data or a file.
We measure the position of an object by its distance to the
source initiating the search, measured in hops. We will use
the term object location to indicate the minimum TTL value
needed to locate the object, denoted by X . The term network
dimension refers to the minimum TTL required to reach every
node in the network, denoted by L. Also, F̄X(u) = P (X > u)
denotes the tail distribution of the random variable X .

We will assume that when the source times out, a TTL
value of u will have reached all nodes within u hops of the
source and will find the object with probability 1 if it is located
within u hops. This assumption implies that (1) the query
propagation process is reliable and that (2) the timeout values
are set perfectly, such that a timeout event is equivalent to not
finding the object in the u-hop neighborhood. This assumption
is a simplification if the network is lossy. In addition, random
delay experienced in the network may cause timer to expire
prematurely. It nevertheless allows us to reveal some very
interesting fundamental features of the problem and obtain
valuable insights.

B. Search Strategies

For a CF scheme, a search strategy can be described by
a sequence of TTL values, denoted by u = [u1, u2, · · · , uN ]
of certain length N . It can be either fixed/deterministic or
random. For a fixed strategy we assume that u is an increasing
sequence. For randomized strategies, we assume all realiza-
tions are increasing sequences. Note that in a specific search
experiment we may not need to use the entire sequence; the
search stops whenever the object is found.

For an SF scheme, the search strategy is uniquely defined
by the distance of the frozen nodes from the source. It can
be similarly described by a sequence u: in the first round the
query reaches all nodes within u1 hops of the source. Nodes
that are exactly u1 hops away from the source freeze at the end
of this round. If the object is not found, then a timeout will
occur at these frozen nodes. They then begin a new round
of search by propagating the query to all nodes that are u2

hops away from the source (and thus u2−u1 hops away from
these frozen nodes). We will also refer to an SF strategy u

as a TTL sequence, and refer to element uk as the kth TTL
value, because this is the TTL value used by the source node
on the kth round if it sends out a suppression message. Note
the frozen nodes set the TTL to uk −uk−1 for the kth round.
It can be seen that using the same TTL sequence for both CF
and SF will successively search the same regions, although
the underlying methods are quite different.

In practice, for both schemes it is natural to only consider
integer-valued (discrete) policies. However, considering real-
valued sequences proves to be helpful in deriving optimal

integer-valued strategies. For this reason we will also consider
continuous (real-valued) strategies, denoted by v, where v =
[v1, v2, · · · , vN ], and vi is either fixed or a continuous random
variable. When considering discrete strategies, TTL values are
integers and the object location X is assumed to be a positive
integer taking values between 1 and L. In analyzing continuous
strategies, X is assumed to be a real number in the interval
[1, L].

A strategy is admissible if it locates any object of fi-
nite location with probability 1. For a fixed strategy this
implies uN = L. For a random strategy, this implies
Pr (ui = L for some 1 ≤ i ≤ N) = 1. In the asymptotic
case as L → ∞, a strategy u is admissible if ∀ x ≥
1, P r (un ≥ x for some n ∈ Z+) = 1, implying that u is an
infinite-length vector in the asymptotic case. We let U and V

denote the set of all real-valued and integer-valued admissible
strategies (random and fixed), respectively.

C. Search Cost and Delay

For both CF and SF, we will let C(u) denote the cost of
sending the query from the source to all nodes within u hops of
the source. The functional form of this cost will depend on the
properties of the network as well as the underlying broadcast
techniques used. Similarly, Cs(u) denotes the cost of sending
the suppression message to all nodes within u hops of the
source. This cost may be smaller than C(u) if the suppression
message is in the form of a much smaller signaling packet.

Note that in general, a node receiving the search query will
be unaware whether the object is found at another node in
the same round. Thus this node will continue the process
by decrementing the TTL value. Therefore the query search
cost for each round is determined by the TTL value and not
by whether the object is located in that round. Similarly, a
suppression message will propagate till the TTL reaches 0,
thus its cost is also completely determined by the TTL value.

For CF, we denote by Dt(u) the source timeout value used
when searching with TTL u. This is the delay incurred when
the object is not found using u, i.e., when u < X . On the
other hand, if u ≥ X , then the delay incurred in this case
is the amount of time it takes for the query to propagate X

hops and for the reply to reach back to the source. We will
denote this delay by Dr(X) for object location X . Thus the
search delay of using TTL value u under CF can be written as:
I(u < X)Dt (u)+I(X ≤ u)Dr (X), where I is the indicator
function: I(A) = 1 if A is true and 0 otherwise.

For SF, we let dt(u, ũ) denote the amount of time it takes for
the query to travel from nodes at distance u from the source to
nodes that are at distance ũ. We let u = 0 indicate the source.
Similarly, dr(u, 0) denotes the amount of time it takes for the
reply message to travel from a node at distance u back to the
source. Thus the delay Dr(.) defined earlier can be written as
Dr(u) = dt(0, u) + dr(u, 0).

In the kth round of SF, if uk−1 < X ≤ uk then the query
travels from frozen nodes to the target, which sends back a
reply to the source. This takes a total time of dt(uk−1, X) +
dr(X, 0). Otherwise, X > uk and a timeout occurs at the



frozen nodes. Note that if we assume that the suppression mes-
sage travels at the same speed as the query, then the timeout at
the frozen nodes should be set to Dt(uk), the same as that set
by the source node under CF. The time it takes for the query to
reach these frozen nodes plus the timeout associated with the
suppression message is thus equal to dt(uk−1, uk) + Dt(uk).
For the rest of our analysis we will assume that the suppression
message travels at the same speed as the query packet, and that
dt(uk−1, uk) = dt(0, uk) − dt(0, uk−1).

For real-valued sequences, we require that the above cost
and delay functions be defined for all v ∈ [1,∞), while for
integer-valued sequences we only require that these functions
be defined for positive integers. When the cost function is
invertible, we write C−1(·) to denote its inverse. We denote
by C the class of cost functions C : [1,∞) → [C(1),∞),
that are increasing, differentiable, and have the property
limv→∞ C(v) = ∞. Finally, let C1 denote the set of cost
functions C(·) ∈ C such that limx→∞

C(x+1)
C(x) = 1. Note that

this subset contains all polynomial cost functions.

III. PROBLEM FORMULATION AND MAIN RESULTS

A. Problem Formulation

We will consider the search performance in the asymptotic
regime as L → ∞. This is because it is difficult if at
all possible to obtain a general strategy that is optimal for
all finite-dimension networks as the optimal TTL sequence
often depends on the specific value of L. In this sense,
an asymptotically optimal strategy may provide much more
insight into the intrinsic structure of the problem.

Let Ju

X denote the expected search cost of using CF strategy
u when the object location is X . This quantity can be
calculated as follows:

Ju

X = EuEX

[

∞
∑

k=1

I (X > uk−1) C(uk)

]

(1)

= Eu

[

∞
∑

k=1

F̄X (uk−1)C(uk)

]

, (2)

where u0 = 0. We will drop the subscript when it is
clear which variable the expectation is taken with respect to.
Similarly, let Hu

X denote the expected search cost of using
SF strategy u when the object location is X . This can be
calculated as follows:

Hu

X = EuEX

[

∞
∑

k=1

I (uk−1 < X ≤ uk) (C(uk) + Cs(uk))

]

= Eu

[

∞
∑

k=1

(

F̄X (uk−1) − F̄X (uk)
)

(C(uk) + Cs(uk))

]

,

(3)

Let Du

X denote the expected search delay induced by CF

strategy u for X . This quantity can be calculated as follows:

Du

X = EuEX

[

∞
∑

k=1

I(X > uk)Dt(uk)

]

+ EuEX

[

∞
∑

k=1

I(uk ≥ X > uk−1)Dr(X)

]

= Eu

[

∞
∑

k=1

F̄X(uk)Dt(uk)

]

+ EX [Dr(X)] .

Similarly, for SF the expected delay T u

X is given by:

Tu

X = EuEX

[

∞
∑

k=1

I(X > uk)(dt(uk−1, uk) + Dt(uk))

]

+ EuEX

[

∞
∑

k=1

I(uk ≥ X > uk−1)(dt(uk−1, X) + dr(X, 0))

]

= Eu

[

∞
∑

k=1

F̄X (uk)Dt(uk)

]

+ EX [Dr(X)] .

which turns out to be identical to Du

X .
In this study we adopt a worst-case performance measure.

Specifically we can measure the performance of a CF strategy
u by the following competitive ratio (or worst-case cost ratio):

ρu = sup
{pX (x)}

Ju

X

E[C(X)]
, (4)

where {pX(x)} denotes the set of all probability distributions
for X such that E[C(X)] < ∞, and E[C(X)] denotes the
expected cost of an omniscient observer. The worst-case cost
ratio of an SF strategy is similarly defined.

Similarly, the worst-case delay ratio of a CF strategy u is
given by:

τu = sup
{pX(x)}

Du

X

E[Dr(X)]
, (5)

where we note in this case {pX(x)} is the set of all location
distributions such that E[Dr(X)] < ∞. Again the worst-case
delay ratio for SF is similarly defined.

With the above cost and delay measures, we formulate the
constrained optimization problem as follows. Consider the set
of CF strategies:

Ud =

{

u ∈ U : sup
{pX (x)}

Du

X

E[Dr(X)]
≤ d

}

, (6)

for some constant d > 1. This is the set of all strategies
whose delay is always within a factor d of the delay of the
omniscient observer, regardless of X . We will call d the delay
constraint. Note that as d → ∞, the delay constraint becomes
less restrictive and the set Ud approaches U .

We seek a CF strategy that satisfies this delay constraint d

and has the smallest worst-case cost ratio:

ρ∗d = inf
u∈Ud

sup
{pX (x)}

Ju

X

E[C(X)]
. (7)

This constitutes our constrained optimization problem (P).
Note that the two supremums in (P), one in the objective



function and the other in the constraint (6), are in general
not achieved under the same distribution pX(x). A similar
optimization problem can be formulated for SF strategies in a
straightforward manner.

The above definitions also hold analogously for continuous
strategies. We will thus denote ρv, τv and Vd as the continuous
versions of (4), (5), (6), respectively.

We have shown [10] that for problem (P), there is no loss
in generality in assuming that Dt(·) = Dr(·). We thus let
D(u) = Dt(u) = Dr(u) for all u. It follows that using
a TTL value u for object location X will incur a delay of
D (min {X, u}). We will also use the same notation Du

X to
denote the expected delay for both CF and SF strategies u,
since they are the same. This implies that we can use the same
notation Ud and Vd to describe the same classes of CF and
SF strategies.

B. Main Results

We define the following class of continuous strategies:
Definition 1: Assume that the cost function C(·) ∈ C. Let

v[r, Fv1
(·)] denote a jointly defined sequence v = [v1, v2, ...]

generated as follows:
(J.1) The first TTL value v1 is a continuous random variable

taking values in the interval
[

1, C−1(r · C(1))
)

, with
its cdf given by some nondecreasing, right-continuous
function Fv1

(x) = Pr(v1 ≤ x). Note that this means
Fv1

(1) = 0 and Fv1

(

C−1(r · C(1))
)

= 1.
(J.2) The k-th TTL value vk is defined by vk =

C−1
(

rk−1C(v1)
)

for all positive integers k.
We see that that given the selection of v1, the cost of successive
TTL values essentially form a geometric sequence of base r.

Our main theorems regarding the class of continuous CF
and SF strategies are as follows.

Theorem 1: When C(·) ∈ C and C(·) = βD(·)m for some
m, β > 0, we have:

(1) For any fixed 1 < d < m + 1,

inf
v∈Vd

sup
{fX (x)}

Jv

X

E[C(X)]
=

(d − 1)

m
e

m

d−1 . (8)

Moreover, this minimum worst-case ratio is achieved by using
the CF strategy v[r, 1

ln r
ln C(·)

C(1) ] with r = e
m

d−1 .
(2) For d ≥ m + 1, we have:

inf
v∈Vd

sup
{fX (x)}

Jv

X

E[C(X)]
= e . (9)

Moreover, this minimum worst-case ratio is achieved by using
the strategy v[r, 1

ln r
ln C(·)

C(1) ] with r = e.

Theorem 2: When C(·) ∈ C, C(·) = βD(·)m for some
m, β > 0, and Cs(·) = αC(·) for some α > 0, we have for
any fixed d > 1,

inf
v∈Vd

sup
{fX (x)}

Hv

X

E[C(X)]
= (1 + α)

(d − 1)

m

[

e
m

d−1 − 1
]

. (10)

This minimum worst-case ratio is achieved by using the SF
strategy v[r, 1

ln r
ln C(·)

C(1) ] with r = e
m

d−1 .
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Fig. 1. When C(·) = βD(·) and α = 1, plot of the minimum worst-case
cost ratio as a function of the delay constraint d for both CF and SF schemes.

Note the optimal strategies of Theorems 1 and 2 can
be adjusted for different delay constraints by varying the
parameter r. For discrete strategies we have the following.

Theorem 3: When C(·) ∈ C and C(·) = βD(·)m for some
m, β > 0, we have:

(1) For 1 < d < m + 1,

inf
u∈Ud

sup
{pX (x)}

Ju

X

E[C(X)]
≤

(d − 1)

m
e

m

d−1 . (11)

(2) For d ≥ m + 1,

inf
u∈Ud

sup
{pX (x)}

Ju

X

E[C(X)]
≤ e . (12)

Theorem 4: When C(·) ∈ C, C(·) = βD(·)m for some
m, β > 0, and Cs(·) = αC(·) for some α > 0, we have for
any fixed d > 1:

inf
u∈Ud

sup
{pX(x)}

Hu

X

E[C(X)]
≤ (1 + α)

(d − 1)

m

[

e
m

d−1 − 1
]

. (13)

Whether the upper bounds in Theorems 3 and 4 become
equalities appears to depend on the specific cost function C(·).
By restricting our attention to cost functions C(·) ∈ C1, the
inequalities in the previous two theorems can be achieved via
discrete strategies u

∗ = bv∗c, by taking the floor (operated
on each element of the vector) of the corresponding optimal
continuous strategies for CF and SF, respectively.

C. Discussion

The differentiation between the two cases, 1 < d < m + 1
vs. d ≥ m + 1, in all Theorems 1 and 3 is due to the fact
that the optimization problem (P) for CF has an active/binding
constraint in the former, and an inactive/non-binding constraint
in the latter.

The main results rely on the relationship C(·) = βD(·)m

for some m, β > 0, where the factor m describes the relative
rate at which the cost and delay functions grow with respect
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Fig. 2. When C(·) = βD(·)m, a logarithmic plot of the minimum worst-
case cost ratio as a function of the delay constraint d. Dotted portions indicate
when the delay constraint is not binding and hence the unconstrained strategy
of Theorem 1, part (2) is optimal. For d ≥ 3, the best worst-case cost ratio
is e for all three curves.

to TTL. First note that the constant positive factor β cancels
out in the cost or delay ratio calculated in (4) and (5). Hence
we can assume β = 1 without loss of generality. Secondly,
the relationship C(·) = D(·)m holds, for example, in a very
representative case of searching in a 2-dimensional network
with search cost proportional to the number of transmissions
incurred. In this case C(v) is well approximated by a quadratic
function (see e.g., [7], [8]) and D(v) can be chosen to be a
linear function of v (implying m = 2), or quadratic (implying
m = 1).

Finally, the condition Cs(·) = αC(·), for α > 0, describes
the cost of sending the suppression message relative to that of
sending the query. In general, α < 1 is desired, indicating
sending the suppression message is cheaper (e.g., smaller
packet size).

Figure 1 depicts the minimum cost ratio for the CF and
SF schemes when Cs(·) = C(·) = βD(·) (so α = m = 1).
Note that for large d, the suppressed flooding scheme performs
better. This is because if delay is not a factor, then the
minimum cost strategy is to increase TTL by the smallest
possible increment after every round. Such a strategy incurs
high delay as the frozen nodes must wait for possible suppres-
sion message, but only a minimal cost is committed for every
round. Thus for larger delay tolerance, the suppressed flooding
scheme performs better because more low-cost strategies are
admissible. On the other hand, when d is small then the
opposite is true. Since waiting for the suppression message can
incur a high delay, under a more stringent delay requirement
it is harder for SF to achieve low-cost.

Figure 2 depicts the trade-off between optimal worst-case
cost ratio under CF as given by Theorem 1 and the delay
constraint d when C(·) = βD(·)m. The dotted portion of
each curve indicates when the delay constraint becomes non-
binding, i.e., for d ≥ m + 1 = 1.5, 2, 3, respectively. In

these cases the optimal unconstrained strategy (using r = e)
has a minimum worst-case cost ratio of e. Note that the
plot is logarithmic. As d approaches 1 from above, the best
worst-case cost ratio approaches ∞ for all m. Hence, as the
constraint on delay becomes tighter, the minimum worst-case
cost increases unboundedly.

IV. CONCLUSION

In this paper we studied the cost and delay performance
of a type of TTL-based controlled flooding search methods.
In particular, we analyzed and compared two such methods,
the controlled flooding (CF) and the suppressed flooding (SF).
We presented a constrained optimization framework in order
to derive strategies that minimize a worst-case search cost
measure subject to a worst-case search delay constraint. We
derived the solution to this problem under each method and
illustrated the inherent cost-delay trade-offs. These results also
highlight the conditions under which one search method is
preferred over the other.

REFERENCES

[1] D. Johnson and D. Maltz, “Dynamic source routing in ad hoc wireless
networks,” Mobile Computing, pp. 153–181, 1999.

[2] J. Xie, R. Talpade, T. McAuley, and M. Liu, “AMRoute: Ad Hoc
Multicast Routing Protocol,” ACM Mobile Networks and Applications
(MONET) Special Issue on Mobility of Systems, Users, Data and
Computing, vol. 7, no. 6, pp. 429–439, December 2002.

[3] C. Carter, S. Yi, P. Ratanchandani, and R. Kravets., “Manycast:
Exploring the space between anycast and multicast in ad hoc networks,”
Proceedings of the Ninth Annual International Conference on Mobile
Computing and Networks (MobiCOM’03), September 2003, San Diego,
California.

[4] D. Braginsky and D.Estrin, “Rumor routing algorithm for sensor
networks,” Proc. International Conference on Distributed Computing
Systems (ICDCS-22), 2002.

[5] S. Shakkottai, “Asymptotics of query strategies over a sensor network,”
Proceedings of IEEE Infocom, March 2004, Hong Kong.

[6] Z. Cheng and W. Heinzelman, “Flooding strategy for target discovery
in wireless networks,” Proceedings of the Sixth ACM International
Workshop on Modeling, Analysis and Simulation of Wireless and Mobile
Systems (MSWiM 2003), Sept 2003.

[7] Y. Baryshinikov, E. Coffman, P. Jelenkovic, P. Momcilovic, and
D. Rubenstein, “Flood search under the california split rule,” Operations
Research Letters, vol. 32, no. 3, pp. 199–206, May 2004.

[8] N. Chang and M. Liu, “Revisiting the ttl-based controlled flooding
search: Optimality and randomization,” Proceedings of the Tenth
Annual International Conference on Mobile Computing and Networks
(MobiCom’04), pp. 85–99, September 2004, Philadelphia, PA.

[9] N.B.Chang and M. Liu, “Optimal controlled flooding search in a large
wireless network,” Third International Symposium on Modeling and
Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt’05),
pp. 229–237, April 2005, Riva Del Garda, Italy.

[10] N.Chang and M.Liu, “Controlled flooding search with delay constraints,”
Proceedings of IEEE Infocom, April 2006, Barcelona, Spain.

[11] N. Chang and M. Liu, “Controlled flooding search with delay con-
straints,” EECS Technical Report CGR 05-08, 2005, University of
Michigan, Ann Arbor, http://www.eecs.umich.edu/˜mingyan/pub.html.


