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Abstract— In most recording channels, modulation codes are
employed to transform user data to sequences that satisfy some
desirable constraint. Run-length-limited (RLL) and maximum tran-
sition run (MTR) systems are examples of constraints that improve
timing and detection performance. When used in conjunction
with error correction codes (ECC), schemes that facilitate easy
access to soft information for ECC decoding are preferred. In one
such scheme introduced by Immink and Wijngaarden, certain bit
positions in the modulation code are deliberately left unconstrained
for the insertion of ECC parity bits. The overall code rate is
a function of the density of unconstrained positions, called the
tradeoff function. In our previous work with Chaichanavong, we
presented properties of the tradeoff function, but exact closed form
expressions were only known for three constraints. The present
work1 adds to the list of MTR and RLL constraints for which the
tradeoff function is known exactly.

I. I NTRODUCTION

In recording channels, an error correcting code (ECC) and
a modulation code are often used to improve the detection
performance. An ECC improves the minimum distance, while a
modulation code imposes a constraint on the recorded sequences.
Some well-known binary constraints include the runlength-
limited (RLL(d, k)) system, which limits the run of0 to be
at least d and at mostk, and the maximum transition run
(MTR(j, k)) [2], which limits the run of0 to be at mostk and
the run of1 to be at mostj. When there is no restriction on the
runs of 0, we say thatk = ∞ and, by tradition, such a constraint
is denoted by MTR(j) [5]. The binary sequences that satisfy the
RLL(d, k) constraint (respectively, the MTR(j) constraint) can
be obtained from consecutive edge labels of the graph in Fig.1
(respectively, Fig. 2).
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Fig. 1. A presentation for RLL(d, k) constraint

Typically, the ECC and the modulation code are concatenated
so that the ECC is the outer code and the modulation code
is the inner code. Since the modulation decoder is typicallya

1This work was part of T.L. Poo’s PhD Dissertation at the Electrical
Engineering Department at Stanford University, Stanford CA
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Fig. 2. A presentation for MTR(j) constraint

hard decoder, the passing of soft information from the channel
to the ECC decoder is thus hindered, and as a result, the
error correction capability is degraded. There have been several
schemes proposed to overcome this limitation, such as soft
decoding for modulation codes and reverse concatenation [3].
However, in this work, we focus on the scheme presented by
Wijngaarden and Immink [8], and Campello et al [1], in which
the modulation code is designed so that some pre-specified
positions are “unconstrained.” Such a position can take on any
symbol without violating the constraint. Thus we can employ
a systematic ECC with the appropriate rate and stuff the parity
bits to these positions. The receiver can then decode the ECC
first, without loss of soft information.

Example 1 ([8], [1]): Consider a block code for MTR(2)
consisting of two codewords:{10101, 01101}. Let 0, 1, 2, 3, 4
be the bit positions. If bits2 or 4 of either codeword is flipped,
the constraint is still satisfied for all concatenations of the
codewords. Hence, we can map a user bit to{100, 010} and
then encode these words by a systematic rate-3/5 ECC (with bit
positions 2 and 4 used for parity) to obtain an overall rate of
1/5. We say that the period is 5 and the insertion rate is 2/5.
The unconstrained set is defined to be the set of bit positions
that can be flipped, which is{2, 4}.

The ECC design is beyond the scope of this paper. We are
interested in finding analytical solutions to the maximum overall
code ratefS for a given constraintS and insertion rate. The
overall code rate is a function of the insertion rate, calledthe
tradeoff function. A lower bound to the tradeoff function is
the code rate for a given period and unconstrained set. This is
easily computed using the method in Campello et al [1]. In that
work, exact closed form expressions for the tradeoff functions
for MTR(1) and MTR(2) constraints are derived; see Fig. 3 (the
tradeoff function for MTR(1) is a straight line, but for MTR(2)
it is piecwise linear with a subtle kink at insertion rateρ = 1/3).

Both tradeoff functions are achieved by timesharing of stan-
dard bit-stuffing schemes. Recall from [1] that ab-bit-stuffing(or



b : j+1 bit-stuffing) for MTR(j) begins with a strings of length
N that satisfies the MTR(j − b) constraint; thens is subdivided
into intervals of sizej−b+1 before a string ofb ones is inserted
in between each of these intervals. The resulting string satisfies
MTR(j); the scheme has insertion rateρ = b/(j + 1) and code
rate equal to(j − b+1)/(j +1) of the capacity of MTR(j − b).
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Fig. 3. Tradeoff Functions for MTR(1) and MTR(2).

In our previous work with Chaichanvong [7], we introduced
a graph constructionĜ on which the tradeoff function is
defined, and which captures all information on valid periods
and unconstrained sets for a given constraint. Using this graph
construction, we derived the tradeoff function for MTR(2, 2),
see Fig. 4.
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Fig. 4. Tradeoff functions for RLL(0, 1) and MTR(2, 2).

In the sections that follow, we first give a short background
on constrained coding and on the tradeoff function. Then we
establish the tradeoff function for RLL(d, 2d + 1). Finally, we
show that for low insertion rates, the tradeoff function for
MTR(3) is a straight line achieved by bit-stuffing schemes.
Complete proofs can be found in [6].

II. BACKGROUND ON CONSTRAINED CODING

A labeled graphG = (V,E,L) consists of

• a finite set of statesV = VG;
• a finite set of edgesE = EG, where each edgee has an

initial state σ(e) and aterminal stateτ(e), both inV ;

• an edge labelingL = LG : E → Σ, whereΣ is a finite
alphabet.

Formally, aconstrained systemor constraintS = S(G) is the
set of finite sequences obtained by reading the edge labels ofa
path in a labeled graphG. Such a graph is called apresentation
of the constraint. An element inS is called aword. We usewz to
denote the concatenation of two wordsw andz; |w| denotes the
length ofw; wi denotes theith symbol inw = w0w1 . . . w|w|−1.

We sayG is deterministicif at each state, all outgoing edges
carry distinct labels, andirreducible if for any pair (u, v) of
states, there is a path fromu to v. A reducible graph is a graph
consisting of many irreducible subgraphs, called theirreducible
componentswith possibletransitions from component to com-
ponent. A constrained system is said to be irreducible if it has an
irreducible presentation. For an irreducible constraint,there is a
unique minimal (in terms of the number of states) deterministic
presentation, called theShannon cover.

A labeled graph hasfinite memoryif there is an integerm
such that all paths of lengthm with the same labeling terminate
at the same state. The smallestm for which this holds is called
the memoryof the graph. A constrained system isfinite-type
or hasfinite memorym if its Shannon cover has memorym.
Many practical constrained systems, including RLL and MTR,
are irreducible and finite-type.

The follower setof a stateu in G, denoted byF(u) = FG(u),
is defined to be the set of all finite words that can be generated
from u in G. We allowx to be the empty wordǫ, in which case
the follower set is all ofS. Note that ifx does not occur inS,
thenF(x) is empty.

For a graphG, the adjacency matrixA = AG is the |VG| ×
|VG| matrix whose entries are indexed by the states ofG and
Au,v is the number of edges fromu to v in G.

The capacityof a constraintS, denotedcapS , is defined as

capS = lim
q→∞

1

q
log N(q;S),

where N(q;S) is the number of words of lengthq in S. It
is known thatcap(S) = log λ(A), whereλ(A) is the largest
positive eigenvalue of the adjacency matrixA of a deterministic
presentation ofS. Refer to [4] for more details on constrained
systems.

III. T RADEOFFFUNCTION OF A CONSTRAINT

Let � denote an unconstrained symbol. This symbol repre-
sents the unconstrained position which is allowed to take onany
symbol in the alphabet of the constraint.

Let A2 and A3 denote the alphabets{0, 1} and {0, 1,�}
respectively. For an alphabetA, defineA∗ to be the set of all
finite words overA. For a given wordw ∈ A∗

3, define

Φ(w) = {x ∈ A∗
2 : |x| = |w|, xi = wi if wi = 0 or 1,

xi ∈ {0, 1} if wi = �} .

For example, if w = 0�1� then Φ(w) has 4 fillings:
{0010, 0011, 0110, 0111}.

Let S be a binary constrained system. DefineŜ = {w ∈ A∗
3 :

Φ(w) ⊆ S}. This setŜ is a collection of wordsw such that if we



replace each occurrence� independently by 0 or 1, we obtain a
word in S. We showed previously in [7] that̂S is a constrained
system presented by a grapĥG, that is defined as follows.

• States:All intersections of the follower sets of words inS.
• Transitions: The transitions are given by
k

⋂

i=1

F(xi) 0
−→

k
⋂

i=1

F(xi0) if xi0 ∈ S for all 1 ≤ i ≤ k

k
⋂

i=1

F(xi) 1
−→

k
⋂

i=1

F(xi1) if xi1 ∈ S for all 1 ≤ i ≤ k

k
⋂

i=1

F(xi) �
−→

1
⋂

b=0

k
⋂

i=1

F(xib) if xi0, xi1 ∈ S for all 1 ≤ i ≤ k

An example using RLL(0, 1) is shown in Fig. 5.
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Fig. 5. The Shannon coverG and Ĝ for the RLL(0, 1)

Let I ⊂ N andS be a constrained system. DefineN(q, I) to
be the number of wordsw ∈ Ŝ such that

• |w| = q,
• wi = � if and only if i ∈ I.

Hence the setI represents the positions of� in w; we say that
w satisfiesI.

For 0 ≤ ρ ≤ 1, defineI(ρ) to be the set of all sequences(Iq)
such thatIq ⊆ {1, 2, . . . , q} and limq→∞ |Iq|/q = ρ.

A set I ⊆ N is said to beperiodic if there exists a period
N ∈ N and U ⊆ {1, · · · , N} such thati ∈ I if and only if
i ≡ i′ mod N for somei′ ∈ U . A sequence(Iq) ∈ I(ρ) is
periodic if

• Iq ⊆ Iq+1 for all q ∈ N, i.e., the sequence is increasing,
• I =

⋃∞
q=1 Iq is a periodic set.

Let Ip(ρ) = {(Iq) ∈ I(ρ) : (Iq) is periodic}. We define
the maximum achievable code rate for periodic unconstrained
positions as

fS(ρ) = max

{

sup
(Iq)∈Ip(ρ)

lim sup
q→∞

log N(q, Iq)

q
, 0

}

.

and call this thetradeoff function. Correspondingly, the maxi-
mum insertion rate is given byµ = µS = supfS(ρ)>0 ρ.

Note thatfS is defined only on the rationals0 ≤ ρ ≤ 1. When
S is finite-type, this agrees with other definitions previously
given (see [7, Theorem 44]). WhilefS is defined directly on
the set of sequences, it can be defined in terms of the graphĜ.
When S is finite-type, there is a single non-trivial irreducible
componentG′ of Ĝ that contains all information needed to
evaluatefS ; see [7, Corollary 27].

IV. T RADEOFFFUNCTION FORRLL(d, 2d + 1)

Let S = RLL(d, 2d+1). From [7, Theorem 25], the maximum
insertion rate isµS = 1/(2d + 2). Clearly, an achievable rate
region is given by the area under the straight line connecting the

points (0, capS) and (1/(2d + 2), 0) since this can be achieved
by timesharing of bit insertion schemes. It is shown in the next
proposition that this line is indeedfS .

Theorem 2:The tradeoff functionfRLL(d,2d+1) is the line
connecting(0, capS) and (1/(2d + 2), 0).

Sketch of proof: The main tool for this proof a matrix
inequality to imply an eigenvalue inequality: namely, ifX and
Y are nonnegative matrices andX < Y , where< denotes entry-
by-entry inequality, thenλ(X) ≥ λ(Y ).

Since S is finite-type, it suffices to use the irreducible
componentG′ of Ĝ (mentioned above) to computefS . For
RLL(d, 2d+1), G′ is shown in Fig. 6. Note that an unconstrained
position with label � is always followed byd constrained
positions to reach stateF(102d+1). This can only happen in
the follower set transition given below:

F(10d)
�
−→ F(1) ∩ F(10d+1)

0
−→ · · ·

0
−→

F(10d−1) ∩ F(102d)
0

−→ F(102d+1).

Even though there are box edges emanating fromF(10s) for
s = d + 1, d + 2, . . . , 2d in Ĝ, all these follower set transitions
terminate in{ǫ} as shown below:

F(10s)
�
−→ F(1) ∩ F(10s+1)

0
−→ · · ·

0
−→

F(102d−s) ∩ F(102d+1)
�
−→ {ǫ}.

Order the states in the adjacency matrix
AG′ as follows:{F(1), · · · ,F(102d+1),F(1) ∩
F(10d+1), · · · ,F(10d−1) ∩ F(102d)}. Let A (B) denote
the part ofAG′ corresponding to the edges with binary (box)
labels.

Given a lengthN , a rational insertion rateρ ∈ [0, 1/(2d+2)],
and a set of unconstrained positionsU ⊆ {0, . . . , N − 1} with
|U |/N = ρ, define the matrix representing the periodic(U,N)
configuration byM = M0M1 · · ·MN−1, where Mi = B if
i ∈ U and Mi = A if i /∈ U , with the indices taken modN .
Each entry of M represents the number of fillings inŜ satisfying
U , with length exactlyN , that begin and end with a restricted
set of prefixes and suffixes respectively.

Since eachB is followed by 2d + 1 A’s, M can be viewed
as a product ofA’s and C ’s, where C = BA2d+1. It is
easy to check that the matrixC has only one nonzero entry,
namely a ‘1’ at the diagonal entry value corresponding to the
state F(10d). In particular, C represents a periodic(U,N)
configuration with insertion rate1/(2d+2) and asymptotic code
rate log2(λ(C))/(2d + 2) (which when evaluated equals0).

Thus, for anyN and M = An1Cm1An2Cm2 . . . AnlCmk ,
whereni,mi, l, k are nonnegative integers such that

∑l
i=1 ni +

(2d+2)
∑k

i=1 mi = N , we can use the matrix relationsAC 4 A
andCn = C for any n ≥ 1 to upper boundM repeatedly:

M = An1Cm1An2Cm2 . . . AnlCmk ,

4 An1+n2Cm2 . . . AnlCmk ,

= AN−(2d+2)|U |C|U | = M ′,

that spans the same number of time steps asM . The resulting
matrixM ′ represents a timesharing scheme between the periodic
configurations induced byC andA.
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Fig. 6. The irreducible componentG′ of Ĝ for RLL(d, 2d + 1).

The tradeoff function for RLL(d, 2d + 1) is shown in Fig. 7.
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Fig. 7. Tradeoff function for RLL(d, 2d + 1).

V. OPTIMAL CODE RATES FORMTR(j) AT LOW INSERTION

RATES

In this section, we describe results on the optimal config-
urations and code rates obtained for low insertion rates for
MTR(j). From extensive computer computations on code rates
of MTR(j) constraints in the low insertion rate region, we
observed that high code rates are usually obtained from periodic
configurations that “spread” the unconstrained positions apart
by j spaces; this is in contrast to moderate and high insertion
rates obtained from periodic configurations that cluster the
unconstrained positions(see [1]).

Throughout this section, letS = MTR(j). TheĜ presentation
for S is given in Fig. 8. LetA (B) denote the part of the(j +
1) × (j + 1) adjacency matrixAĜ corresponding to the edges
with binary (box) labels. LetC = BAj .

F(ǫ) F(1) F(11) · · · F(1j−1) F(1j)

· · ·

0
1 1 1
� � �

0 0 0 0

Fig. 8. TheĜ presentation for MTR(j).

We are interested in the effect that the spacings between two
unconstrained positions have on the code rates achieved. We

refer to the spacing or the size of the spacing as agap or
separation, and use the terms interchangeably.

The main result of this section shows that the tradeoff function
for MTR(3) is achieved by the bit-stuffing lower bound [1], [7]
for insertion rates close to 0.

Theorem 3:Let j = 3. Let g1, . . . , gk ≥ 0 be gaps andG =
∑k

i=1 gi. If
k

k + G
<

1

3(j + 1)
,

then
λ(CkAG−kj) ≥ λ(BAg1 · · ·BAgk).

Note that the matrixC represents the1-bit-stuffing scheme
and is thus a periodic configuration that yields the second
“corner point” in the standard bit-stuffing lower boundh(ρ).
Therefore, the matrix productCkAG−kj can be viewed as
a time-sharing scheme using0-bit-stuffing and 1 : j + 1
bit-stuffing. Using this and concavity arguments, the tradeoff
function for MTR(3) can be extended to the insertion rate region
[0, 1/(j + 1)] as is stated in the following corollary.

Corollary 4: The graph of the tradeoff functionfMTR(3)(ρ)
for 0 ≤ ρ ≤ 1/4 is the straight line that connects(0, capMTR(3))
to (1/4, (3/4)capMTR(2)). So,fMTR(3)(ρ) agrees with the stan-
dard bit-stuffing lower bound in this interval, shown in Fig.9.
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Fig. 9. Tradeoff Function for MTR(3) for ρ ≤ 1/4.

We conjecture a version of Theorem 3 to hold for allj; this
would imply:



Conjecture 5:The tradeoff function for MTR(j) for insertion
rate 0 ≤ ρ ≤ 1

j+1 is a straight line given by the standard bit-
stuffing lower boundh(ρ).

Conjecture 5 holds true for MTR(1), MTR(2) and MTR(3).
We have partial results in the direction of a proof for allj.

A. Topping up Small Gaps

We say a gapgi is large if gi ≥ j and small otherwise. The
next lemma states that for MTR(3), any stretch of small gaps
(< j) can be topped up to sizej simultaneously no matter how
long the stretch is.

Lemma 6 (Small Separation Lemma for MTR(3)): Let j =
3. Let g1, . . . , gk−1 ≥ 0 be small gaps and letG =

∑k−1
i=1 gi.

Then

Aj−gk−1Ck−1BAj+1 <

Aj−gk−1BAgk−1BAgk−2 · · ·BAg1BAkj−G+1.

B. Reduction of Large Gaps

When the period is a multiple of(j +1), the average gap size
is exactlyj, so the resulting configuration with uniformly spaced
unconstrained positions corresponds to the1 : j + 1 bit-stuffing
scheme with matrix representationC. If |U |/N < 1/(j + 1),
then the average gap size is> j. This leads to the question
of whether at insertion rates< 1/(j + 1), configurations with
unconstrained positions spaced uniformly apart by the average
gap size yield code rates that are close to optimal. We show
below in the next proposition that this is not the case: for a
fixed period and insertion rate< 1/(j + 1), it is possible to
reduce all the large gaps (except one) to size exactlyj, yielding
improvements in code rates.

Proposition 7: Let j ≤ 7. Let g1, . . . , gk be large gaps such
thatg1 ≥ 3j andgi ≥ j for i = 2, · · · , k, and letGk =

∑k
i=1 gi.

Then

CkAGk−kj < BAgkBAgk−1 · · ·BAg2BAg1 .

C. Unifying the Arguments on Large and Small Gaps

The proof of Theorem 3 involves applying the lemmas
on large and small gaps alternately to a matrixM0 =
BAg1 · · ·BAgk with k gaps of lengthN , and whose insertion
ratek/N is < 1/(3(j +1)). It will be shown in stages that there
is a sequence of matricesM0, . . . ,Mq such that fori = 1, . . . , q,
there is a matrixM ′ such thatMi < M ′ andλ(M ′) = λ(Mi−1)
and Mq = CkAG−kj . Each Mi−1 will be a product of a
sequence ofA’s andB’s andM ′ will be a product of a cyclically
permuted sequence ofA’s andB’s.

Sketch of proof:[Theorem 3:] View the interval{1, . . . , k}
as a sequence of uniformly spaced points on the unit circle, with
numbers increasing to the right moving clockwise. Subdivide the
circle into maximal, consecutive disjoint subintervalsI1, . . . , Ir

such that for all odd (even)s and for all i ∈ Is, gi is large
(small).

The average value of thegi’s is at least3j because of the
assumption on the insertion rate. For odds, if Is = {p, . . . , q}
contains an indexl (if there is more than one, choose the

rightmost one) such thatgl ≥ 3j, then applying Proposition 7 to
the gi’s for i = p, . . . , l yields newgi = j for i = p, . . . , l − 1,
gl ≥ 3j +

∑l
i=p gi − (l − p)j, andgi < 3j for i = l + 1, . . . , q.

The resulting matrix product in this interval is thus

(BAj)l−pBAglBAgl+1 · · ·BAgq .

In the process, we have changed neither the sum nor the number
of gi’s, so the averagegi remains the same.

Decompose the intervals into adjacent pairs,Is∪Is+1 (wheres
is even and the subscripts are taken modr). A weighted average
over all s in {1, . . . , r} of

∑

i∈Is∪Is+1
gi/|Is ∪ Is+1| gives the

averagegi and hence≥ 3j, so we can choose a pairIs ∪ Is+1

with indices Is = {u, . . . , v} and Is+1 = {v + 1, . . . , w}
satisfying

∑w
i=u gi ≥ 3j(w − u + 1).

As noted above,Is+1 contains an indexl such thatgl ≥ 3j.
andgi < 3j for i = l + 1, . . . , w.

It is straightforward to check that Lemma 6 is applicable
to Is by showing thatgl has sufficientA’s for topping up
the small gaps inIs. Applying Lemma 6 toIs ∪ Is+1 thus
results in replacingBAgu · · ·BAglBAgl+1 · · ·BAgw−1BAgw by
Cl−uBAg′

lBAgl+1 · · ·BAgw , where g′l is the new value ofgl

after topping up the small gaps inIs.
Next we merge Is ∪ Is+1 with Is−1 = {t, . . . , u −

1}, which also consists of large gaps. Ifg′l ≥ 3j,
Proposition 7 can be applied toIs+1 ∪ Is ∪ Is−1 to
drain the excessA’s from each large gap inIs−1 into
g′l. Denote the new value ofg′l by g′′l . The merging
process replacesBAgt · · ·BAgu−1Cl−uBAg′

lBAgl+1 · · ·BAgw

with Cl−tBAg′′

l BAgl+1 · · ·BAgw . If g′l < 3j, we can pick
another pair of intervalsIs′ ∪ Is′+1 (with s′ is even, ands′ 6= s)
where there is a gap inIs′+1 with size ≥ 3j. Such a gap
always exists because the size of the sum of all gaps does not
change. The procedure of alternately applying Proposition7 and
Lemma 6 can be then performed repeatedly until there are no
remaining gapsgi < j.

It remains an open problem to extend these results to an
arbitrary j.
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