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Abstract— We investigate how quickly phase transitions can phase transitionfrom P4(n;7) ~ 0 to Pa(n;7) ~ 1 asr
occur in some geometric random graphs wheren points are varjies across some critical range. A natural question there

distributed uniformly and independently in the unit cube [0, 1 o hgits in estimating how quickly this transition takescel.
for some positive integerd. In the case of graph connectivity To add this i f he 2.3 defi
for the one-dimensional case, we show that the transition wth 0 adaress this Issue, Tor eag »9, ..., WE dEline

behaves liken™* (when the numbern of users is large), a signifi- Tan(a)=1inf (1 >0: Ps(n;7) >a), ac(0,1)
cant improvement over general asymptotic bounds given recly " E ’
by Goel et al. for monotone graph properties. We outline how and we set

the approach used here could be applied to higher dimensioha 1
graphs and to other graph properties. The key ingredient is he dan(a) =7an(l—a)—Tan(a), ac(0,2).
availability of a Poisson paradigm complementing the “zereone” 2
law usually occurring for many graph properties. The transition widthy 4 ,,(a) measures how quickly4 (n; )
climbs from levela to level1 —a, thereby giving an indication
[. INTRODUCTION of the sharpness of the phase transition. Given the rather

Over the past few years, geometric random graphs henplex dependence @y ,(a) on 7 anda, it is desirable
provided a useful abstraction for studying large wireless n to find asymptotic bounds (if nothing else) on its behaviar fo
works [6], [9], [10], [13]. Much attention has focused on th&2rge:

basic situation where: points are distributed uniformly andIO Reger;tly, Goel et al. [§] hﬁve derived Sl.JCh I?symptotic
independently in the unit culde, 1]¢ (in R<) for some positive ounds for any monotone graph propertyd(n; 7). For any

integerd. Given a fixed threshola > 0, two points are then such pr(ép;rtyé, their _reslults irﬂplyéha‘ff*"(a) - 0(1)'2faCt
said to be directly connected if their Euclidean distandess captured by the terminology that the monotone propértyas

thanr. This notion of connectivity gives rise to an undirecteqfharpth_reShO|d' However, these general results leave open
geometric random graph, denot&d(n; 7) the question as to whether these asymptotic bounds can be

In the context of wireless networks, with= 1,2, 3, these further sharpened fcgpgcificmonotone graph_properties.
n points represent users equipped with a transmitter/receiv ngg, we tackle this ISsue for the probab|I|_ty of grgph con-
of transmission range. In first approximation, if we neglect nectivity. For ease of telling the story, we restrict thecdssion
details of channel behavior, it is reasonable to model W
users as being able to communicate with each other if th
Euclidean distance is less thanThis approach has been take
by a number of authors, e.g., [3], [4], [5], [6], [9], [10],31

Randomizing user locations makes it possible for mal

9 one-dimensional geometric random graph modéls- (1);

uch models have been investigated in the references [3], [4
, [7] which contain some of the needed results. Our main

result takes the form oéxactasymptotic expansions (in)

for the thresholds [Theorem 1]. This leads to transitiontisd

n o
. . . L ordern~—" with known preconstants, so that these grap
properties ofG4(n;7) (including connectivity) to reveal a : : : .

; . . . . roperties arevery sharpindeed! Such information can be
typical behaviorwhenn becomes large. This manifests itsel . . o

) . . . veraged in network design when network connectivity is an
as follows: Consider a monotone increasing graph proper
important concern.

A _defined in the usual manner [12]graph connectivity The one-dimensional casel (= 1) may be construed as
being such a prop_erty. For ea@h_: 2,3,..., let PA("”.-) perhaps too limited or not too relevant to practice. Howgver
denote the probability that occurs inGa(n; 7). The mapping we stress that the main contribution of the paper lies in
— P4(n;7) is monotone increasing with < Ps(n;7) < . o ; S .
I in somé finite interval andPa(n;r) — 0 or 1 dutside identifying anapproach of wide applicabilityo establish sharp
it. As earlier simulation resultsAa(llrﬁé;d _indicate for oas asymptotics on the transition width: The key ingredients t
’ . . y ) availability of aPoisson paradigntomplementing the “zero-
properties of interest [3], [4], [5], [13], there often etisa one” law usually occurring for many graph properties.

1The case of monotone decreasing graph properties can besskst T_he pape_r IS o_rganlz_ed as follows: _The model and p!’ellml-
mutatis mutandis naries are given in Section Il. The main results concerrfieg t



behavior of thresholds for graph connectivity are preskirie 1. M AIN RESULTS
Section Ill. In Section IV, we explain how the appropriate For eachn — 2.3..... the mappingr — P(n;7) can

zero-one” laws and companion Poisson convergence legd shown to be continuous and strictly monotone increasing.

to the correct asymptotics for the threshold width. This igjyen fixeda in (0, 1), this property guarantees the existence
followed by a formal proof in Section V. In Section VI wegng uniqueness of solutions to the equation

briefly contrast our results against the results of Goel.eta
also provide a rough roadmap for establishing similar tesul P(n;7)=a, 7€(0,1). )

In higher dimensionsd(> 2) and for other graph properties. Let 7,,(a) denote this unique solution, and wheneudres in

i 1
Il. MODEL AND PRELIMINARIES the interval(0, 2)’ we set

The one-dimensional model has been considered by a On(a) := (1 = @) = Ta(a).
number of authors [3], [4], [5], [7]. To define it, I§tX;, i = The main result concerning the behaviormf{a) for large
1,2,...} denote a sequence of i.i.d. rvs distributed uniformly, jg given first.
in the interval[0, 1]. Theorem 1:For everyu in the interval0, 1), it holds that
For eachn = 2,3,..., we think of X;,..., X, as the
locations of n nodes (or users), labelled,...,n, in the u(a) = logn _ llog (10g (1)) +o(n7h). (&)
interval [0, 1]. Given a fixed distance > 0, two nodes are n n a

said to be directly connected if their distance is at most _ _ _ _ _
i.e., nodes and; are connected ifX; — X;| < 7, in which Theorem 1 is established in Section V. The desired result on
case an undirected edge is said to exist between these Hi width of the transition interval flows as an easy corgllar
users. This notion of connectivity gives rise to the undiedc ~ Corollary 1: For everya in the interval0, 3), we have
geometric random graph; (n; 7), thereafter denote@(n; 7). Cla)

Let the rvsX,, 1,..., X,,., denote the locations of these dn(a) = —, to (n7h) )
users arranged in increasing order, i.&,,; < ... < X, ,
with the conventionX,,, = 0 and X,,,,11 = 1. The rvs
Xna,...,Xn,,, are theorder statisticsassociated with the loga
ii.d. rvs Xi,..., X,. Also define C(a) = log (m) : (6)

with constantC(a) given by

Lok i= X = X1, k=1yomt1. It is a simple matter to check that — C(a) is de-

Obviously Ly, 1 + ...+ Ly ne1 = 1. It is well known [2, Eq. creasing on the interva(0, %)_Wif[h limg o C(a) = oo and
(6.4.3), p. 135] that for any fixed subsktC {1,...,n}, we limgz C(a) = 0. These qualitative features are in line with

have one’s intuition.
" IV. HOW TO GUESS THE RESULT
P Lok >tk kel]=|1- Ztk , te01), kel We now present a plausibility argument which allows us to
kel /4 guess the validity of Theorem 1, and which eventually paves
with the notationz”? = z" if = > 0 anda” = 0 if = < 0. the way to its proof: Our point of departure is the “zero-one”
Fix 7 > 0 andn = 2,3,.... The geometric random graphlaw available for the property of graph connectivity unduee t

G(n;7) is said to be(path) connectedf every pair of users asymptotic regime created by havingoecome large and the
can be linked by at least one path over the edges of the grajiieshold parameter scaled appropriately wittwe shall find

and we write it useful to say that a threshold functien: N — [0,1] is
admissibleif lim,, ., 7,, = 0. There is no loss of generality
P(n; 1) := P[G(n;7) is connected in writing such an admissible threshold function in the form
Obviously, the graphG(n;7) is connected if and only if Th = l(1ogn+an)7 n=23.... (7
n

L, <tforall k=2,...,n, so that
wherea : N — R satisfiesa,, = o(n).
Pn;7) =P[Lyx <7, k=2,...,n]. (1)  Theorem 2:For any admissible threshold function N —

The closed form expression [0, 1] written in the form (7), it holds that

0 if lim,— oo, = —00

n—1 : . —
Plni7) = 3 (1)t (” - 1) -k @ i, Prim) = ®

k 1 if lim,, oo vy, = +00.
k=0

has been rediscovered by several authors, e.g., Godelmardt a Theorem 2 follows from Theorem 1 in [1, p. 352], but can
Jaworski [7, Cor. 1, p. 146], and Desai and Manjunath [3] (adso be derived by direct arguments based on the method of
Egn (8) withz =1 andr = 7). first and second moments [11].



The convergence (8) identifies the critical scaling with {0, 1}-valued rvsx,, 1(7), ..., xn.n+1(7) defined as the
1 indicator functions
R - LU I
Teon,n n n e Xn,k(T)izl[Ln,k>7-]7 kZl,...,?’L+1.
as the threshold function which defineb@undaryin the space 54 4 result,
of scalings. Intuition suggests that mild fluctuations atibis
boundary, say of ordet—!, are likely to hold the key to the

form of 7,(a) for large n. To explore this idea further, for and Theorem 3 is now a mere byproduct of a stronger result

P(n;7) = P[Cp(r) = 0] (14)

eachz in R, define the[0, 1]-valued sequencéo,(z), n = [Theorem 4] onPoisson convergend&, Thm. 12, p. 157].
1,2,...} by Theorem 4:For eache in R, it holds thatC,, (o, (x)) =,
II(e~*) wherell(u) denotes a Poisson rv with parameter
on(z) = min | 1, (1Ogn + CC) Con=12,... (9 and:>n denotes convergence in distribution withgoing to
n 4 infinity.
so that V. A PROOF OFTHEOREM 1
logn + . . .
on(zr) = —— (10) Fix z in R. We restate (11) by noting that for eaeh> 0,

" there exists a finite integer* (s, ) such that

for n large enough. The next result complements the "zero-
one” law (8), and in fact implies it; it is given as part of p(z) —¢& < P(n;o,(x)) <p(z) +e, n>n*(e,z). (15)
Theorem 12 in [7, p. 157].

Theorem 3: For each in R, it holds that Now fix a in the interval(0, 1), and picke sufficiently small

such that0 < 2¢ < a anda + 2¢ < 1. Repeatedly applying

lim P(n;on(z)) = plz) (11) (15) with z = 244 andx = z,_., we get
with P(Tate) — € < P(0;00(Tate)) < P(Tate) + ¢ (16)
plx)=e* . (12) whenevem > n*(e,z,:.), and

P(Ta—e) — & < P(n;op(xe—z)) < p(Ta—e) + € (17)
To see in vyhat sense thg convergence (11) und.erpms T\r/]v lenevern > n*(e,x4—¢). In the remainder of this proof,
orem 1, consider the following heuristic arguments: Forheac

2 in R, the convergence (11) yields the approximation all inequalities are now understood to hold for> n*(a;¢)
' where we have set
P(n;on(x)) ~ p(z)

for large enough. The mapping : R — R, : z — p(x) is
strictly monotone and continuous witim,, _,_ -, p(z) = 0 and
lim, .~ p(z) = 1. Therefore, for each in the interval(0, 1),
there exists a unique scalar, denoted such thap(z,) = a.
In fact,

n*(a;e) = max (n*(x,),n* (€, Tate ), N (6, Ta—c))

where n*(z) denotes the finite integer beyond which the
representation (10) holds.

Sincep(z,+:) = a + ¢, the two chains of inequalities at
(16) and (17) can be rewritten as

xq = —log (—loga). (13) a < P(n;on(xate)) < a+2¢e

Givena in the interval(0, 1), we find that and
a—2e < P(n;op(re—c)) < a.
P(n;0u(za) ~a
Thus,
for large n. This suggests (but not quite yet proves) that

on(zq) and T, (a) behave in tandem asymptotically, thereby ~ £(7:7n(a)) < P(n;0n(2ase)) < P(n;7a(a + 2¢))

laying the grounds for the validity of (4) — Just insert (13} 4

into (10) and (12). These ideas form the basis for the proof

of Theorem 1 found in Section V. P(n;mn(a — 2¢)) < P(n;on(xa—c)) < P(n;m(a)),
To gain some perspective on (11)—(12), we introduce the : - .

notion of breakpointuser. For eacth= 1, ..., n, user: is said and the strict monotonicity of — P(r; 7) yields

to be a breakpoint user in the random grépn; 7) whenever Tn(a) < 0 (Tage) < Tnla + 2¢)

(i) it is not the leftmost user in0, 1] and (ii) there is no user

in the random interva[X; — 7, X;]. The numberC,,(r) of and

breakpoint nodes ifiz(n; 7) is given by Tn(a — 28) < on(Ta—c) < Ta(a).

Combining these last two inequalities, we conclude that

Cn(r) = Z X,k (T)
k=2

On(Ta—c) < Tnla) < op(Tare)- (18)



Upon writing for k = n. As a result, the total numbek, (7) of isolated
nodes inG(n; ) can be represented as
én(a) =T1p(a) —on(xs), n=2,3,... (29)

n—1
we obtain from (18) that In(7) = xn2(T) + D Xnk (T)Xnkt1(7) + Xnn (7)
k=2
n(Ta—z) = On(Ta) < &n(0) < On(Tate) = on(za) and the probabilityP,(n;7) that no node is isolated in
with G(n;T) is given by
LTate — Ta

On(Tate) = On(Ta) = ———. (20) Pyo(n;7) :=P[L,(r) =0]. (23)

n

As a result, z, . — z, < liminf, . (n,(a)) and Here, it is convenient to represent an admissible threshold
limsup,, ., (n&,(a)) < Zqye—x,. Given thate can be taken functionr : N — [0, 1] in the form

to be arbitrary small, it follows that 1
Tn=— (logn+a,), n=2,3.... (24)
liminf (n&,(a)) = limsup (n&,(a)) =0 n
e n—00 wherea : N — R satisfiesw,, = o(n). The analog of Theorem
since 2 now takes the form
lirrol (Tg—e — Tq) = lil%l (Tate —xq) = 0. 0 if lim,— ooy, = —00
el ot lim_Pieo(ns () = (25)
Thus,lim,, .o (n&,(a)) = 0, whenceg,, (a) = o (). Report- 1 if im0 0 = 400
ing into (19) leads to This follows from Theorem 2 in [1, p. 353]. This time the
(@) = on(za) +0o(n7Y), n=2,3,... critical scaling is given by
logn 1
and the desired result readily follows from (9) and (13). Teon = 2gn = 57(3*0117”, n=23,...
VI. DISCUSSION and the complement to the “zero-one” law (25) takes the form
1
A. Theorem 1 vs. Goel et al. [8] lim Pio(n; ion(x)) =p(z), z€R (26)

Ford = 1, the model considered by Goel et al. [8] coincides ) . ]
with the one-dimensional situation discussed here. ThewshWith p(z) given by (12). Again (26) flows from a Poisson

[8, Thm. 1.1] that for every monotone graph propesythe Cconvergence resul, namely, (50 (x)) =, I(e™). A

corresponding transition width for property satisfies proof of this result is omitted due to space limitations.
] C. A roadmap via Poisson convergence
—loga
dan(a) =0 ( " ) (21) The discussion of Section IV provides a roadmap to deriving

corresponding results in higher dimensional graphs>(2)
The results obtained here for graph connectivity markednd for other graph properties: For a given graph property
improve on (21) in thaexactasymptotics were provided and4, we first need to identify the critical threshold associated
the rate of decay (namely, ') is found to be a lot faster thanwith the “zero-one” law it satisfies. The effect of “small”
the rough asymptotic bound given by (21). These authors aRerturbations (of the property-specific appropriate Jrétem
show [8, Thm. 1.2] that therexists some monotone graphthe critical threshold can then be explored with the helphef t

property, sayB, such that Poisson convergence paradigm.
Poisson convergence is a common occurrence in the context
Sp.nla) = Q( /—10ga> 22) of random graphs. It has its roots in the fact that many
i n ' graph properties can be captured through counting sums of

many indicator functions which become vanishingly smad an

Obviously, graph connectivity cannot be such a property! increasingly decorrelated with large under the appropriate
(perturbed) scaling. This property has been well studied in
the case of Bernoulli graphs for a number of important graph

Similar arguments can be made for graph properties oth@operties [12, Chap. 3], e.g., node isolation or the emiste
than graph connectivity. Here is another example: Fix 0 of at least one copy of a given gragh
andn = 2,3,.... For eachi = 1,...,n, nodei is said to be  Until recently Poisson convergence has received littleratt
isolatedin the random grapli(n; 7) whenevelU; — U;| > 7 tion in the context of geometric random graphs. However, its
forall j #1457 = 1,...,n. In terms of the order statisticsvalidity for the properties of connectivity and node isaat
introduced earlier, we see that the user at locatlon, is in the one-dimensional case is already apparent from (14)
isolated (i) if L,,o > 7 for k = 1; (i) if L, > 7 and and (23), respectively. The picture is far less complete in
Ly, k41 > 7 wheneverk = 2,...,n—1; and (iii) if L,,, > 7 higher dimensions even for the property of graph connegtivi

B. Isolated nodes



For d > 2 critical thresholds have been identified for grapbut there exists some graph propeRysuch that
connectivity by a number of authors for the unit cube model
—loga
63,71((1) =0 ( ) .
n

[1], [15] or for the unit disk model [9], [10], [17].
%Igain the asymptotics (30) show that (31) is quite conserva-

In particular, ford = 2, with points distributed uniformly
over adisk of unit area (rather than over a square), the critic

tive, and that graph connectivity does not yield the worseca
at (32).

(32)

threshold is known [9], [10], [17] to be given by

ﬂ'(T* )2:10gn, n=23,...

con,n
’ n

(27)
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D. Retooling Theorem 1

For graph connectivity in one dimension, the proof of
Theorem 1 leads to the asymptotic equivalence

a € (0,1).

(1]

(@) = op(za) + O(Tfl)v
[2]

However, for other graph properties or in higher dimensions
this conclusion may need to be modified accordingly. 3
For instance, for graph connectivity witdi = 2, the 3]
[4]

convergence (28) requires that (20) be modified to read

\/10gn+xai5 \/10gn—|—xa
™ ™ g

for sufficiently largen. It is then a simple matter to check that[
lim 2v/mnlogn (o (Tate) — On(Ta)) = Tate — Tq- -

By the same arguments as in the proof of Theorem 1, wey
conclude that

On (Iazl:s) — On (xa)

lim /nlogn (mn(a) — on(za)) =0 [9]
so that

Tn(a)_,/ilog"+x“+o< L > 29)
™ nlogn [11]

Easy calculations readily give

logn x4 1
— ./ Za _ 12
(@) ™ + 2 \ mnlogn (1+o(1)) 12l
with a similar expression for,, (1 — a), whence [13]
_Ca) | 1

For d = 2, Goel et al. show that (21) and (22) need tqs)
be replaced as follows [8, Thms. 1.1 and 1.2]: For everY6]

monotone graph property, we have [
1 3/4 [17]
anle) =0 (LE) @Y

Research Laboratory or the U. S. Government.
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