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Abstract— Distributed Denial-of-Service (DDoS) attacks are a
major problem in the Internet today. During a DDoS attack, a
large number of compromised hosts send unwanted traffic to the
victim, thus exhausting the resources of the victim and preventing
it from serving its legitimate clients. One of the main mechanisms
against DDoS is filtering, which allows routers to selectively block
unwanted traffic. Given the magnitude of DDoS attacks and the
high cost of filters in the routers today, the successful mitigation
of a DDoS attack using filtering crucially depends on the efficient
allocation of filtering resources.

In this paper, we consider a single router with a limited
number of available filters. We study how to optimally allocate
filters to attack sources, or entire domains of attack sources, so
as to maximize the amount of good traffic preserved, under a
constraint on the number of filters. First, we look at the single-tier
problem, where the collateral damage on legitimate traffic is high
due to the filtering at the granularity of attack domains. Second,
we look at the two-tier problem, where we have an additional
constraint on the number of filters and filtering is performed at
the granularity of attackers and/or domains. We formulate both
problems as optimization problems, and we evaluate the optimal
solution over a range of realistic attack-scenarios. Our results
demonstrate that efficient filter allocation significantly improves
the tradeoff between the number of filters used and the amount
of legitimate traffic preserved.

I. I NTRODUCTION

Distributed Denial-of-Service attacks (DoS) are one of the
most severe and hard to solve problems on the Internet today.
During a DDoS attack, a large number of compromised hosts
coordinate and send unwanted traffic to the victim thus ex-
hausting the victim’s resources and preventing it from serving
its legitimate clients. For example, victims of DDoS attacks
can be companies that rely on the Internet for their business,
in which case DDoS attacks can result in severe financial loss
or even in the company quitting the business [1]. Government
sites (e.g. www1.whitehouse.gov) and other organizationscan
also be victims of DDoS attacks, in which case disruption of
operation results in a political or reputation cost.

Several approaches and mechanisms have been proposed to
deal with DDoS attacks. In this work, we focus on filtering
mechanisms, which are a necessary component in the anti-
DDoS solution. We consider the scenario of a bandwidth
flooding attack, during which the bottleneck link to the victim
is flooded with undesired traffic. To defend against such an
attack, the victim must identify undesired traffic (using some
identification mechanism which is not the focus of this work)
and request from its ISP/gateway to block it before it enters
the victim’s access link and causes damage to legitimate

traffic. Even assuming a perfect mechanism for identification
of attack traffic, filter allocation at the victim’s gateway is
in itself a hard problem. The reason is that the number of
attack sources in today’s DDoS attacks is much larger than the
number of expensive filters (ACLs) at the routers. Therefore,
the victim cannot afford to selectively block traffic from each
individual attack source, but instead may have to block entire
domains; in that case legitimate traffic originating from that
domain is also unnecessarily filtered together with the attack
sources. Clearly, the successful mitigation of a DDoS attack
using filtering, crucially depends on the efficient allocation
of filtering resources. In this paper, we study the optimal
allocation of filters to individual attackers or entire domains
of attackers. Filters can be placed at a single gateways’ tier, so
as to maximize the preserved good traffic; the core insight in
the single-tier problem is that the coarse filtering granularity
makes co-located attack and legitimate traffic to share fate.
We also consider filter placements at two tiers (attackers and
gateways); in this case, the trade-off is between the preserved
goodput and the number of filters used. We evaluate the
optimal solution for three realistic attack scenarios, based on
data sets from the analysis of the Code Red [16] and Slammer
[17] worms, the Prolexic Zombie Report [19], and statistics
on Internet users [20].

The structure of the rest of the paper is as follows. In
section II, we give more background on the problem and we
discuss related work. In section III, we formulate the problem
of optimal filter allocation on a single tier (i.e. gateways or
attackers tier) and the more general problem of filtering at both
the gateway and attacker tier. We solve the problem optimally
using dynamic programming. We study the properties of the
optimal solution and evaluate it through simulation in section
IV. In section V, we conclude the paper and discuss open
issues and future work.

II. BACKGROUND

A. Flooding Attacks and Filtering

In this paper, we are concerned with a DDoS attack on
network bandwidth, also called flooding attack. A flooding
attack is very easy to launch as it only requires sending a
certain amount of traffic that overwhelms the link connecting
the victim to the Internet. An example of flooding attack is
shown in Fig. 1. A victim (V) is connected to the Internet
through ISP-V, using an access link with bandwidthC. The
victim is under a DDoS attack from several attack sources
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Fig. 1. The victim (V) is connected to its ISP (ISP-V) throughan access
router (GW-V ) and an access link (with bandwidthC). GW-B is a border
router of ISP-V. Attackers are located in various ASes behind the attack
gateways; the total traffic exceeds the capacityC.

hosted by other ISPs, such as ISP-A. The total traffic coming
from those sources exceeds the total capacityC.

Filtering is one of the mechanisms that can help to mitigate
DDoS attacks and stop the unwanted traffic from reaching the
victim and consuming network bandwidth along the way. For
example, in Fig.1, the victim can send a filtering request to its
own ISP-V to block all traffic from ISP-A to the victim. ISP-V
responds by placing filters at appropriately chosen gateway(s),
e.g. GW-V or GW-B. In this paper, we are not concerned with
choosing the best gateway within an ISP for placing the filters;
instead we look at a single gateway, say GW-V, and how to
allocate filters to attackers or attack domains.

By “filters”, we refer to access control lists (ACLs), which
allow a router to match a packet header against rules. E.g.
in the DDoS case described above, the router checks if the
packet is going to victimV and coming from attacking host
A; or the router might check the source IP address and filter
out any packet coming from the entire ISP-A. Packet filters
in routers are a scarce, expensive resource because they are
stored in the expensive TCAM (ternary content addressable
memory). A router linecard or supervisor-engine card typically
supports a single TCAM chip with tens of thousands of
entries. So, depending on how an ISP connects its clients
to its network, each client can typically claim from a few
hundred to a few thousand filters – not enough to block the
attacks observed today and not nearly enough to block the
attacks expected in the near future. We formulate two filtering
problems: thesingle-tierand thetwo-tier filtering, depending
on the granularity of packet filtering (or equivalently, thelevels
of the attack graph considered). In the single-tier case, we
are interested in filtering entire attack gateways, a task for
which there are enough filters today; in this context, we seek
to filter out traffic so that the total traffic arriving at the
victim is below the available bandwidth, while maximizing
the preserved legitimate traffic. In the two-tier problem, we
are interested in filtering not only attack gateways but also

individual attackers, a task for which there are not enough
filters in a single router today; the number of filters becomes
then an additional constraint.

B. Related Work

A taxonomy of DDoS attacks and defense mechanisms
can be found in [2]. Here we review only aspects related
to our work. Our work relies on existing mechanisms to
be able to identify the attack traffic, distinguish it from the
legitimate traffic and trace its approximate path back to the
attack source [3]. The main difficulty in path identificationlies
in dealing with source IP address spoofing. Other mechanisms
for path identification and traceback include probabilistically
sending ICMP messages [5]; mechanisms based on hashing
[6] or packet marking [7]. Also, in this work, we focus on
filtering at a single router, typically at the victim’s gateway.
Looking at the bigger picture, several mechanisms have been
proposed to enable filter propagation as close to the attack
source a possible. For example, Pushback [8] enables routers
to propagate filtering upstream hop-by-hop, at the router-level.
AITF [9] proposes to communicate filtering information from
the victim upstream towards the attack domain, but at the
granularity of AS, as opposed to router.

Filtering is not the only mechanism for mitigation of DDoS
attacks. Some of the proposed approaches revisit the basic
assumption of the Internet architecture, stating that every host
can send to any other host, without requiring permission of
the receiving host. For example, capabilities which propose
that tokens are obtained before establishing a connection with
a destination, and that these token are included in each packet
[10][11] [12] This proposal requires changing the routers on
the Internet and adding new servers and changes the whole
Internet architecture. Other proposals use overlay mechanisms
to implement a similar concept which is to restrict communica-
tion to the victim only through some known well provisioned
overlay nodes which can filter and detect attacks [13] [14].

Using filtering could provide a quick solution or first line
of defense to DoS attacks, until a permanent one is developed
and is already used today in commercially available systems
and anti-DoS services [15]. The downside of filtering is thatits
performance heavily depends on being able to identify attack
traffic and distinguish it from legitimate traffic, which is not
an easy task. However, it is an available, reactive mechanism
that can be used in conjunction with other approaches.

Finally, in this paper, we rely upon data from analysis of
worms, to construct realistic attack scenarios. Internet worms
are older than DDoS attacks, but are relevant for studying
such attacks because they are used as a tool to infect and
compromise hosts on the Internet with the attack clients. The
Code Red [16] worm is one well-known worm from 2001,
which contained code to launch a DoS attack on the website
(www1.whitehouse.gov), which did not succeed. Recently,
several other worms have been caused huge financial losses,
such as Slammer [17], MyDoom, Flash worms [18] and others
and have attracted a lot of researcher’s attention. Prolexic
[15] is also regularly publishing a very informative ”Zombie



Report”, on the most infected hosts per country, network
service-provider and other meaningful groupings [19].

III. F ORMULATION OF OPTIMAL ALLOCATION OF FILTERS

A. General Discussion

In principle, one might consider allocating filters at any
level of the attack graph, see Fig.1. There is clearly a trade-
off between filtering granularity (to maximize goodput) and
the number of filters. If there were no constraints on the
number of filters, the maximum throughput of good traffic
(goodput) would be achieved by allocating filters as close to
individual attackers as possible. The gateway in question (GW-
V) faces the following tradeoff. Ideally, GW-V would like to
filter out all attackers and allow all good traffic to reach the
victim. Unfortunately, in a typical DDoS attack, there are not
enough filters to individually filter all IP addresses of attack
hosts. A solution is to aggregate attack sources into a single
filter; in practice, there are enough filters available to filter at
that granularity. E.g. GW-V could summarize several attack
sources coming from the same domain, e.g. behind GW-1,
into a single rule and filter out the entire domains, as shown
in Fig. 2. However, there is also legitimate traffic coming from
each domain. Therefore, filtering at the granularity of attack
gateway-tier causes “collateral” damage to legitimate traffic
that falls into the range of the IP addresses described by the
filter. This problem, referred to as the ”single-tier filtering”, is
studied in section III-B so as to preserve the maximum amount
of legitimate traffic while meeting the capacity constraint. This
turns out to be a knapsack problem that can be solved by a
greedy algorithm (shown in Algorithm 1).

In practice, there are more filters (F ) than attack gateways
(N < F ), but less filters than individual attackers (F <
∑N

i=1
Mi) (see Fig. 3). Filtering at the gateway level is

feasible but causes the collateral damage discussed above,
due to its coarse granularity. Filtering at the attacker’s level
would preserve the maximum possible throughput but it is not
realistic (due to the high number of attackers as well as due
to spoofing); we still consider it as an upper bound for perfor-
mance. A practical and effective compromise between the two
extremes can be the two-tier filtering, shown in Fig. 3. In the
two-tier filtering, we can choose to filter either at gateways’
granularity (e.g. filter 1 in Fig. 3) or at attackers’ granularity
(e.g. filter 2 in Fig. 3). The optimal allocation of filters to
individual attack sources, or to entire attack gateways, depends
on the characteristics of the attack (distribution and intensity)
as well as on the number of available filters. Furthermore, the
successful containment of the DDoS attack crucially depends
on the optimization of the filter allocation.

B. Single-Tier Filter Allocation

The single-tier scenario is shown in Fig.2. There areN

attacking gateways, each generating both good (Gi) and bad
(Bi) traffic toward the victim; the total traffic toward the victim
exceeds its capacityC. Gateway GW-V allocates filters to
block the attack traffic towards V. There are enough filters
to allocate to theN gateways. The objective is to allocate

Algorithm 1 Greedy Algorithm for the Single-Tier.

• Order nodes in decreasing order
Gj

Gj+Bj
. W.l.o.g. j = 1, 2, ..N from

largest to smallest efficiency.
• Find the critical node c s.t.:

∑j=c−1

j=1
Gj + Bj < C and

∑j=c
j=1

Gj + Bj > C
• Allocate filters to nodesi = 1, 2, ...N as follows:

– xj = 1 for j = 1, 2, ..c − 1 (allow to pass)

– xc =
C−

∑j=c−1

j=1
Gj+Bj

Gc+Bc
(rate limiter)

– xj = 0 for j = c + 1, ..n (filters)

filters to limit the total traffic below the available capacity, so
as to maximize the amount of legitimate traffic that is getting
through to the victim (because this is what the victim cares
about, e.g. revenue for a web server).

Let us usexi = 1 andxi = 0 to indicate whether we allow
or block all traffic from gatewayi. The problem of optimal
allocation of filters is to choose{xi}

N
i :

max
∑

Gi · xi

s.t.

i=N
∑

i=1

(Gi + Bi) · xi ≤ C

xi ∈ {0, 1}, i = 1, 2, ..N

(1)

We noticed that the filter allocation problem is essentiallya 0-
1 knapsack problem [21]. Recall that in the knapsack problem,
we choose some amongN objects, each with profitvi and a
weightwi, so as to maximize the total profit, subject to a total
weight constraint. In our case, the objects are the attacking
nodes with profits and weightsGi andGi + Bi respectively;
and there is a constraintC on the victim’s bandwidth. This is
well-known to be a computationally hard problem. However,
we need computationally efficient solutions, because the filter
allocation should be decided in real-time during the attack.

The continuous relaxation of the problem (wherex is no
longer binary, but instead0 ≤ xi ≤ 1) can be interpreted as
placing rate-limiters: we allow ratioxi of the traffic coming
from node i to get to the victim. This corresponds to the
fractional knapsack problem, which can be solved optimally
using a greedy algorithm [21]. The algorithm in Algorithm 1,
shown below, sorts nodes in a decreasing order of efficiency

Gj

Gj+Bj
,1 and greedily accepts (xi = 1) nodes with the

maximum efficiency, until a critical nodec, which if allowed
will exceed the capacity. Traffic from all remaining nodes
is filtered out (xi = 0) and installs a rate-limiter to the

critical element (xc =
C−

∑ j=c−1

j=1
Gj+Bj

Gc+Bc
) to use the remaining

capacity. This requires onlyO(nlogn) steps for sorting and
O(n) for filer/rate-limiters allocation.

Notice, that it is impractical to allocate rate-limiters to
all attacking nodes, because rate-limiters are expensive re-
sources and require keeping state. Fortunately, the opti-
mal solution of the fractional problem turned out to be

1Technically, maximizing
∑ Gi

Gi+Bi
is different from maximizing

∑

Gi.
However because the optimal solution operates at

∑

Gi + Bi ≃ C, it is the
same in practice.
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Fig. 2. Single-Tier Filtering Problem

(x1, ...xc−1, xc, xc+1, ..., xN ) = (1, ...1, xc−1, 0, ...0), thus us-
ing C − 1 filters and exactly one rate-limiter, which matches
well current router resources.

C. Two-Tier Filter Allocation

The two-tier problem is the following. ConsiderN attack
gateways andMi attack hosts behind attack gatewayi, i.e.
the last two tiers in Fig.1. Each attacker contributes both
good (Gij) and bad traffic (Bij), i = 1, 2..N, j = 1, 2...Mj .
xij ∈ 0, 1 depending on whether we allocate a filter to attack-
host j behind gatewayi. xi ∈ 0, 1 depending on whether we
allocate a filter to attack-gatewayi; if xi = 0, then all traffic
originating behind GW-i is blocked, and there is no need to
allocate additional filters to attackers(i, j), j = 1, 2, ...Mi.

The problem is how to choose{xi}’s, {xij}’s, given the
constraintsC on the victim’s capacity and on the available
number of filtersF at the gateway:

max

i=N
∑

i=1

j=Mi
∑

j=1

Gij · xi · xij

s.t.

i=N
∑

i=1

j=Mi
∑

j=1

(Gij + Bij) · xi · xij ≤ C

i=N
∑

i=1

(1 − xi) +

i=N
∑

i=1

j=Mi
∑

j=1

(1 − xij) ≤ F

xi, xij ∈ {0, 1}, i = 1, ...N, j = 1, ...,Mj

(2)

The two-tier problem is harder than the single-tier one: it is
a variation of the cardinality-constrained knapsack [21],and
the optimal solution cannot be found efficiently. In this paper,
we formulate the problem using dynamic programming and
compute its optimal solution as a baseline for comparison.
However, the dynamic programming algorithm is computa-
tionally expensive and cannot be used in real time; we are
currently working on developing efficient heuristics.

Definitions. Consider the two-tiers configuration, shown
in Fig. 3. There areN gateways. A gatewayn generates
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legitimate trafficGn and also attack traffic fromMn attack
sources. Notice that for simplicity we depart from Eq.(2)
and we consider that attackerij generates only bad traffic
bij and no goodputGij ; instead we consider that the total
goodput Gn comes from different hosts behind gatewayn

. W.l.o.g. consider that the attack sources are ordered from
worst to best:b(n, 1) > ... > b(n,Mn). Therefore, each
gateway generates total trafficCn = Gn+

∑Mn

i=1
b(n, i). Before

filtering, the total traffic exceeds the victim’s access bandwidth
(capacity)C:

∑N

i=1
Cn > C. We are interested in placingF

filters across theN gateways, so as to bring the total traffic
below C, while maximizing the total goodput after filtering
TN (C,F ). T ∗

N (C,F ), can be computed recursively as shown
in Algorithm 2. The recursion proceeds considering one more
gateway at a time; the order in which gateways are considered
is not important. LetT ∗

i (c, f), for i ≤ N , be the maximum
goodput of the smaller problem, i.e. with optimal placement
of f ≤ F filters considering only gateways{1, 2, ..i} and
capacity up toc ≤ C. Assume that, in previous steps, we
have already obtained and stored the optimal solutionsTi(c, f)
considering only gateways1, 2, ...n − 1, for all values ofc =
0, 1, ..C and f = 0, 1, ...F . Then T ∗

n(c, f) can be computed
from the Bellman recursive equation (line 23 of Alg.2):

T ∗
n(c, f) = max

x=0,1,..f
T ∗

n−1(c− (Cn −

j=x
∑

j=0

b(n, j)), f −x)+Gn

(3)
Intuition. In stepn, we consider gatewayn together with

the previous gateways1, 2, ...n− 1. Thef available filters are
split among two groups of gateways:{1, 2, ..n− 1} and{n};
x ≤ f filters are assigned to gatewayn and the remainingf−x

filters are assigned to the previous gateways{1, 2, ..n − 1}.
The x filters assigned toGWn are used to block thex worst
attackers. Therefore,

∑j=x

j=0
b(n, j) bad traffic is blocked and

the remainingC(n) −
∑j=x

j=0
b(n, j) = Gn +

∑j=Mn

j=x+1
b(n, j)

traffic goes through (gwnunfiltered in line 24), consuming
part of the total capacityc. The remainingf − x filters are



optimally assigned to gateways1, 2, ...n − 1. Recall that we
have previously obtained and stored the optimal solutions
T ∗

n−1(c, f) considering only gateways{1, 2, ...n − 1}, for all
c and f ; therefore, we already know the best allocation of
f − x filters across gateways{1, 2, ...n − 1} and we can get
the maximum goodputT ∗

n−1(c−(C(n)−
∑j=x

j=0
b(n, j)), f−x).

We consider all possible values ofx and choose the value
among0 ≤ x ≤ f that maximizes goodput (line 33 in Alg.2).
There are some values ofx that deserve special attention:

• x = 0 means that we assign no filters to gateway
n, in which case our best goodput is the same as
before, enhanced by the goodput of the current gateway:
T ∗

n−1(c − Cn, f) + Gn (max0 in line 12 of Alg. 2).
• x = 1 means that we assign exactly one filter to gateway

n, either at attacker or at gateway level. If we assign
this filter to an attacker, it should be the worst attacker
b(n, 1) (line 16 in Alg.2). If this one filter is assigned to
the entire gateway, then the entire trafficCn from gateway
n is filtered out and all goodput comes from the previous
gatewaysT ∗

n−1(c, f − 1) (line 18 of Alg.2). We compare
the two options and choose the one that maximizes the
overall goodput (max1 in line 19 of Alg.2).

• We consider increasing values ofx until we either run
out of filters (x = f ) or we filter out all attackers in
this gateway (x = Mn). Therefore,x can increase up to
min{f,Mn} (line 23 in Alg. 2).

Other technicalities in Algorithm 2 include the initializa-
tions (lines 1-3) and assigningT ∗ = 0 to infeasible problems
(line 3-2nd case and line 28).

Optimal Substructure.We are able to compute the optimal
solution using dynamic programming (DP) because the prob-
lem exhibits the optimal substructure property.

Proposition. If a∗ is the optimal solution for problem
(n, c, f), then it contains a parta∗

{1,...n−1} ⊂ a∗ (correspond-
ing to the filters assigned to the first n-1 gateways) which
must also be the optimal solution for the smaller problem
(n − 1, C − (Cn −

∑j=x

j=0
b(n, j)), f − x).

Proof: a∗ is the optimal solution for problem(n, c, f),
achieving maximum goodputT ∗

n(c, f).2 This solution (filter
assignment) must have two partsa∗ = (a∗

{1,2..n−1}, a
∗
{n}). The

first part a∗
{1,2..n−1} describes how filters are placed across

gateways{1, 2, ..n− 1}. The second part,a{n} describes how
filters are assigned to gateway{n} only. Let’s look at the
optimal solutiona∗: it assigns some number of filters (x) to
gatewayn and the remaining (f−x) to gateways{0, 1, ..n−1}.
This means that

∑j=x

j=0
b(n, j) out of Cn traffic is filtered

out at gatewayn and the remainingCn −
∑j=x

j=0
b(n, j) is

left unfiltered. The two parts contribute to the maximum
throughput as follows:

T ∗
n(c, f) := T

∣

∣

a∗ = T
∣

∣

∣

a∗
{1,2..n−1}

+ T
∣

∣

∣

a∗
{n}

2a∗ will have the form of a vector(1, 0, 0, ..., 0, 1); 0/1 describes whether
an attacker or gateway has been filtered out or not; the attackers and gateways
should be listed in the same order they are considered in the DP.

Algorithm 2 Dynamic Programming (DP) Formulation for the
Two-Tiers Filtering Problem

1: for n = 1, 2, ..N do
2: T ∗

n(c = 0, :) = 0

3: T ∗

n(:, f = 0) =

{

∑N
n=1

Gn if
∑N

n=1
Gn < C

0 otherwise
4: end for
5:
6: for n ∈ [1, N ] do
7: for c ∈ [1, C] do
8: for f ∈ [1, F ] do
9: /* x out of f filters are assigned toGWn */

10:
11: /* assignx = 0 filters to GWn*/
12: max0 = T ∗

n−1
(c − Cn, f) + Gn

13:
14: /*assignx = 1 filter to GWn*/
15: /* ...either at gateway level*/
16: max1gw = T ∗

n−1
(c, f − 1)

17: /* ...or at attacker level*/
18: max1att = T ∗

n−1
(c − (Cn − b(n, 1)), f − 1) + Gn

19: max1 = max{max1gw, max1att}
20: max = max{max0, max1}
21:
22: /* assignx ≥ 2 filters at attack level. */
23: for x ∈ [2, min(f, Mn)] do
24: gwnunfiltered := Cn −

∑x
j=1

b(n, j)
25: if c > gwnunfiltered then
26: temp := Tn−1∗(c − gwnunfiltered, f − x) + Gn

27: else
28: temp := 0
29: end if
30: if temp > max then
31: max := temp
32: end if
33: T ∗

n(c, f) := max
34: end for
35: end for
36: end for

37: end for

Assume thatb, and not a∗
{1,2..n−1}, is the optimal filter

assignment for the smaller problem(n − 1, C − (Cn −
∑j=x

j=0
b(n, j)), f − x). Then, by definition of the optimal

filtering, it achieves larger goodput than the substructure
a∗
{1,2..n−1}: T ∗

n−1 := T
∣

∣

b
> T

∣

∣

a∗
{1,2..n−1}

.

We can now construct another solutiond for the larger
problem(n, c, f) as follows. Replace the first parta∗

{1,2..n−1}

of a∗ with b, for assigningf − x filters up to gatewayn− 1,
which would fit within capacityC − (Cn −

∑j=x

j=0
b(n, j)).

Then, do exactly the same assignment as the DP would do, in
Eq. 3, for assigning thex remaining filters to gatewayn. This
newly constructed filter assignmentd has two partsd = (b, d2)
that contribute to the total goodput.

The first partb is over gateways{1, 2, ..n − 1}. We con-
structed this part to be the same as the optimal assignment
of f − x filters over gateways{1, 2, ..n − 1}, with available
capacity C − (Cn −

∑j=x

j=0
b(n, j)). Therefore it achieves

optimal goodputT
∣

∣

b
:= T ∗

n−1 ≥ T
∣

∣

a∗
{1,2..n−1}

. The second part

d2 is an assignment over only gateway{n}. We constructed it
to do exactly what the DP would do at stepn with x available
filters: either filter out the worstx attackers of gatewayn
(i.e. attackersb(n, 1)...b(1, x)) or filter out the entire gateway
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Fig. 4. Improvement from using optimal filtering for various attack intensities
(% of attacking nodes,B/(G+B)). We considern = 1000 attacking nodes,
all sending at the same rate (10Mbps).

(if x = 1 is assigned at gateway level). Therefore,d2 is by
construction the same assignment as the DP’s:d2 = a{n}∗ and
results in the same goodput:T

∣

∣

d2

= T
∣

∣

a∗
{n}

.

Therefore, we constructed a solutiond = (b, d2) which
performs better than the DP solutiona∗.

T
∣

∣

∣

d
= T

∣

∣

∣

b
+ T

∣

∣

d{n}
> T

∣

∣

∣

a∗
{1,2..n−1}

+ T
∣

∣

a∗
{n}

= T
∣

∣

∣

a∗
(4)

This is a contradiction because we assumed thata∗ was an
optimal solution for the bigger problem(n, c, f). Therefore
the substructurea∗

{1,...n−1} of the optimal solutiona∗ has to
be the optimal solution for the smaller problem.

Cost of the Dynamic Programming.Computing the optimal
solution valueT ∗

n(C,F ) using dynamic programming (DP)
can be seen as filling up a table of sizeN ·C ·F . For realistic
(large) values ofN , C, F this can be prohibitively large, both
from a run-time and from a memory point of view. While
the number of gatewaysN can be moderate,C (normalized
in units of the smallest attack rate) andF (in the order of
thousands or tens of thousands) can be quite large in practice.
An idea might be to work with coarser increments ofC and
F - which brings us already in the realm of heuristics for
the DP, not addressed in this paper. Nevertheless, computing
the optimal solution is still important as a benchmark for
evaluation of any proposed heuristic.

Properties of the Optimal Solution.From the simulations
in section IV-D, we made some preliminary observations.
E.g., we compared the two-tier with the attack-tier-only
and the gateway-tier-only filtering. LetTN (C, f), GN (C, f),
AN (C, f) be the maximum goodput achieved by the optimal
placement off filters acrossN gateways, considering two-
tier placement, single-tier placement at gateways and single
attackers respectively. For the same attack scenario:

• TN (C, f) ≥ AN (C, f) andTN (C, f) ≥ GN (C, f). This
is expected, because by definition, the optimal solution
of the two-tier problem considers placing all filters at
gateway and attack level, as special cases.

• G∗ < T < A∗ where: G∗ is the optimal filtering
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Fig. 5. Improvement from using optimal filtering for various % ofnodes
with high intensity, and various % of nodes sending at higherrate (100Mbps).
H = 0.9 is fixed for all attacking nodes.

for (single) gateway tier andA∗ is the optimal (single)
attack tier filtering. Single-tier filtering does not have a
constraint on the number of filters and is only constrained
by the “collateral damage” on legitimate traffic.

• As f ↑, T converges toA∗, the optimal solution for
attacker’s single tier, without a constraint onf .

IV. SIMULATIONS

A. Single-Tier Artificially Generated Scenarios

We considered a wide range of scenarios and here we
showcase some representative results. Let us fix the number
N of attack nodes; we consideredN = 10, 100, 1000. We
control the intensity of the attack through a simple model
with three parameters. (i) the bandwidth at which each node
sends is a configurable parameter. (ii) x% of the nodes that are
attacking and the remaining (100-x)% send legitimate traffic
(iii) attacking nodes have all the same bad-to-overall traffic
ratio H = B

B+G
; the legitimate nodes have ratio1−H of bad

to overall.
Fig.4 shows the results forN = 1000 nodes, which all

send at the same rate (10Mbps). We consider all combinations
of x ∈ {0, 100}% and H ∈ (0.5, 0.9) and we look at the
difference in the % of good traffic on the congested link,
before and after optimal filtering. The figure shows that there
is always improvement, with the best improvement (40%)
achieved when 50% of all nodes are attackers, sending at
H = B

B+G
= 0.9.

Then, we also vary the sending rate of each node. We
randomly pick 10%, 50% or 90% of the nodes to have 10
times more bandwidth than the rest (i.e. 100Mbps). The reason
we look at heterogeneous bandwidths is that a node should be
filtered based not only on the ratioB

B+G
, but also on its total

contributionB+G to the capacity of the congested link. Fig.5,
shows that optimal filtering significantly helps in this case.

1) Varying the number of attacking nodes:In this section,
we increase the number of nodes and we are interested not only
in the % of good traffic preserved, but also in the number of
filters required. We compareoptimal filtering to 3 benchmark
policies:
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Fig. 6. Performance of Optimal Filtering for the attackers’ one tier.

• Uniform rate limiting: rate-limit all nodes by
C

total traffic
, to make sure the total traffic does

not exceed the capacity. Notice, that this policy is
equivalent tono filtering in terms of percentage of good
to overall traffic on the congested link.

• Random filtering: randomly place the same number of
filters as the optimal policy.

• Max-min rate limiting: admit the low-rate nodes first
while allocating the same bandwidth to the high rate
ones; then distribute the excess capacity fairly among the
unsatisfied remaining nodes.

We vary the number of attackers (from 1000 to 50000)
and we allocate filters to individual attackers (attackers’one-
tier problem )3. In Fig6, optimal filtering clearly outperforms
the other policies: it preserves more good traffic using less
filters. However, the number of filters increases linearly with
the number of attackers, which clearly does not scale for a
large number of attackers.

To deal with this scalability issue, we solve the one-tier
problem at the gateway level. We consider again an increasing
number of attackers (from 1000 to 50000), but this time

3In this simulation scenario, we varyN , but we make sure that the total
good traffic is below the capacity (in particular

∑N
1

Gi = C
2

), because this is
the practical case of adequate provisioning. To construct such an assignment,
we assignC

2
over half of the nodes assigningC

N
to every other node and we

randomly pickN/2 nodes and assign them bad traffic. We make sure that the
total traffic emitted by each node is no more than its maximum rate (32, 64,
or 128 kbps)

TABLE I

CODE-RED SCENARIOS

Code Red I Code Red II
Country GW % of % of % of % of

Good Bad Good Bad
Traffic Traffic Traffic Traffic

from [20] from [16]
USA 1 36.27 43.9 36.2 45.9
Korea 2 5.8 11.5 0 12
China 3 18.35 10.3 24.1 0
Taiwan 4 2.46 6.1 2.4 16.7
Canada 5 3.64 5.4 3.6 5.4

UK 6 6.74 5.2 6.7 5.3
Germany 7 8.4 5.1 8.4 5.2
Australia 8 2.5 4.3 2.5 1.1

Japan 9 13.91 4.2 14.2 0
Netherlands 10 1.93 4.1 1.9 8.4

attackers are evenly spread behindn = 1000 gateways (as
in Fig. 1) and we allocate filters to gateways, not to individual
attackers. The results are shown in Fig. 7. The optimal policy
again outperforms the others: it preserves significantly more
good traffic while using much less filters. However, there are
several differences from filtering at the attackers’ tier, all due
to the coarser filtering granularity. First, we need less filters,
but the % of preserved traffic drops below 50% in the case of
larger number of attackers. Second, the number of filters used
by the optimal policy increases fast up to around 90% and
then saturates, because otherwise all traffic would be blocked.
Third, the max-min policy performs much worse now; also
from a practical point of view, the uniform and max-min
policies are less attractive, because they use rate-limiters on
all nodes, which is unrealistic.

B. Realistic Attack Scenarios

First, we used data from the analysis of two recent worms,
Code-Red [16] and Slammer [17] to construct realistic attack
distributions as in the single-tier section. Another source of
data we used for the attack traffic distribution is Zombie
Report [19] published by Prolexic [15]. This report contains
the percentage of bots, grouped per country, network, ISP
and other meaningful groupings; we use the data referring
to the number of infected hosts per country. We assume that
if a victim is under attack that traffic would come from ten
countries. We consider the ten first countries and assume
that they are behind ten different gatewaysThe distribution of
attack traffic for the Code-Red, Slammer Zombie scenario is
summarized in the last column of Tables I, II and III.

We consider a typical victim – a web-server with 100Mbps
access link. We also consider that each country is in a different
AS, thus is behind a different gateway; we then use the
number of attack sources per gateway, as reported in [16],
[17], [19] 4 and shown in the4th column of Table I. For
the legitimate traffic, we use the breakdown of Internet users
per country reported in [20] and shown in the3rd column
of Table I, II and III. We consider that both attackers and

4In [16] 80% of the total attack comes from 10 countries; we distributed
the rest 20% of the attack uniformly across the lower 8 countries.



TABLE II

SLAMMER SCENARIO: ATTACK LAUNCHED BY A POPULATION OF HOSTS

INFECTED BY A WORM SIMILAR TO SLAMMER .

Country GW % Good Traffic % Bad Traffic
USA 1 36.3% 44.6%

South Korea 2 5.8% 13.6%
China 3 18.5% 8%
Taiwan 4 2.4% 5.7%
Canada 5 3.6% 4.6%

Australia 6 2.5% 4.2%
UK 7 6.7% 3.8%

Japan 8 13.9% 3.5%
Netherlands 9 1.9 % 3.3%
Unknown 10 8.4% 8.7%

Total 100% 100%

TABLE III

PROLEXIC SCENARIO: ATTACK LAUNCHED BY A BOTS POPULATION,

SIMILAR TO THE ONE IN THE PROLEXIC ZOMBIE REPORT.

Country GW % Good Traffic % Bad Traffic
US 1 36.5% 21.5%

China 2 18.5% 14.5%
Germany 3 8.5 % 13.5%

UK 4 6.78% 8.5%
France 5 4.59% 8.5%
Brazil 6 4% 7.5%
Japan 7 13.99% 7.5%

Phillippines 8 1.4% 6.5%
Russia 9 13.94% 6.5%

Malaysia 10 1.8% 5.5%
Total 100% 100%

legitimate users send at the same rate (32kbps, 64kbps or
128kbps), corresponding to upstream dialup/dsl. Therefore, if
the total number of legitimate users isN and that of attackers
is M , then the amount of good and bad traffic coming from
gatewayi is Gi = N · (% users behind gatewayi) · (rate) and
Bi = M · (% users behind gatewayi) · (rate). Our rationale
is that the number of legitimate users is representative of
the legitimate traffic coming from each country. We use the
number/percentage of legitimate users, to compute the % of
total good traffic generated by each gateway. The result is
summarized in the third column in each attack scenario.

In summary, we construct three realistic attack scenarios
using data from [20] as well as from the analysis of code-red
worm, slammer worm and the zombie report.

C. Results for Single-Tier

We simulated the Code-Red scenario, (CodeRed I– columns
3 and 4 of Table I) for a number of legitimate usersN from
1000 to 10000 and attackersM from 1000 to 10000, and we
compared the amount of good traffic preserved without any
filtering and with optimal filtering. The results are shown in
Fig. 8 for 32Kbps sending rate. (The results for 64kbps and
128kbps show similar trends and are omitted here).

Fig. 8(a) shows the % of good traffic preserved. When the
total good traffic is less than the capacity of the congested
link,5 and the number of attackers was between 1000 and 2000,

5When the good traffic exceeds the capacity, we cannot preserve100% of
it. This can be seen as a combination of a flash-crowd and a DDoS attack. In
the rest of the paper, we focus on cases where the good traffic does not exceed
the capacity (which is the case with normal operation and goodprovisioning).
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Fig. 7. Performance of Optimal Filtering for the gateways’ onetier (1000
gateways, same number of attackers behind each gateway).

optimal filtering preserves 100% of the good traffic. As the
number of attackers increases, the % of good traffic preserved
drops; e.g. for 1000 users and 10000 attackers, optimal filtering
preserves 55% of the good traffic. This is because filtering at
the gateway level is based on destination address and domain
source address; better results could be achieved if a finer
granularity of filtering could be applied (i.e. source address
of individual attackers), as in the multi-tier case later.

Fig. 8(b) shows the % of the capacity of the congested link
that consists of good traffic. When the number of attackers
is comparable to the number of legitimate users (e.g. 10000
attackers and 10000 users), we observe that the optimal
filtering preserves 25% more good traffic, which increases the
percentage of good traffic on the congested link from 50% to
75%. However, at the extremes where the number of legitimate
users is much smaller (e.g. 1000 users and 10000 attackers)
or much larger (e.g. 10000 users and 1000 attackers) than the
number of attackers then the optimal filtering increases the
preserved good traffic only marginally ( 10%).

The improvement achieved above was moderate, because all
gateways had both good and bad traffic. If there are gateways
that carry only good or bad traffic, then filtering would be able
to better separate good from bad traffic and further improve
performance. To demonstrate this, we modify the distributions
of good and bad traffic per gateway, as shown in scenarioCode
Red II – 5th and 6th column of Table I. This modification
maps to real life scenarios in which a certain website has
only customers in some, but not all, countries (ASes). Also it
is reasonable to assume that the attacker will not be able to
compromise hosts in ASes that span all countries, thus there
are some gateways with only bad or good traffic.
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Fig. 8. Performance of Optimal Filtering for scenario Code RedI.

We used the same simulation setup as for theCode-Red I
scenario and the results are shown in Fig. 9. The trends are
similar but the improvement is more substantial: the capacity
of the congested link used by good traffic improves up to
50%. In the case of 10000 legitimate users, optimal filtering
allows only good traffic through the congested link until the
capacity is used. The same behavior can be observed for 5000
legitimate users with 64Kbps and 128Kbps rates.

D. Results For Two-Tiers

Figures 10, 11, and 12 show the performance of optimal
two-tier filtering for the Code-Red scenario, Slammer and
Zombie scenario respectively. In all three cases, we increase
the number of attackersand we look at how well filtering can
handle the increasing attack traffic. The performance metrics
of interest are (a) the % goodput preserved after filtering and
(b) the number of filters used in the process. As a baseline
for comparison, we also show the performance of the optimal
single-tier filtering at gateway and attack level.

In all three figures, the optimal solution performs similarly,
although they are based on different distributions of good and
bad traffic. As expected, filtering at attackers’ level (plain red
line) gives the upper bound for the preserved goodput. Indeed,
one can preserved 100 % of the good traffic by filtering out
each individual attacker (assuming there are no hosts that
produce both good and bad traffic) but requires as many filters
as the number of attackers, which is impractical. Filteringat
the gateway level (shown in dashed green line) provides a
lower bound to the preserved goodput (because it filters out
together both good and bad traffic behind the same gateway)
but uses a small number of filters. Two-tier filtering lies in
the middle (blue curves): it provides a graceful degradation of
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Fig. 9. Performance of Optimal Filtering for scenario Code RedII.
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Fig. 10. Performance of Optimal Two-tier Filtering for the CodeRed scenario.
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Fig. 11. Performance of Optimal Two-tier Filtering for the Slammer scenario.

preserved goodput using a small number of filters. The larger
the number of filters available to multi-tier filtering, the closer
the preserved goodput to the upper bound.

V. CONCLUSION

In this paper, we studied the optimal allocation of filters
against DDoS attacks. We formulated the single-tier allocation
as a knapsack problem and the two-tier problem using dynamic
programming. We simulated the optimal solution using real-
istic attack scenarios and showed that optimal filtering can
significantly improve the trade-off between preserved good
traffic and number of filters. We are currently working on
several issues including efficient heuristics to achieve near-
optimal performance at lower complexity, filter allocationun-
der uncertainty in the identification of attackers, and allocation
across many routers and victims.
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