
(
The Challenges of Intrusion Detection Compression Technology
Keesook J. Han and John C. Kieffer
Abstract—Database Management System (DBMS) controls and manages data to eliminate data redundancy and to ensure integrity, consistency and availability of the data, among other features. Even though DBMS vendors continue to offer greater automation and simplicity in managing databases, the need for specialized intrusion detection database compression technology has not yet been addressed. Our research focuses on developing such technology. The focus is not only on compression but also on database management through planning and best practice adoption to improve operational efficiency, and provide lower costs, privacy and security. The focus in this summary is on the compression part of the DMBS system for intrusion detection. We present a methodology employing grammar-based and large alphabet compression techniques which involves the generation of multiple dictionaries for compressing clustered subfiles of a very large data file. One of the dictionaries is a common dictionary which models features common to the subfiles. In addition, non-common features of each subfile are modeled via an auxiliary dictionary. Each clustered subfile is compressed using the augmented dictionary consisting of the common dictionary together with the auxiliary dictionary for that subfile.
Index Terms—compression, encryption, data anonymization, metadata, privacy preserving, relational database, large alphabet, grammar-based compression, database management, multiple compression dictionaries

I. INTRODUCTION
Intrusion Detection Systems (IDS’s) must be capable of detecting unknown attacks. The problem with building an anomaly detection model is that observed activities deviate significantly from established normal usage profiles. Reliable anomaly detection modeling requires training huge datasets regularly in order to learn legitimate behaviors. Intuitively, better detection performance can be achieved with more information. However, there is an enormous cost in collecting, storing, and analyzing intrusion datasets. When we include more information, we not only increase cost and data processing time, we also increase model complexities and maintenance problems as well. A difficult problem in handling intrusion detection data is that one is not able to store and manage efficiently a huge amount of intrusion detection data with the current data compression and data management technologies [2]. More efficient intrusion detection data modeling and management methods will allow one to develop improved IDS’s that handle large intrusion detection databases with greater reliability and faster retrieval rates. The purpose of this project is to minimize model complexities and maintenance problems in IDS design. We can achieve our research goal with the following approaches:

Very High Compression: Database compression can be operated in four different granularities such as file-level, block-level, tuple-level, and field-level. Tuple-based coding techniques are popular and appropriate to insert a compressed record and retrieve a record in general applications. These methods might not be optimal for specific data sources and applications. Developing optimal coding techniques for intrusion detection databases is a challenge facing the database compression and data mining communities. Some recently introduced compression techniques are hierarchical grammar-based compression methods, relational database compression methods, and large alphabet compression methods. We propose to adapt these cutting edge compression methodologies to the particularities of intrusion detection data in order to design IDS’s achieving very high compression.

Data Anonymization: Intrusion detection datasets have been largely unobtainable for analysis purposes because they provide sensitive and personal information that could be exploited by attackers. Our approach involves the anonymization of intrusion detection data by applying innovative compression technology. In our approach, raw data from relevant network management and intrusion detection systems are collected, compressed and indexed in the data warehouse. The data cleansing operation checks that collected data falls within the correct ranges and limits, extracts data features, evaluates the overall consistency of the data, and insures that useful hierarchical relationships exist in the indexed and referenced data. The cleaned and compressed relational database files can be efficiently anonymized via the use of multiple dictionaries extracted from the data for compression purposes. In this way, our system preserves the structure of information that makes the data valuable to networking researchers.
Fast Encryption: Intrusion detection data need to be encrypted to meet information security needs. Conventional bulk encryption techniques are not appropriate for encrypting enormous amounts of intrusion data. We develop a fast encryption/decryption algorithm to protect sensitive and enormous bulk data. We envision encryption/decryption as taking place within the framework of the compression / decompression processes.
Recently there has been much interest in applying data mining to network-based intrusion detection. Data mining is the process of efficient extraction of hidden predictive information from massive databases. The core components of data mining technology have been under development for decades, in research areas such as statistics, pattern recognition, artificial intelligence, and machine learning. Today, the maturity of these techniques, coupled with high-performance relational database engines and broad data integration efforts, make these technologies practical for current data warehouse environments. The recent rapid development in data mining has made available a wide variety of algorithms. In particular, there has been an increased interest in data mining based approaches for intrusion detection. However, successful data mining techniques themselves are not enough to build deployable IDS’s because there are inherent difficulties in the implementation and deployment of these systems. The major difficulty is that it is computationally expensive to find correlations between attributes in an intrusion detection database during both training and evaluation, due to both the large size of the database and the large amount of training data that is required. IDS will alleviate this difficulty via data compression, while at the same time protecting sensitive data.
II. Compression
A. Redundancy

Shannon showed that every source can be compressed to its entropy and no further. However, optimal compression requires knowledge of the source's underlying distribution. In essentially all compression applications (text, speech, audio, video, etc.), this distribution is unknown. Therefore the optimal compression rate, the source's entropy, cannot be achieved. The standard, universal compression, approach to this problem assumes that the source distribution, while unknown, belongs to some known class of possible distributions such as the class of all iid, Markov, or stationary ergodic distributions. A compression algorithm is then designed that performs reasonably well for all distributions in the class. The lowest additional number of bits over the entropy required for the worst distribution in the class is the class's redundancy. .

Classical results show that the redundancy of “reasonable” classes grows only logarithmically with the length of the compressed sequence. Hence in the limit of infinite length, the per-symbol redundancy decreases to zero, and therefore long iid, Markov, or stationary ergodic, sequences over small alphabets can be compressed essentially as well as when the distribution is known in advance. Furthermore, computationally efficient algorithms such as Lempel-Ziv (LZ) and context-tree-weighting (CTW) achieve this diminishing per-symbol redundancy. Yet it has also been long known that the redundancy increases with the alphabet size, and that as the source's alphabet grows to infinity, so does the per-symbol redundancy. Unfortunately, in many applications, the natural alphabet which captures the source's structure is very large, possibly even infinite. To avoid the high-redundancy associated with large alphabets, most text compression algorithms, such as LZ and CTW mentioned above, convert words (whose alphabet size is large) to letters, and letters to bits, and compress the resulting binary string. In doing so, they risk losing the context of the current word, as short contexts of say 4 words turn into hundreds of bits, and no program can keep statistics of a binary context tree of that depth. Experimental results show in particular that when the alphabet size is proportional to the sequence length, the per-symbol redundancy is a positive constant and that when the alphabet size is super-linear in the blocklength, the per-symbol redundancy increases with the blocklength.

B. Diminishing Redundancy

One of the objectives of this compression project is to diminish redundancy in order to achieve optimal compression rate for intrusion detection data. In long sequences of such data, which involve large alphabets, the per-symbol redundancy does not diminish to zero and in fact may grow. Therefore we must consider alternative methods for compressing these sequences.

The data sequence can be decomposed into two parts: A dictionary describes the set of symbols appearing in the sequence, and a pattern describes the order in which they appeared. Since the pattern is determined by the sequence, this decomposition is entropy-optimal in the sense that the entropy of the sequence equals the entropy of the pattern plus the conditional entropy of the dictionary given the pattern. To compress a sequence using its pattern and dictionary, one needs to describe both. Redundancy can be shown to be subadditive. Hence the per-symbol redundancy of the pattern plus that of the dictionary must exceed that of the sequence. Since the per-symbol redundancy of patterns diminishes to zero regardless of alphabet size, while that of sequences tends to infinity with the alphabet size, the per-symbol redundancy of the dictionary must also tend to infinity with the alphabet size. When the underlying distribution is known, the entropy of the dictionary is negligible, and essentially all the bits describe the pattern. When the underlying distribution is not known, as is usually the case, then most of the bits go to describing the dictionary. This counter-intuitive conclusion implies in particular that our earlier assertion that one should concentrate on pattern compression must be reconsidered in order to diminish symbol redundancy of the pattern plus that of the dictionary.
C. Intrusion Detection Data Compression
Intrusion detection data needs to be stored, but, as we have indicated earlier, it occupies a very large amount of storage space. A way to cut down on the amount of space needed is to losslessly compress the intrusion detection data and then to store the compressed data. It is our goal to develop a new data compression technique that will provide more efficient compression of intrusion detection data than previously considered techniques. Our proposed technique involves a marriage of grammar-based coding techniques and new techniques for compressing data with a large alphabet size. We will describe our proposed approach after we give some details on grammar-based coding and on the problem of compressing data with large alphabet size.

During the past 15 years, grammar-based data compression has been developed as a new way to losslessly compress data. The paper [4] gives some fundamental facts about this method; related references are [5][7]. The fundamental idea underlying grammar-based compression is a simple one: one represents the data to be compressed hierarchically via a grammar which occupies much less space than the data itself. This grammar, upon repeated application of its production rules, uniquely regenerates the data which it represents. Consequently, one can compress the production rules of the grammar itself instead of compressing the original data, and then reconstruct the data from the decompressed set of production rules. Several methods have been developed by which to derive a grammar to represent a given set of data. Some of these methods are the SEQUITUR algorithm of Nevill-Manning and Witten, the MPM algorithm, and the Yang-Kieffer SEQUENTIAL algorithm. The paper [1] on “The Smallest Grammar Problem,” is a recent paper which gives a useful comparison of these algorithms from a theoretical point of view.

One feature of intrusion detection data which makes it hard to compress is its large alphabet size. We explain why the compression of data with large alphabets can be a problem. In recent years, several researchers have developed ways in which to more efficiently compress data with large alphabets. Some of these techniques employ arithmetic coding. In arithmetic coding, the data is processed sequentially. Each data character that appears in this processing is assigned a positive probability, and then the character is encoded using a codeword of length approximately equal to. If the current character in the processing is a character that has appeared previously, then its probability is typically taken to be proportional to the frequency with which that character has previously appeared. On the other hand, if the current character has not previously appeared, it must still be assigned a probability since otherwise it could not be encoded. If the data has a large alphabet, then it will frequently occur that the current character is a member of this large alphabet that has not yet appeared. Arithmetic coding researchers have proposed various methods for assigning the probability in this case. No method of this sort currently stands out as the best one regardless of the type of large alphabet data. Indeed, the assignment of the probability to each large alphabet character as it first appears in the data has proved to be somewhat of a controversial issue within the data compression community. Arithmetic coding researchers have often disagreed concerning how this assignment should best be done.
A new approach for handling the large alphabet problem is due to A. Orlitsky [6] and his co-workers. The Orlitsky approach is viewed as being very promising for the handling of the large alphabet problem in data compression.
Intrusion detection data is a specialized type of data which can be represented via specialized grammars which are highly compressible. Because of the specialized nature of intrusion detection data, these grammars would not be of the types we mentioned earlier, but would be of a new type which would be determined as a result of the proposed research. Once a specialized grammar for representing intrusion detection data has been found, one must then compress the production rules of that grammar. At this point, one encounters the large alphabet problem: the variables comprising the production rules of the grammar would form a large alphabet. We propose to investigate the use of the Orlitsky approach for compressing these production rules with large alphabet.

Our overall proposed approach to the compression of intrusion detection data would then consist of two modules: Module (1) would involve the development of specialized grammars for representing intrusion detection data sets. Module (2) would involve the compression via the Orlitsky approach of the production rules of a module (1) grammar for representing an intrusion detection data set. In this way, our proposed compression technique for the compression of intrusion detection data would involve a marriage of grammar-based coding techniques with the Orlitsky large alphabet approach. An important consideration in this marriage in addition to compression efficiency is the speed with which the intrusion detection data can be compressed/decompressed.
III. Research TASKS
A. Overview
In general, a data clustering algorithm attempts to cluster data patterns that are similar to each other. Since data compression works poorly for random bits, network traffic data sets must undergo clustering in order to achieve high compression at low bit rate. We propose an innovative approach for clustering of the network traffic characteristics, which will allow us to manage and subsequently compress a huge relational database efficiently via a combination of grammar-based and large alphabet coding methodologies. The clustering approach creates meaningful data patterns and then clusters of patterns; the clusters are formed based on the correlations between tuple-level and field-level network connection behaviors and sorted attribute indices (indices are used in database design to find specific records faster and to sort records by the index field).
[image: image1.png]Clustering |) |Compression | () | Anomymization |) | Encryption

Figure 1. Block diagram of processes comprising front end of proposed compression system.

A very high compression ratio for lossless compression can be achieved by exploitation of the hierarchical relationships between these clusters and statistical information concerning these clusters. The hierarchical relationships are used to construct a grammar from which the data can later be reconstructed, and the statistical information allows one to perform low redundancy compression of the grammar’s production rules via the large alphabet methodology.

Our proposed method is appropriate for compressing voluminous relational databases. The resulting intrusion detection database compression system will yield both efficient compression and fast information retrieval with compact relational indices. The following summarizes the principal components of this proposed compression system:

1. Data Clustering and Consistent Data Cleaning Processes.

2. Compression Process.
3. Data Anonymization for Privacy

4. Encryption Process for Security.

5. Fast Information Retrieval Process.

The ``front end’’ of this compression system is indicated in the Fig. 1 block diagram; the depicted blocks indicate the order in which processes (1)-(4) take place. As the result of (1)-(4), the compressed intrusion detection data can be stored. The “back end’’ of the proposed compression system has not been depicted, but it consists of the information retrieval process (5); this would involve decryption and then decompression of the stored compressed intrusion detection data (stored as compressed grammar production rules). Information retrieval can be made very fast by efficient management of statistical information used in the large alphabet decompression method for reconstructing the grammar production rules from the compressed rules, and by employing parallel processing in using these rules to reconstruct the intrusion detection data.

B. Procedures

Most of today’s network interface and analysis tools, such as tcpdump, SNORT, Ethereal, etc. are based on LIBPCAP, a widely used standard packet capture library that was developed for use with the Berkeley Packet Filter (BPF) kernel device. Essentially, the BPF is an extension to the OS kernel enabling low-level communication between the operating system and a network interface adapter. Traditionally, network analysis tools (architectures) are composed of three major components: the BPF, LIBPCAP, and the client system. The major limitation of this model exists between LIBPCAP and the client system. No inherent functionality exists to aid the client system with the overhead of decoding and interpreting the raw byte encoded sequence that comprises a network packet. The system has been developed to capture and analyze intrusion detection data at the Air Force Research Laboratory. The system is called Simplified Protocol Capture (SIMPCAP) [3]. It uses efficient memory storage/retrieval techniques to maintain a workable user environment. We will further improve SIMPCAP by adopting innovative intrusion data compression, database management and anomaly detection technologies.
[image: image2.png]File 1| File 2

File 3

[File n-1| File n

N\ T

F, F,_ R/ Fui~Fn
File 1 File 2 File 3 File n-1| Filen
To Ta o | Ton T
rairy |) (“way | (“wtay | (“matry
Dchonay || Dictarany | icionay | | micvonay || bcnanay

Figure 2. Dictionary management in compression process.

Figures 2-4 give some details concerning our proposed approach beyond Figure 1. In Figure 2, we illustrate the manner in which dictionaries are formed to be used in the compression process. An extremely large file F is partitioned in subfiles Fi. First, a common dictionary  is formed which reflects the common features of the subfiles. As indicated in Figure 1, the goal is to compress the clustering C(Fi) of each Fi. In compressing a particular C(Fi), an augmented dictionary is employed which consists of the common dictionary  together with an auxiliary dictionary i; i models those features particular to Fi which are not modeled by the common dictionary . Let us use the notation [,i] to denote this augmented dictionary. Figure 3 is a flow chart of the compression process. Each C(Fi) is encoded into a binary codeword B(C(Fi)|,i) by making use of the augmented dictionary [,i]. To recover C(Fi) from this codeword, the decoder needs to know what auxiliary dictionary [,i] was used by the encoder. To accomplish this,  is represented by a binary codeword B() and each i is represented by a binary codeword B(i). The codeword B(), and the codewords B(i), B(C(Fi)|,i) as i varies are all stored at the end of the encoding process.
[image: image3.png]Encryption
K(AD)
AD)
Anonymization
A(D)
D
Create
Common &
Auxiliary
Get [Dictionaries
Subfile D={AB,..., 8.}
F, o={8.5}
Cluster
Subfile yes
CiF) L .,
Create
Subfile Dictionary E(C(E))
Ll
P —
(Buffer storage) Compression
a0ty E(CIR)=BIC(F))

Figure 3. Flow chart detailing Figure 1 process.

[image: image4.png]Data Clustering

C(FIX{C(F4).C(Fy),....C(Fo)}
C(F)

Dictionaries

D ={Ad,.8;,....8.}
8

Anonymization

A(D) = {A(&)A(81),AB,);--- AlBn)}
A&)

Encryption

KIAD)={K4(A)), Ke(A(B1)),.. Ke(ABuI}
Ks(A®)

Compression

E(C(F)={E(C(Fy)).E(C(Fy)..- E(C(F.))}
E(C(F) = BC(F)I A(A)A(3)

Figure 4. Process nomenclatures used in Figure 3 flow chart.

The decoder makes use of these stored codewords: first, the decoder recovers the common dictionary  from codeword B(), and then recovers each i from codeword B(i). At this point, the decoder will know what each augmented dictionary [,i] is, and can then decode each C(Fi) from codeword B(C(Fi)|,i) using [,i]. The reader may now be able to see the advantage of this approach. Instead of separately designed dictionaries for each Fi, which would have to be compressed separately, we use [,i] as our dictionary for compressing C(Fi); since  is in common among all [,i]’s, it only has to be compressed once. As we are dealing with extremely large data files, this could result in a considerable savings in storage space.

In conclusion of this section, we point out an interesting unsolved research question in connection with the assignment of dictionaries in Figure 2. One would have to figure out the proper tradeoff between assignment of the common dictionary  versus the assignment of the auxiliary dictionaries i, so that the codeword B() together with the codewords B(i) will occupy the least amount of storage space.
IV. CONCLUSION

We have proposed an innovative approach to cluster the network traffic characteristics in order to compress and manage a huge relational database efficiently. In database design, indices make it faster to find specific records and to sort records by the index fields. The idea is to create meaningful patterns and merge clusters based on the correlations between tuple level and field level network connection behaviors. A very high compression ratio for the lossless compression can be achieved by characterizing and clustering attributes. Our proposed technique for intrusion detection data compression, anonymization and encryption is under current investigation, and it can play an important role in intrusion detection systems.
References
[1] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, A. Shelat, “The smallest grammar problem,” IEEE Transactions on Information Theory, vol. 51, Issue 7, pp. 2554-2576, July 2005.
[2] Keesook J. Han and Joseph Giordano, “Intrusion Detection System Modeling,” Proceedings of the HPCMP UGC 2006, IEEE Computer Society, June 2006.
[3] M. Corley, M. Weir, K. Nelson, A. Karam, “Simplified Protocol Capture (SIMPCAP),” Proceedings of the Fifth Annual IEEE Information Assurance Workshop, 2004.
[4] J. C. Kieffer and E.-H. Yang, “Grammar-Based Codes: A New Class of Universal Lossless Source Codes,” IEEE Transactions on Information Theory, vol.46, pp.737-754, 2000.
[5] J. C. Kieffer and E.-H. Yang, “Grammar-Based Lossless Universal Refinement Source Coding,'' IEEE Transaction on Information Theory, vol. 50, pp.1415-1424, 2004.
[6] A. Orlitsky, N.P. Santhanam, and J. Zhang, “Universal compression of memoryless sources over unknown alphabets,” IEEE Transactions on Information Theory, vol. 50, pp. 1469-1481, July 2004.
[7] E.-H.Yang, and J. C.Kieffer, “Efficient Universal Lossless Data Compression Algorithms Based on a Greedy Sequential Grammar Transform. I. Without Context Models,” IEEE Transactions on Information Theory, vol. 46, pp. 755-777, 2000.[image: image5.png]

Keesook J. Han is with the Air Force Research Laboratory, Information Directorate, Rome, NY 13441 USA (corresponding author to provide e-mail: Keesook.Han@ rl.af.mil).

John C. Kieffer is with the Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455 USA (e-mail: kieffer@umn.edu).

