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Abstract— We investigate how quickly phase transitions can
occur in some geometric random graphs wheren points are
distributed uniformly and independently in the unit cube [0, 1]d

for some positive integerd. In the case of graph connectivity
for the one-dimensional case, we show that the transition width
behaves liken−1 (when the numbern of users is large), a signifi-
cant improvement over general asymptotic bounds given recently
by Goel et al. for monotone graph properties. We outline how
the approach used here could be applied to higher dimensional
graphs and to other graph properties. The key ingredient is the
availability of a Poisson paradigm complementing the “zero-one”
law usually occurring for many graph properties.

I. I NTRODUCTION

Over the past few years, geometric random graphs have
provided a useful abstraction for studying large wireless net-
works [6], [9], [10], [13]. Much attention has focused on the
basic situation wheren points are distributed uniformly and
independently in the unit cube[0, 1]d (in Rd) for some positive
integerd. Given a fixed thresholdτ > 0, two points are then
said to be directly connected if their Euclidean distance isless
thanτ . This notion of connectivity gives rise to an undirected
geometric random graph, denotedGd(n; τ).

In the context of wireless networks, withd = 1, 2, 3, these
n points represent users equipped with a transmitter/receiver
of transmission rangeτ . In first approximation, if we neglect
details of channel behavior, it is reasonable to model two
users as being able to communicate with each other if their
Euclidean distance is less thanτ . This approach has been taken
by a number of authors, e.g., [3], [4], [5], [6], [9], [10], [13].

Randomizing user locations makes it possible for many
properties ofGd(n; τ) (including connectivity) to reveal a
typical behaviorwhenn becomes large. This manifests itself
as follows: Consider a monotone increasing graph property
A defined in the usual manner [12],1 graph connectivity
being such a property. For eachn = 2, 3, . . ., let PA(n; τ)
denote the probability thatA occurs inGd(n; τ). The mapping
τ → PA(n; τ) is monotone increasing with0 < PA(n; τ) <

1 in some finite interval andPA(n; τ) = 0 or 1 outside
it. As earlier simulation results already indicate for various
properties of interest [3], [4], [5], [13], there often exists a

1The case of monotone decreasing graph properties can be discussed
mutatis mutandis.

phase transitionfrom PA(n; τ) ≃ 0 to PA(n; τ) ≃ 1 as τ

varies across some critical range. A natural question therefore
consists in estimating how quickly this transition takes place.

To address this issue, for eachn = 2, 3, . . ., we define

τA,n(a) = inf (τ > 0 : PA(n; τ) ≥ a) , a ∈ (0, 1)

and we set

δA,n(a) = τA,n(1 − a) − τA,n(a), a ∈ (0,
1

2
).

The transition widthδA,n(a) measures how quicklyPA(n; τ)
climbs from levela to level1−a, thereby giving an indication
of the sharpness of the phase transition. Given the rather
complex dependence ofδA,n(a) on n and a, it is desirable
to find asymptotic bounds (if nothing else) on its behavior for
largen.

Recently, Goel et al. [8] have derived such asymptotic
bounds for any monotone graph property inGd(n; τ). For any
such propertyA, their results imply thatδA,n(a) = o(1), a fact
captured by the terminology that the monotone propertyA has
a sharp threshold. However, these general results leave open
the question as to whether these asymptotic bounds can be
further sharpened forspecificmonotone graph properties.

Here, we tackle this issue for the probability of graph con-
nectivity. For ease of telling the story, we restrict the discussion
to one-dimensional geometric random graph models (d = 1);
such models have been investigated in the references [3], [4],
[5], [7] which contain some of the needed results. Our main
result takes the form ofexact asymptotic expansions (inn)
for the thresholds [Theorem 1]. This leads to transition widths
of order n−1 with known preconstants, so that these graph
properties arevery sharp indeed! Such information can be
leveraged in network design when network connectivity is an
important concern.

The one-dimensional case (d = 1) may be construed as
perhaps too limited or not too relevant to practice. However,
we stress that the main contribution of the paper lies in
identifying anapproach of wide applicabilityto establish sharp
asymptotics on the transition width: The key ingredient is the
availability of aPoisson paradigmcomplementing the “zero-
one” law usually occurring for many graph properties.

The paper is organized as follows: The model and prelimi-
naries are given in Section II. The main results concerning the



behavior of thresholds for graph connectivity are presented in
Section III. In Section IV, we explain how the appropriate
“zero-one” laws and companion Poisson convergence lead
to the correct asymptotics for the threshold width. This is
followed by a formal proof in Section V. In Section VI we
briefly contrast our results against the results of Goel et al.; we
also provide a rough roadmap for establishing similar results
in higher dimensions (d ≥ 2) and for other graph properties.

II. M ODEL AND PRELIMINARIES

The one-dimensional model has been considered by a
number of authors [3], [4], [5], [7]. To define it, let{Xi, i =
1, 2, . . .} denote a sequence of i.i.d. rvs distributed uniformly
in the interval[0, 1].

For eachn = 2, 3, . . ., we think of X1, . . . , Xn as the
locations of n nodes (or users), labelled1, . . . , n, in the
interval [0, 1]. Given a fixed distanceτ > 0, two nodes are
said to be directly connected if their distance is at mostτ ,
i.e., nodesi and j are connected if|Xi − Xj | ≤ τ , in which
case an undirected edge is said to exist between these two
users. This notion of connectivity gives rise to the undirected
geometric random graphG1(n; τ), thereafter denotedG(n; τ).

Let the rvsXn,1, . . . , Xn,n denote the locations of thesen
users arranged in increasing order, i.e.,Xn,1 ≤ . . . ≤ Xn,n

with the conventionXn,0 = 0 and Xn,n+1 = 1. The rvs
Xn,1, . . . , Xn,n are theorder statisticsassociated with then
i.i.d. rvs X1, . . . , Xn. Also define

Ln,k := Xn,k − Xn,k−1, k = 1, . . . , n + 1.

ObviouslyLn,1 + . . . + Ln,n+1 = 1. It is well known [2, Eq.
(6.4.3), p. 135] that for any fixed subsetI ⊆ {1, . . . , n}, we
have

P [Ln,k > tk, k ∈ I] =

(

1 −
∑

k∈I

tk

)n

+

, tk ∈ [0, 1], k ∈ I

with the notationxn
+ = xn if x ≥ 0 andxn

+ = 0 if x ≤ 0.
Fix τ > 0 and n = 2, 3, . . .. The geometric random graph

G(n; τ) is said to be(path) connectedif every pair of users
can be linked by at least one path over the edges of the graph,
and we write

P (n; τ) := P [G(n; τ) is connected] .

Obviously, the graphG(n; τ) is connected if and only if
Ln,k ≤ τ for all k = 2, . . . , n, so that

P (n; τ) = P [Ln,k ≤ τ, k = 2, . . . , n] . (1)

The closed form expression

P (n; τ) =

n−1
∑

k=0

(−1)k

(

n − 1

k

)

(1 − kτ)n
+ (2)

has been rediscovered by several authors, e.g., Godehardt and
Jaworski [7, Cor. 1, p. 146], and Desai and Manjunath [3] (as
Eqn (8) withz = 1 andr = τ ).

III. M AIN RESULTS

For eachn = 2, 3, . . ., the mappingτ → P (n; τ) can
be shown to be continuous and strictly monotone increasing.
Given fixeda in (0, 1), this property guarantees the existence
and uniqueness of solutions to the equation

P (n; τ) = a, τ ∈ (0, 1). (3)

Let τn(a) denote this unique solution, and whenevera lies in
the interval(0, 1

2
), we set

δn(a) := τn(1 − a) − τn(a).

The main result concerning the behavior ofτn(a) for large
n is given first.

Theorem 1:For everya in the interval(0, 1), it holds that

τn(a) =
log n

n
− 1

n
log

(

log

(

1

a

))

+ o
(

n−1
)

. (4)

Theorem 1 is established in Section V. The desired result on
the width of the transition interval flows as an easy corollary.

Corollary 1: For everya in the interval(0, 1

2
), we have

δn(a) =
C(a)

n
+ o

(

n−1
)

(5)

with constantC(a) given by

C(a) = log

(

log a

log(1 − a)

)

. (6)

It is a simple matter to check thata → C(a) is de-
creasing on the interval(0, 1

2
) with lima↓0 C(a) = ∞ and

lima↑ 1

2

C(a) = 0. These qualitative features are in line with
one’s intuition.

IV. H OW TO GUESS THE RESULT

We now present a plausibility argument which allows us to
guess the validity of Theorem 1, and which eventually paves
the way to its proof: Our point of departure is the “zero-one”
law available for the property of graph connectivity under the
asymptotic regime created by havingn become large and the
threshold parameter scaled appropriately withn. We shall find
it useful to say that a threshold functionτ : N → [0, 1] is
admissibleif limn→∞ τn = 0. There is no loss of generality
in writing such an admissible threshold function in the form

τn =
1

n
(log n + αn) , n = 2, 3, . . . . (7)

whereα : N → R satisfiesαn = o(n).
Theorem 2:For any admissible threshold functionτ : N →

[0, 1] written in the form (7), it holds that

lim
n→∞

P (n; τn) =







0 if limn→∞ αn = −∞

1 if limn→∞ αn = +∞.

(8)

Theorem 2 follows from Theorem 1 in [1, p. 352], but can
also be derived by direct arguments based on the method of
first and second moments [11].



The convergence (8) identifies the critical scaling

τ⋆
con,n =

log n

n
, n = 2, 3, . . .

as the threshold function which defines aboundaryin the space
of scalings. Intuition suggests that mild fluctuations about this
boundary, say of ordern−1, are likely to hold the key to the
form of τn(a) for large n. To explore this idea further, for
eachx in R, define the[0, 1]-valued sequence{σn(x), n =
1, 2, . . .} by

σn(x) = min

(

1,

(

log n + x

n

)

+

)

, n = 1, 2, . . . (9)

so that

σn(x) =
log n + x

n
(10)

for n large enough. The next result complements the ”zero-
one” law (8), and in fact implies it; it is given as part of
Theorem 12 in [7, p. 157].

Theorem 3:For eachx in R, it holds that

lim
n→∞

P (n; σn(x)) = p(x) (11)

with
p(x) = e−e−x

. (12)

To see in what sense the convergence (11) underpins The-
orem 1, consider the following heuristic arguments: For each
x in R, the convergence (11) yields the approximation

P (n; σn(x)) ≃ p(x)

for large enoughn. The mappingp : R → R+ : x → p(x) is
strictly monotone and continuous withlimx→−∞ p(x) = 0 and
limx→∞ p(x) = 1. Therefore, for eacha in the interval(0, 1),
there exists a unique scalar, denotedxa, such thatp(xa) = a.
In fact,

xa = − log (− log a) . (13)

Given a in the interval(0, 1), we find that

P (n; σn(xa)) ≃ a

for large n. This suggests (but not quite yet proves) that
σn(xa) and τn(a) behave in tandem asymptotically, thereby
laying the grounds for the validity of (4) – Just insert (13)
into (10) and (12). These ideas form the basis for the proof
of Theorem 1 found in Section V.

To gain some perspective on (11)–(12), we introduce the
notion ofbreakpointuser. For eachi = 1, . . . , n, useri is said
to be a breakpoint user in the random graphG(n; τ) whenever
(i) it is not the leftmost user in[0, 1] and (ii) there is no user
in the random interval[Xi − τ, Xi]. The numberCn(τ) of
breakpoint nodes inG(n; τ) is given by

Cn(τ) =

n
∑

k=2

χn,k(τ)

with {0, 1}-valued rvsχn,1(τ), . . . , χn,n+1(τ) defined as the
indicator functions

χn,k(τ) := 1 [Ln,k > τ ] , k = 1, . . . , n + 1.

As a result,
P (n; τ) = P [Cn(τ) = 0] (14)

and Theorem 3 is now a mere byproduct of a stronger result
[Theorem 4] onPoisson convergence[7, Thm. 12, p. 157].

Theorem 4:For eachx in R, it holds thatCn(σn(x)) =⇒n

Π(e−x) whereΠ(µ) denotes a Poisson rv with parameterµ

and=⇒n denotes convergence in distribution withn going to
infinity.

V. A PROOF OFTHEOREM 1

Fix x in R. We restate (11) by noting that for eachε > 0,
there exists a finite integern⋆(ε, x) such that

p(x) − ε < P (n; σn(x)) < p(x) + ε, n ≥ n⋆(ε, x). (15)

Now fix a in the interval(0, 1), and pickε sufficiently small
such that0 < 2ε < a and a + 2ε < 1. Repeatedly applying
(15) with x = xa+ε andx = xa−ε, we get

p(xa+ε) − ε < P (n; σn(xa+ε)) < p(xa+ε) + ε (16)

whenevern ≥ n⋆(ε, xa+ε), and

p(xa−ε) − ε < P (n; σn(xa−ε)) < p(xa−ε) + ε (17)

whenevern ≥ n⋆(ε, xa−ε). In the remainder of this proof,
all inequalities are now understood to hold forn ≥ n⋆(a; ε)
where we have set

n⋆(a; ε) = max (n⋆(xa), n⋆(ε, xa+ε), n
⋆(ε, xa−ε))

where n⋆(x) denotes the finite integer beyond which the
representation (10) holds.

Sincep(xa±ε) = a ± ε, the two chains of inequalities at
(16) and (17) can be rewritten as

a < P (n; σn(xa+ε)) < a + 2ε

and
a − 2ε < P (n; σn(xa−ε)) < a.

Thus,

P (n; τn(a)) < P (n; σn(xa+ε)) < P (n; τn(a + 2ε))

and

P (n; τn(a − 2ε)) < P (n; σn(xa−ε)) < P (n; τn(a)),

and the strict monotonicity ofτ → P (n; τ) yields

τn(a) < σn(xa+ε) < τn(a + 2ε)

and
τn(a − 2ε) < σn(xa−ε) < τn(a).

Combining these last two inequalities, we conclude that

σn(xa−ε) < τn(a) < σn(xa+ε). (18)



Upon writing

ξn(a) = τn(a) − σn(xa), n = 2, 3, . . . (19)

we obtain from (18) that

σn(xa−ε) − σn(xa) < ξn(a) < σn(xa+ε) − σn(xa)

with

σn(xa±ε) − σn(xa) =
xa±ε − xa

n
. (20)

As a result, xa−ε − xa ≤ lim infn→∞ (nξn(a)) and
lim supn→∞ (nξn(a)) ≤ xa+ε−xa. Given thatε can be taken
to be arbitrary small, it follows that

lim inf
n→∞

(nξn(a)) = lim sup
n→∞

(nξn(a)) = 0

since
lim
ε↓0

(xa−ε − xa) = lim
ε↓0

(xa+ε − xa) = 0.

Thus,limn→∞ (nξn(a)) = 0, whenceξn(a) = o
(

1

n

)

. Report-
ing into (19) leads to

τn(a) = σn(xa) + o(n−1), n = 2, 3, . . .

and the desired result readily follows from (9) and (13).

VI. D ISCUSSION

A. Theorem 1 vs. Goel et al. [8]

Ford = 1, the model considered by Goel et al. [8] coincides
with the one-dimensional situation discussed here. They show
[8, Thm. 1.1] that for every monotone graph propertyA, the
corresponding transition width for propertyA satisfies

δA,n(a) = O

(

√

− log a

n

)

. (21)

The results obtained here for graph connectivity markedly
improve on (21) in thatexactasymptotics were provided and
the rate of decay (namely,n−1) is found to be a lot faster than
the rough asymptotic bound given by (21). These authors also
show [8, Thm. 1.2] that thereexists some monotone graph
property, sayB, such that

δB,n(a) = Ω

(

√

− log a

n

)

. (22)

Obviously, graph connectivity cannot be such a property!

B. Isolated nodes

Similar arguments can be made for graph properties other
than graph connectivity. Here is another example: Fixτ > 0
andn = 2, 3, . . .. For eachi = 1, . . . , n, nodei is said to be
isolatedin the random graphG(n; τ) whenever|Ui −Uj| > τ

for all j 6= i, j = 1, . . . , n. In terms of the order statistics
introduced earlier, we see that the user at locationXn,k is
isolated (i) if Ln,2 > τ for k = 1; (ii) if Ln,k > τ and
Ln,k+1 > τ wheneverk = 2, . . . , n− 1; and (iii) if Ln,n > τ

for k = n. As a result, the total numberIn(τ) of isolated
nodes inG(n; τ) can be represented as

In(τ) = χn,2(τ) +

n−1
∑

k=2

χn,k(τ)χn,k+1(τ) + χn,n(τ)

and the probabilityPiso(n; τ) that no node is isolated in
G(n; τ) is given by

Piso(n; τ) := P [In(τ) = 0] . (23)

Here, it is convenient to represent an admissible threshold
function τ : N → [0, 1] in the form

τn =
1

2n
(log n + αn) , n = 2, 3, . . . . (24)

whereα : N → R satisfiesαn = o(n). The analog of Theorem
2 now takes the form

lim
n→∞

Piso(n; τ(n)) =







0 if limn→∞ αn = −∞

1 if limn→∞ αn = +∞
(25)

This follows from Theorem 2 in [1, p. 353]. This time the
critical scaling is given by

τ⋆
iso,n =

log n

2n
=

1

2
τ⋆
con,n, n = 2, 3, . . .

and the complement to the “zero-one” law (25) takes the form

lim
n→∞

Piso(n;
1

2
σn(x)) = p(x), x ∈ R (26)

with p(x) given by (12). Again (26) flows from a Poisson
convergence result, namelyIn(1

2
σn(x)) =⇒n Π(e−x). A

proof of this result is omitted due to space limitations.

C. A roadmap via Poisson convergence

The discussion of Section IV provides a roadmap to deriving
corresponding results in higher dimensional graphs (d ≥ 2)
and for other graph properties: For a given graph property
A, we first need to identify the critical threshold associated
with the “zero-one” law it satisfies. The effect of “small”
perturbations (of the property-specific appropriate order) from
the critical threshold can then be explored with the help of the
Poisson convergence paradigm.

Poisson convergence is a common occurrence in the context
of random graphs. It has its roots in the fact that many
graph properties can be captured through counting sums of
many indicator functions which become vanishingly small and
increasingly decorrelated withn large under the appropriate
(perturbed) scaling. This property has been well studied in
the case of Bernoulli graphs for a number of important graph
properties [12, Chap. 3], e.g., node isolation or the existence
of at least one copy of a given graphG.

Until recently Poisson convergence has received little atten-
tion in the context of geometric random graphs. However, its
validity for the properties of connectivity and node isolation
in the one-dimensional case is already apparent from (14)
and (23), respectively. The picture is far less complete in
higher dimensions even for the property of graph connectivity.



For d ≥ 2 critical thresholds have been identified for graph
connectivity by a number of authors for the unit cube model
[1], [15] or for the unit disk model [9], [10], [17].

In particular, ford = 2, with points distributed uniformly
over adiskof unit area (rather than over a square), the critical
threshold is known [9], [10], [17] to be given by

π
(

τ⋆
con,n

)2
=

log n

n
, n = 2, 3, . . . (27)

Venkatesh [17] has also shown that the number of isolated
users indeed converges to a Poisson rvΠ(e−x) when this
critical scaling (27) is perturbed to

σn(x) = min

(

1,

√

(

log n + x

πn

)

+

)

, n = 1, 2, . . .

for eachx in R. This is known [1] to imply the convergence

lim
n→∞

P (n; σn(x)) = e−e−x

. (28)

This result also follows from developments by Penrose [14].

D. Retooling Theorem 1

For graph connectivity in one dimension, the proof of
Theorem 1 leads to the asymptotic equivalence

τn(a) = σn(xa) + o(n−1), a ∈ (0, 1).

However, for other graph properties or in higher dimensions,
this conclusion may need to be modified accordingly.

For instance, for graph connectivity withd = 2, the
convergence (28) requires that (20) be modified to read

σn(xa±ε) − σn(xa) =

√

log n + xa±ε

πn
−
√

log n + xa

πn

for sufficiently largen. It is then a simple matter to check that

lim
n→∞

2
√

πn log n (σn(xa±ε) − σn(xa)) = xa±ε − xa.

By the same arguments as in the proof of Theorem 1, we
conclude that

lim
n→∞

√

n log n (τn(a) − σn(xa)) = 0

so that

τn(a) =

√

log n + xa

πn
+ o

(
√

1

n log n

)

. (29)

Easy calculations readily give

τn(a) =

√

log n

πn
+

xa

2

√

1

πn log n
(1 + o(1))

with a similar expression forτn(1 − a), whence

δn(a) =
C(a)

2

√

1

πn log n
(1 + o(1)) . (30)

For d = 2, Goel et al. show that (21) and (22) need to
be replaced as follows [8, Thms. 1.1 and 1.2]: For every
monotone graph propertyA, we have

δA,n(a) = O

(

(log n)3/4

√
n

)

(31)

but there exists some graph propertyB such that

δB,n(a) = Ω

(

√

− log a

n

)

. (32)

Again the asymptotics (30) show that (31) is quite conserva-
tive, and that graph connectivity does not yield the worst case
at (32).
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