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Abstract—In most recording channels, modulation codes are
employed to transform user data to sequences that satisfy some
desirable constraint. Run-length-limited (RLL) and maximum tran-
sition run (MTR) systems are examples of constraints that improve
timing and detection performance. When used in conjunction
with error correction codes (ECC), schemes that facilitate easy

access to soft information for ECC decoding are preferred. In oe . ) .
such scheme introduced by Immink and Wijngaarden, certain bit hard decoder, the passing of soft information from the ckann

positions in the modulation code are deliberately left unconstrained to the ECC decoder is thus hindered, and as a result, the
for the insertion of ECC parity bits. The overall code rate is error correction capability is degraded. There have beeerae
a function of the density of unconstrained positions, called the gohemes proposed to overcome this limitation, such as soft
tradeoff function. In our previous work with Chaichanavong, we . . ! .
presented properties of the tradeoff function, but exact close form decoding for modulation codes and reverse concatenatign [3
expressions were only known for three constraints. The present However, in this work, we focus on the scheme presented by
work* adds to the list of MTR and RLL constraints for which the ~ Wijngaarden and Immink [8], and Campello et al [1], in which
tradeoff function is known exactly. the modulation code is designed so that some pre-specified
positions are “unconstrained.” Such a position can takeryn a
symbol without violating the constraint. Thus we can employ
In recording channels, an error correcting code (ECC) amadsystematic ECC with the appropriate rate and stuff theypari
a modulation code are often used to improve the detectibits to these positions. The receiver can then decode the ECC
performance. An ECC improves the minimum distance, whilefast, without loss of soft information.
modulation code imposes a constraint on the recorded segsien Example 1 ([8], [1]): Consider a block code for MTR)
Some well-known binary constraints include the runlengtironsisting of two codewords{10101,01101}. Let 0,1,2,3,4
limited (RLL(d, k)) system, which limits the run 06 to be be the bit positions. If bit€ or 4 of either codeword is flipped,
at leastd and at mostk, and the maximum transition runthe constraint is still satisfied for all concatenations bé t
(MTR(j, k)) [2], which limits the run of0 to be at most and codewords. Hence, we can map a user bit{t60,010} and
the run of1 to be at mosy. When there is no restriction on thethen encode these words by a systematic rate-3/5 ECC (with bi
runs of 0, we say that = oo and, by tradition, such a constraintpositions 2 and 4 used for parity) to obtain an overall rate of
is denoted by MTRy) [5]. The binary sequences that satisfy thea/5. We say that the period is 5 and the insertion rate is 2/5.
RLL(d, k) constraint (respectively, the MTR) constraint) can The unconstrained set is defined to be the set of bit positions
be obtained from consecutive edge labels of the graph inTFigthat can be flipped, which i§2, 4}.
(respectively, Fig. 2). The ECC design is beyond the scope of this paper. We are
Q 0 @9. . .9 0 0. 0 interested in finding gnalytical so!utions to.the maximuraraM
code ratefgs for a given constraintS and insertion rate. The
overall code rate is a function of the insertion rate, calleel
tradeoff function A lower bound to the tradeoff function is
the code rate for a given period and unconstrained set. §his i
Fig. 1. A presentation for RL{d, k) constraint easily computed using the method in Campello et al [1]. I tha
Typically, the ECC and the modulation code are concatenat\fleyarl\ljl’.re;(i(;taﬂgsﬁi;(OQr)m Cgr)](sptrr?;ﬁ,lgr;sref%retrrilzérasdezogifmgm
so that the ECC is the outer code and the modulation co . . : : ' g. 3 (the
is the inner code. Since the modulation decoder is typimlly.rfgde.Ofr fqnctlpn for MTRl) IS a st_ralght_llne, .bUt for MTR?)
' it is piecwise linear with a subtle kink at insertion rate= 1/3).

1This work was part of T.L. Poo's PhD Dissertation at the Hieat BOth_ trade_Off functions are achieved by time_Sharin_g of stan
Engineering Department at Stanford University, Stanford CA dard bit-stuffing schemes. Recall from [1] thai-hit-stuffing(or

Fig. 2. A presentation for MTR) constraint
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b : j+1 bit-stuffing for MTR(j) begins with a string of length o an edge labeling. = Lg : E — X, whereX is a finite

N that satisfies the MTH — b) constraint; thers is subdivided alphabet.

into intervals of sizej—b+1 before a string ob ones is inserted Formally, aconstrained systeror constraintS = S(G) is the

in between each of these intervals. The resulting stringf@®  set of finite sequences obtained by reading the edge labels of
MTR(j); the scheme has insertion rate= b/(j + 1) and code path in a labeled grapfy. Such a graph is called@resentation
rate equal tqj —b+1)/(j + 1) of the capacity of MTRj —b).  of the constraint. An element ifi is called avord. We usewz to

denote the concatenation of two wordsand z; |w| denotes the
0.8791 &

\ length ofw; w; denotes théth symbol inw = wow; . .. Wy —1-
N We say(G is deterministicif at each state, all outgoing edges
0.69424 N carry distinct labels, andrreducible if for any pair (u,v) of
AN N states, there is a path fromto v. A reducible graph is a graph
AN AN consisting of many irreducible subgraphs, calleditreducible
\

componentsith possibletransitionsfrom component to com-
ponent. A constrained system is said to be irreducible iag &n
\ irreducible presentation. For an irreducible constrdimtre is a

Q
N Nurre)
fMTR(l)\\ AN

AN AN unigue minimal (in terms of the number of states) deterrimis
AN AN presentation, called th8hannon cover
AN AN A labeled graph haginite memoryif there is an integem
0 % g P such that all paths of lengtin with the same labeling terminate

at the same state. The smallestfor which this holds is called
the memoryof the graph. A constrained system figite-type

) . ) . or hasfinite memorym if its Shannon cover has memomy.

In our previous work with Chaichanvong [7], we introduceqjany practical constrained systems, including RLL and MTR,

a graph constructionG on which the tradeoff function is zre irreducible and finite-type.
defined, and which captures all information on valid periods Thefollower setof a stateu in G, denoted byF (1) = Fe(u),
and unconstrained sets for a given constraint. Using tHaphur s gefined to be the set of all finite words that can be generated
construction, we derived the tradeoff function for MBR2),  from v in G. We allow to be the empty word, in which case
see Fig. 4. the follower set is all ofS. Note that ifx does not occur irf,
then F(z) is empty.

For a graphG, the adjacency matrixA = Ag is the |[Vg| x
|Ve| matrix whose entries are indexed by the stategroéind
A, 1s the number of edges fromto v in G.

The capacityof a constraintS, denotedcapg, is defined as

Fig. 3. Tradeoff Functions for MTR) and MTR(2).
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where N(¢; S) is the number of words of length in S. It
N is known thatcap(S) = log A(A), where A(A) is the largest
positive eigenvalue of the adjacency matAxof a deterministic
presentation of5S. Refer to [4] for more details on constrained
systems.

Ill. TRADEOFFFUNCTION OF A CONSTRAINT

Let O denote an unconstrained symbol. This symbol repre-

In the sections that follow, we first give a short backgroungents the unconstrained position which is allowed to takargn
on constrained coding and on the tradeoff function. Then #¥mbol in the alphabet of the constraint.
establish the tradeoff function for RI(lZ, 2d + 1). Finally, we  Let A> and A3 denote the alphabet§0, 1} and {0, 1,0}
show that for low insertion rates, the tradeoff function fofespectively. For an alphabet, define. A* to be the set of all
MTR(3) is a straight line achieved by bit-stuffing schemedinite words overA. For a given wordw € A3, define
Complete proofs can be found in [6]. d(w) =

Fig. 4. Tradeoff functions for RL{0,1) and MTR2, 2).

{re Ay : |z|=|w|, z; =w; if w;=00r1,

1. BACKGROUND ON CONSTRAINED CODING x; € {0,1} if w; =0}

A labeled graphG = (V, E, L) consists of
« a finite set of state¥y = Vg;

« a finite set of edge#’ = Eg, where each edge has an

initial state o(e) and aterminal stater(e), both inV;

For example, ifw =
{0010,0011,0110,0111}.
Let S be a binary constrained system. Defifie- {w € A} :
®(w) C S}. This setS is a collection of wordsw such that if we

0010 then ®(w) has 4 fillings:



replace each occurrenteéindependently by 0 or 1, we obtain apoints (0, capg) and(1/(2d + 2), 0) since this can be achieved
word in S. We showed previously in [7] tha&f is a constrained by timesharing of bit insertion schemes. It is shown in thet ne

system presented by a graph that is defined as follows. proposition that this line is indeefk.
« States:All intersections of the follower sets of words Theorem 2:The tradeoff functionfrrr(a,24+1) is the line
« Transitions: The transitions are given by connecting(0, capg) and (1/(2d + 2),0).
& & Sketch of proof: The main tool for this proof a matrix
ﬂ F(x;) 0, ﬂ F(x,;0) if 2,0c Sforall1<i<gk inequality to imply an eigenvalue inequality: namely,Xf and
- =1 Y are nonnegative matrices aid:= Y, where:= denotes entry-

=1
k k by-entry inequality, ther\(X) > A(Y).
() Flxi) L () Flail) if z;1€ Sforall1<i<k Since S is finite-type, it suffices to use the irreducible
i=1 =t component@’ of G (mentioned above) to computgs. For
RLL(d,2d+1), G’ is shown in Fig. 6. Note that an unconstrained
position with labeld is always followed byd constrained

, . o positions to reach statg(102¢*+1). This can only happen in
An example using RLL0, 1) is shown in F|g.D5. the follower set transition given below:
0

. 0 O\ Foty L F1)ynFaott) 2 0
1@)/1_\“\_/0 IC]:(G) - F(0) }-(10d_1)ﬂf(102d)L) ]_-(102d+1)_
! A

G Even though there are box edges emanating ffo(m0°) for
Fig. 5. The Shannon cove® and & for the RLL(0, 1) s=d+1,d+2,...,2d in G, all these follower set transitions
terminate in{c} as shown below:

k k
(VF@) 2 () () Flzib) if 20,21 € Sforall 1 <i<k
=1

b=0i=1

Let / ¢ N and S be a constrained system. Defingg, /) to
be the number of words € S such that

F10*) = FynFaett) L oL

. |w| =g, F(10%472) 0 F(10241) 2 (e}

« wi=Uifandonly if7 € I. Order the states in the adjacency  matrix
Hence the sef represents the positions 0f in w; we say that A, as follows{F(1),--- , F(1024+1), F(1) N
w satisfies]. . F(L04), o F(10%71) N F(102%)}. Let A (B) denote

For0 < p <1, defineZ(p) to be the set of all sequence) the part of A¢: corresponding to the edges with binary (box)
such thatl, C {1,2,...,q} andlim,_. |I,|/q = p- labels.

A setI C N is said to beperiodic if there exists a period  Given a lengthV, a rational insertion ratg € [0, 1/(2d+2)],
N e NandU C {1,---,N} such thati € I if and only if and a set of unconstrained positiotisC {0,..., N — 1} with
i =14 mod N for somei € U. A sequencg(l,) € Z(p) is |U|/N = p, define the matrix representing the periodi¢, N)

periodic if configuration byM = MyM;---My_1, where M; = B if
o I,C I,y forall g €N, ie., the sequence is increasing, i € U and M; = A if i ¢ U, with the indices taken modv.
o [ = U;‘;l I, is a periodic set. Each entry of M represents the number of fillingsSirsatisfying

Let Z,(p) = {(I,) € Z(p) : (I,) is periodig. We define U, with length exactlyN, that begin and end with a restricted
the maximum achievable code rate for periodic unconstdainget of prefixes and suffixes respectively.
positions as Since eachB is followed by2d + 1 A’s, M can be viewed

as a product ofd’s and C's, where C = BA?*! |t is
log N (g, 1) 0 easy to check that the matrik has only one nonzero entry,
T namely a ‘1’ at the diagonal entry value corresponding to the

. . . . state 7(10%). In particular, C' represents a periodi¢U, N
and call this thetradeoff function Correspondingly, the maxi- configugatio)n with insertion raté/(2d+2) and asymptcftic co)de

mum insertion rate is given by = s = sup )0 p- ratelog,(A(C))/(2d + 2) (which when evaluated equ
Note thatfs is defined only on the rationaﬁ;sg p < 1. When Tha?(fo(r 2121/3/(N ;rnd)J(V[ — AmCma An2(ma ilnalﬂgmk

S_ is finite-type, this agrees With_othgr def_initions_ prevityuslwherem’m“l’k are nonnegative integers such t@lﬁzlni+
given (see [7, Theorem 44]). Whilgs is defined directly on (2d+2) Z{q_l m; = N, we can use the matrix relationC’ < A

the set of sequences, it can be defined in terms of the gkaph M > )
When S is finite-type, there is a single non-trivial irreducibleandc = Cforanyn > 1 to upper bound\/ repeatedly:

componentG’ of G that contains all information needed to M = AMC™MARC™E . AMO™E,
evaluatefs; see [7, Corollary 27]. < Amtnzgmz | pmome
AN-Qd+2 Ul —

fs(p) = max sup limsup
(Ig)€Tp(p) a—o0 q

IV. TRADEOFFFUNCTION FORRLL(d,2d + 1)
LetS = RLL(d, 2d+1). From [7, Theorem 25], the maximumthat spans the same number of time stepg/sThe resulting
insertion rate isus = 1/(2d + 2). Clearly, an achievable ratematrix M’ represents a timesharing scheme between the periodic
region is given by the area under the straight line conngdtie configurations induced bg' and A. ]
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Fig. 6. The irreducible componefit’ of & for RLL(d, 2d + 1).

The tradeoff function for RLId, 2d 4 1) is shown in Fig. 7. refer to the spacing or the size of the spacing agap or
separation and use the terms interchangeably.

The main result of this section shows that the tradeoff fionct
for MTR(3) is achieved by the bit-stuffing lower bound [1], [7]
for insertion rates close to 0.

Theorem 3:Let j = 3. Let g;,...,gr > 0 be gaps and~ =

k
. i If
JRLL(d,2d+1) 219 k 1

< 5
k+G " 3(j+1)

capg(d)

then

MNCFAGRI) > X\(BA9 ... BA9*).

0 P
0 2d+2
Fig. 7. Tradeoff function for RLLd, 2d + 1). Note that the matrixC' represents the-bit-stuffing scheme
and is thus a periodic configuration that yields the second
V. OPTIMAL CODE RATES FORMTR(j) AT LOW INSERTION  “corner point” in the standard bit-stuffing lower bouridp).
RATES Therefore, the matrix produc€*A“—*/ can be viewed as
time-sharing scheme usingrbit-stuffing and1 : 5 + 1

In this section, we describe results on the optimal confi%—_ ; i i )
urations and code rates obtained for low insertion rates fait-Stuffing. Using this and concavity arguments, the toidle

MTR(;). From extensive computer computations on code ratitniction for MTR(3) can be extended to the insertion rate region

of MTR(j) constraints in the low insertion rate region, wel: 1/(J +1)] as is stated in the following corollary.

observed that high code rates are usually obtained fronogieri ~ Corollary 4: The graph of the tradeoff functiofyrr(s) (»)
configurations that “spread” the unconstrained positioparta [0F 0 < < 1/4is the straight line that conneo8, capyrrrs))

by j spaces; this is in contrast to moderate and high insertih(1/4 (3/4)capyirr(2))- SO, furr(s)(p) agrees with the stan-
rates obtained from periodic configurations that clusteg tffard bit-stuffing lower bound in this interval, shown in F&.

unconstrained positions(see [1]).

Throughout this section, &t = MTR(j). TheG presentation 0.9468
for S is given in Fig. 8. LetA (B) denote the part of théj + furrs)
1) x (j + 1) adjacency matrix4 . corresponding to the edges
with binary (box) labels. LetC = BAJ. 0.6594
O O SN /D\
7 .
oG e Al
0 0 0 0
: p
~ 0 %
Fig. 8. TheG presentation for MTRy). Fig. 9. Tradeoff Function for MTR3) for p < 1/4.

We are interested in the effect that the spacings between twdVe conjecture a version of Theorem 3 to hold for Althis
unconstrained positions have on the code rates achieved. Wdrild imply:



Conjecture 5:The tradeoff function for MTRj) for insertion rightmost one) such that > 3;, then applying Proposition 7 to
rate0 < p < % is a straight line given by the standard bitthe g;'s for i = p,...,[ yields newg; = j fori=p,..., 1 —1,

stuffing lower boundh(p). g > 35+ Zﬁ:p gi—(l—p)j,andg; < 3jfori=101+1,...,q.
Conjecture 5 holds true for MTR), MTR(2) and MTR(3). The resulting matrix product in this interval is thus

We have partial results in the direction of a proof for All (BAj)l—pBAgLBAgl+1 ... BAYa

A. Topping up Small Gaps In the process, we have changed neither the sum nor the number

We say a gapy; is large if g; > j andsmall otherwise. The of gi's, so the averagg; remains the same.
next lemma states that for MTB), any stretch of small gaps Decompose the intervals into adjacent pafts)/,1 (wheres
(< 7) can be topped up to sizesimultaneously no matter hows even and the subscripts are taken mpdA weighted average

long the stretch is. over all s in {1,...,7} of 3",/ ;. ., 9i/[Ls U Ls41] gives the

Lemma 6 (Small Separation Lemma for M3R: Let j = averagey; and hence> 3j, so we can choose a palf U I

3. Letgy,...,gx_1 > 0 be small gaps and lef = >/ g, With indices I, = {u,...,v} and ;11 = {v +1,...,w}
Then satisfyingy~:”, gi > 3j(w — u +1).

. 4 As noted above/;,; contains an index such thatg, > 3;.

AT=9e—1 ORI BATTL andg; <3jfori=1+1,...,w.
AJ—9k—1 B A9k—1 B A9k—2 ... BA9L BAKI—G+1 It is straightforward to check that Lemma 6 is applicable
to I, by showing thatg; has sufficientA’s for topping up
B. Reduction of Large Gaps the small gaps inl;. Applying Lemma 6 tol; U I, thus

When the period is a multiple dfj + 1), the average gap size"®Sults in replacing3 A9 - .. BA9 BA%++ ... BA9=1 BA% by
is exactly;, so the resulting configuration with uniformly spaced “BA% BA9'+1 .- BA9=, where g; is the new value of,
unconstrained positions corresponds to thej + 1 bit-stuffing ~ &fter topping up the small gaps ih.
scheme with matrix representatiai. If |U|/N < 1/(j + 1), Next we mergels U Iyyy with I, = {t,...,u —
then the average gap size is j. This leads to the questionl}; Wwhich also consists of large gaps. §; > 3j,
of whether at insertion rates 1/(j + 1), configurations with Proposition 7 can be applied tds U I, U [, t0
unconstrained positions spaced uniformly apart by theameer drain the excessA's from each large gap in/,; into
gap size yield code rates that are close to optimal. We shéw Denote the new value ofy; by Qf’- The merging
below in the next proposition that this is not the case: for ROCESS replaceg A% ... BA9-1C!"“BAUBAI+1 ... BAIw
fixed period and insertion rate 1/(j + 1), it is possible to With C'"'BA% BA%+1 ... BA%. If g} < 3j, we can pick
reduce all the large gaps (except one) to size exactjjelding another pair of intervals, U Ly, (with 5" is even, ands’ # s)

improvements in code rates. where there is a gap iy, with size > 3j. Such a gap
Proposition 7: Let j < 7. Let g1,..., g be large gaps such always exists because the size of the sum of all gaps does not
thatg, > 3j andg; > jfori =2,--- ,k, and letG), = 25:1 gi. change. The procedure of alternately applying Propositiand
Then Lemma 6 can be then performed repeatedly until there are no
} remaining gapg; < j. [ ]
CFAC=Fi o BA9 BA9%-* ... BA BAY". It remains an open problem to extend these results to an
arbitrary j.
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