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Abstract— We study universal compression for discrete data
sequences that were corrupted by noise. We show that while, as
expected, there exist many cases in which the entropy of these
sequences increases from that of the original data, somewhat
surprisingly and counter-intuitively, universal coding redundancy
of such sequences cannot increase compared to the original data.
We derive conditions that guarantee that this redundancy does
not decrease asymptotically (in first order) from the original
sequence redundancy in the stationary memoryless case. We
then provide bounds on the redundancy for coding finite length
(large) noisy blocks generated by stationary memoryless sources
and corrupted by some specific memoryless channels. Finally,
we propose a sequential probability estimation method that
can be used to compress binary data corrupted by some noisy
channel. While there is much benefit in using this method
in compressing short blocks of noise corrupted data, the new
method is more general and allows sequential compression of
binary sequences for which the probability of a bit is known to
be limited within any given interval (not necessarily between 0
and 1). Additionally, this method has many different applications,
including, prediction, sequential channel estimation, and others.

I. INTRODUCTION

Lossless (noiseless) universal compression of data gener-
ated by some unknown source in a known class has been
studied extensively (see, e.g., [2], [8], [12]). The underlying
assumption in all the literature on noiseless compression is that
the “clean” data produced by the source is to be compressed.
However, suppose that before we compress a data sequence
which was generated by an unknown source, it has been
corrupted by a known noisy channel. Now, we attempt to use
a lossless code to compress this noisy sequence. Consider,
for example, a novice typist typing some text document. The
typist makes typical errors that can be modeled by some
form of a typewriter noisy channel, and the data compressed
is not the original text, but its noisy version typed by the
typist. The parameters of the source generating the data are no
longer the ones actually governing the compressed data. How
would the noisy data compress compared to the clean data?
In this paper, we consider this question. We study universal
coding redundancy for such noisy data, the entropy of the
noisy data, as well as a method for sequentially coding binary
memoryless sequences after they have been corrupted by noise.
The sequential method proposed turns out to be much more
general than for the specific application discussed, and can be
used for various different problems.
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A different motivation for the present work can be found in
recent work on denoising of discrete sequences generated by
a discrete (unknown) source and then corrupted by a discrete
output (known) channel [17]. Followup work in [10] studied
conditions in which the “say-what-you-see” scheme was opti-
mal for denoising a received noisy sequence. In this case, one
will use the received data to represent the actual data. This
noisy data can now be compressed without prior knowledge of
the statistics of the source that generated the original noiseless
sequence. Other related work considers prediction of the clean
data which is based on noisy observations (see, e.g. [16]).

Basic intuition implies that a noisy sequence should be
harder to compress. While this is true in many cases, as
far as the source entropy is considered, there are somewhat
surprisingly cases in which the entropy of the data sequence
can actually decrease from the original data sequence, allow-
ing the noisy sequence to compress better than the original
sequence. Also somewhat counterintuitive is the fact that
in universal coding, the redundancy for coding the noisy
sequence cannot increase from the redundancy of coding the
noiseless sequence. In fact, it can only decrease. The reason
for that behavior is that a known channel can only reduce the
richness of a source class, rather than increase it. This can
be reflected in two effects: 1) reduction in the cardinality of
the parameter vector governing the source statistics, and 2)
reduction of the range of some parameters of the source.

We first derive a simple theorem that shows that the
redundancy of universal coding of the noisy data cannot be
greater than that of the original clean data. While we limit
the discussion to stationary memoryless (independently and
identically distributed - i.i.d.) sources, this theorem is more
general. We then show that if the channel is relatively good
(in the i.i.d. case), the decrease in redundancy is reflected only
in second order performance, and asymptotically redundancy
equal to that of the clean data is obtained. We next derive
specific bounds for the redundancy of coding i.i.d. (long) finite
length sequences corrupted by some specific channels, with
focus on symmetric channels. Next, we study the entropy
of memoryless sequences corrupted by some channels. We
show that for symmetric channels the entropy must increase,
but demonstrate that there exist channels for which the noisy
source entropy can decrease.

The last part of the paper considers a sequential probability
assignment method for binary i.i.d. sequences. Unlike stan-
dard probability assignment methods, such as the Krichevsky-
Trofimov (KT) [8], here we do not limit the parameter to
the standard interval

� �������
, but allow the source parameter

to be within any interval
� �	��
���������

. This method is
specifically useful for coding short binary sequences corrupted



by a noisy channel, since, as we see, for such sequences the
parameter is limited to different intervals than the standard� �������

one. The gain of this method in compression is limited
to short sequences, because the decrease in redundancy is
insignificant asymptotically, as long as

���

is not extremely

small. However, this method can have much more significant
benefits in prediction problems, sequential channel estimation,
and more.

The outline of the paper is as follows. Section II describes
the notation. In Section III, an upper bound is derived. Sec-
tion IV studies the asymptotics of the redundancy, specifically
focusing on conditions on the noisy channel under which the
redundancy of coding noisy sequences does not asymptotically
decrease from that of clean sequences in the i.i.d. source case.
Next, in Section V, bounds on the redundancy are derived
for specific channels, demonstrating the decrease from the
clean data redundancy. Section VI considers the entropy of
the noisy data. Finally, in Section VII, a sequential probability
assignment method for binary memoryless sequences with
limited parameters is proposed.

II. NOTATION AND SYSTEM DESCRIPTION

Let �������� ��� � ��� ��������� � �  be a sequence of ! symbols
over the alphabet " with cardinality # �%$ " $ . We assume
that # �%&'� !  , i.e., it is either fixed or can grow with !
but slower than ! . Without loss of generality, where needed,
we will assume that " �)( �*�,+'�������-� #�. . The sequence � � is
generated by an i.i.d. source, whose parameter vector is given
by /0 ����21 � � 1 � ��������� 14365 �  �7 , where 8 denotes the transpose
operator. The value # �9� gives the total number of parameters
governing the source (the cardinality of the parameter vector).
Specifically, 1;: is the probability of < taking the = th letter
in the alphabet. For convenience, although the probability
of the last alphabet letter can be given by subtracting the
sum of all the parameters in /0 from

�
, we also define 1*3

as the # th component of the parameter vector. We use
0 ���21 � � 1 � ��������� 143  >7 to define the complete probability vector of

an i.i.d. source over the alphabet " . The class of all possible
sources

0
will be denoted by ? , and is known a-priori.

In general, small letters will denote deterministic values,
and capital letters will be used to denote random variables.
Boldface letters will denote vectors, whose components will
be denoted by their indices in the vector. For convenience,
parameter vectors of all types will be assumed to be column
vectors. Deterministic matrices will be denoted by bold capital
letters. Estimators will be denoted by the hat sign. For
example, the Maximum Likelihood (ML) estimator of

0
out

of < � will be denoted by @0 .
The probability of some sequence �A� generated by

0
is

given by BDC � ���  ��FEHGI� ��� $�JK� 0  . The average ! th-order
(per-symbol) redundancy obtained by a code that assigns
length function L �>M  for

0
isN � � L � 0  �� �! (6O C�L � < � ���QP C � < � � . � (1)

where O C denotes expectation with respect to (w.r.t.)
0

, andP C � <R� � is the ! th order block entropy of the source (which
equals ! P C � < � for i.i.d. sources). With entropy coding tech-
niques, assigning a universal probability S � � �  is identical to
designing a universal code for coding ��� where, up to usually
negligible integer length constraints, the negative logarithm to
the base of

+
of the assigned probability is considered as the

code length.
The average (per-symbol) minimax redundancy of some

class ? is defined as the one obtained by the best code for
the worst source

0
in the class ? ,NUT� � ?  ��WV�X YZ�[�\�]0_^4` N � � L � 0  A� (2)

The maximin redundancy of ? is the one obtained for the
worst prior over the best code for a given prior in the class,N 5� � ?  �� [�\�]a�b;c d V�X YZ e `gf �ih C �kj 0  N � � L � 0  A� (3)

where f �ih C �>M  is an ! th order prior on ? . It was demonstrated
in [2] that N T� � ?  ml N 5� � ?  A� (4)

It was later shown [5], [13], that under some mild conditions,
the two redundancy measures are, in fact, equal. Davisson also
showed in [2] that the maximin redundancy is bounded by[�\�]a�b;c d �!on �pJRq < �  m� N 5� � ?  mr [�\�]a�b;c d �!sn �pJRq < �  It �! (5)

where n �pJuq <R�  is the mutual information between the pa-
rameter vector J and the observed data sequence <Q� induced
by the joint distribution f �ih C �pJ  M BDC � <R�  . The supremum
on both sides of the equation is the ! th order capacity of
the channel between the parameter space ? and the observed
sequence space "v� . For !xwzy , this is the capacity of this
channel. The statement in (5) can thus be referred to as the
weak version of the redundancy-capacity theorem.

Another notion of redundancy considers the redundancy for
most sources [12]. In [9], this notion of redundancy was tied
to the random coding capacity of the channel between J and<R� . Specifically, the following was shown: Let { �ih C �>M  denote
the uniform prior in ? . Let | be a set of points in ? , and cover? with sets | , such that each

0u} ? belongs to a distinct set|UC . Randomly select one set ~ of points in ? , where the
distribution over the sets is dictated by { �ih C �>M  . Now, select
a point J } ~ from ~ under a uniform prior, and let J
generate <R� . Let @J�� } ~ be an estimator of J from <�� .
Define BD� asBD�g��WEHG�� @J�����FJ�� (6)���C ^4` { �ih C � ~ � |�C  { �ih C �����W1�$ ~ � |�C  BDCg� @J����� 0�� �
Now, let � be the maximal cardinality of all possible sets |
for which BD�sw � as !uw�y , thenN � � L � 0  �l � �o�R�* ;� �*� �! (7)



for every code L �>M  and almost every
0�} ? except for a set�

for which { �ih C � �  w �
, i.e., only for a diminishing set�

can any code achieve smaller redundancy than in (7). This
result is referred to as the random coding strong version of
the redundancy-capacity theorem.

Unlike in standard universal compression, in the setting in
this paper, the sequence �A� is corrupted by a discrete input
discrete output memoryless channel given by the conditional
probability mass function EHGI�k��$ <  , and is observed and
compressed as the sequence ��� over the alphabet � that
can differ from " . The cardinality of the output alphabet is� ��$ � $i��&'� !  , that may also differ from the cardinality of
the input alphabet # . Again, without loss of generality, where
needed, we will assume that � �	( �*�,+'��������� � . . The channelEHGI�k��$ <  is given by a transition matrixEHGI����$ <  ��¡  �� � ¢ � ��¢ � ����������¢ 3 � (8)

�� £¤¤¤¥
EHG6�k�¦� � $ < � �§ ¨����� EHG6�k�¦� � $ < � #  EHG6�k�¦� + $ < � �§ ¨����� EHG6�k�¦� + $ < � #  

...
. . .

...EHG6�k�¦� � $ < � �§ ©����� EHG6�k�¦� � $ < � #  
ª «««¬ �

The columns of   are denoted by
¢ : . Let ��� Rank �k   be the

rank of   . To keep consistent with the notation convention,
the components of   will be compacted into a vector ® . Since
we consider only the case in which the channel is known, the
parameter ® will always be deterministic.

III. A MAXIMIN UPPER BOUND

Since the channel is deterministic and known, one can now
consider a new parameter vector ¯°��±�k² � � ² � ��������� ²´³  >7 ,
which is a deterministic function of

0
given ® , given by¯ �¡ �M 0 � (9)

Since one component of ¯ is constrained by the other� �µ� , we can define, for every ¶ , �¡� ¶ � � , /¯v· ¸º¹Q���2² � � ² � ��������� ² ¸ 5 � � ² ¸ T � ��������� ²´³  >7 as the set of � ��� com-
ponents of ¯ excluding the ¶ th one. The parameter ¯ governs
the sequence � � , and can be seen to be a point in a new
parameter space » .

Consider, for example, the binary case for both " and � ,
where a Binary Symmetric Channel (BSC) with crossover


¼���� ½
separates between the two sequences, i.e., 

BSC
��¾ �s�Q
 

 �s�Q
�¿ � (10)

Then,
0 �À�k1 ���s� 1  7 , where 1 is a probability of < taking

one of the bit values, and ¯ �K�2² ���s� ²  �7 , where ² is the
probability of � taking one of the bit values. Then, the relation²��Á� �U�Â
D 1 tW
 � ��� 1  ��1 tW
x�Â+4
 1 holds. It is easy
to see that if 1 } � ������� , then we must have ² } � 
����U��
_� .
Hence, for


�Ã)�
, the parameter spaces ? and » differ. In

fact, the parameter space of the noisy sequence shrinks from
that of the noiseless sequence, hinting to reduction in coding
redundancy. Note that if



is not known a-priori, then we are

back at » � ? , because



can take any value. A more general
example is a Binary Channel (BC) with crossovers



and


, 

BC
��¾ �s�Q
 
 �s��¦¿ � (11)

Here, the parameter governing � � satisfies ² ��Ä² � }� V�X YU( �s�Q
��� . � V�Å;Æ�( �s�Q
��� . � .
Since � � is now governed by the parameter ¯ , it can best

be compressed in the average to
P�Ç �k� � $ ®  bits, where the

knowledge of the channel parameters can aid in compression.
Therefore, the redundancy of a code that assigns length
function L �>M  to sequences now governed by ¯ is given byN � � L � ¯ $ ®  �� �! (6O Ç L � � � $ ® ���QP�Ç�� � � $ ® � . � (12)

We can also define the minimax and maximin redundanciesN T� � » $ ®  and
N 5� � » $ ®  , respectively, w.r.t. the class » con-

ditioned on the channel parameter vector ® , using equations
similar equations to (2) and (3), respectively, i.e.,NUT� � » $ ® � ��ÂV�X YZÈ[�\�]¯ ^*É N � � L � ¯ $ ®  A� (13)

N 5� � » $ ® � �� [�\�]a�b;c Ê V�X YZ e Éof �ih Ç ��j ¯  N � � L � ¯ $ ®  A� (14)

where f �ih Ç is a prior on the space » .
We are ready to state a theorem.
Theorem 1: N 5� � » $ ® �Ir N 5� � ?  _t �! � (15)

Corollary 1: Let LsË �>MÌ$ ®  be the length function of the code
that achieves the maximin redundancy for noisy sequences � �
conditioned on the known channel ® , then,N � � L Ë � ¯ $ ®  �r N 5� � ?  It �! � (16)

Proof of Theorem 1: The key to the proof of Theorem 1
is the combination of the weak version of the redundancy-
capacity theorem and the data processing inequality. Given
the channel ® , the random vectors Í , J , < � , and � �
form a Markov chain ÍÎw J wÏ<��)w � � , since Í
is a deterministic function of J given ® , <�� depends onJ and given J is independent of Í , and � � given <R� is
independent of J . Furthermore, we also have a Markov chainJ wÐÍÑw � � given ® since Í is a deterministic function
of J , and � � is independent of J given Í .

Now, let f�Ò�ih Ç �>M  be the prior on » that achieves the capacity
of the channel between Í and � � given ® . This prior induces
a prior f�Ò�ih C �>M  on ? . (Note that fgÒ�ih C �>M  may not be unique
if Í is not an invertible function of J .) Also, denote the
capacity achieving prior for the channel between J and <Q�
by f Ë�ih C �>M  . Using the upper bound of the weak version of the



redundancy-capacity theorem in (5), we have! N 5� � » $ ® �Ir n a�Ób;c Ê � Í qº� � $ ®  ItW�·ÕÔ-¹� n a Ób;c d �pJRqº� � $ ®  _tW�·ÕÖ�¹� n a�Ób;c d �pJRq < � $ ®  D� n a�Ób;c d �pJuq < � $ � � � ®  _tW�·Õ×p¹� n aIØb;c d �pJRq < �  ItW�·ÕÙ,¹� ! N 5� � ?  _tW�*� (17)

Equality �kÚ  follows from both ÍÐw J w � � and J wÍÄw � � given ® , ��Û  follows from the data processing
over J wz<R�Rw � � . Inequality �kÜ  follows from the non-
negativity of mutual information, from bounding the mutual
information by that induced by the capacity achieving prior,
and from the independence of the mutual information of the
channel ® . Finally, �kj  follows from the left inequality in (5).
Normalizing both sides of (17) by ! concludes the proof of
Theorem 1.

Corollary 1 follows sinceN 5� � » $ ® � � [�\�]a�b;c Ê V�X YZ N � � L � f �ih Ç $ ®  � [�\�]a�b;c Ê N � � L Ë � f �ih Ç $ ®  l N � � L Ë � ¯ $ ®  (18)

where
N � � L � f �ih Ç $ ®  is the mixture over

N � � L � ¯ $ ®  in-
duced by prior f �ih Ç .

While we focus on the i.i.d. case in this paper, Theorem 1
and its proof are more general, and apply to other parametric
families of sources, with ? and » properly defined. For
example, if

0
describes parameters of a Markov source of

some known order, the noisy version � � of <R� can be
modeled by a Hidden Markov Model (HMM), where the
parameters of the state sequence are given from

0
and the

conditional probability of observing � given < is given by
the channel model ® , and is not a component in the parameter
vector ¯ , since the channel is assumed to be known.

Theorem 1 shows that the redundancy of compressing
the noisy data cannot increase compared to that obtained
when compressing the noiseless data. The mutual informationn a�Ób;c d �pJuq <R� $ � � � ®  obtained in step ��Û  of (17) consti-
tutes the major decrease in redundancy when coding the
noisy data. This indicates that the worse the channel is the
greater the decrease in redundancy is. If the conditional
entropy

PÞÝ <Rß $ � ß � ®Uà is small, we can infer <�� from
observing � � , indicating a good channel. In such a case,n a Ób;c d �pJuq <R� $ � � � ®  is also small, and the decrease in re-
dundancy is small as well. However, if the channel is bad,P Ý <Rß $ � ß � ® à increases and with it n a�Ób;c d ��Juq <R� $ � � � ®  ,thus decreasing the redundancy.

While perhaps counterintuitive at first, as shown in its proof,
Theorem 1 follows directly from the fact that the noisy channel
performs data processing on the coded sequence. Hence, it can
only reduce the richness of the resulting parameter space. This

can either reduce the total number of parameters, i.e., the car-
dinality of the parameter vector, or the ranges of parameters. If� r # , the number of parameters decreases. However, again,
counter-intuitively, even if � l # , the redundancy can only
decrease. The reason is again, the knowledge of the channel
parameters. Consider, for example, a Binary Erasure Channel
(BEC), for which 

BEC
� £¥ �s�Q
 �
 
� �s�Q
 ª¬ � (19)

The output alphabet is larger than the input alphabet. However,
since the channel is known, the probability of the erasure
symbol is known a-priori to be



independently of

0
. The

only remaining parameter is the probability of one of the other
symbols, which is now limited to

� �����g��
_�
instead of

� �������
at the input of the channel. So, in all, while the additional
symbol in the output does not increase the cardinality of ¯ ,
the reduction in the range of the other parameter decreases the
overall redundancy.

Another example is a poor speller (or typewriter) channel.
Assume that this speller would randomly pick ‘c’ or ‘k’ uni-
formly, wherever one of these letters should appear. Assuming<R� is i.i.d., the probability assigned to ‘c’ or ‘k’ by the
parameter ¯ will satisfy ² × ��²H3Â�á�21 × t 143  ºâ4+ . Hence,
instead of two parameters, we only have one parameter now,
since knowing 1 × t 143 is sufficient for knowing both ² × and²H3 . The situation does not change even if ’c’ and ’k’ are
not uniformly distributed, but still randomly picked with a
known ratio. Unlike the BEC example, here the decrease in
redundancy is caused by a loss of a parameter rather than
shrinkage of its range.

The situation described in the above example implies that
the matrix   is not a rank # matrix. The noise causes loss
of parameters due to the linear dependence of rows of   .
This is also the reason that there is no increase in parameter
vector cardinality if � Ã # , because we then must still have
Rank �k   �� # regardless of � .

IV. ASYMPTOTIC REDUNDANCY

In Section III, the redundancy was upper bounded by that
of the noiseless parameter space. This section focuses on
conditions in which the decrease in redundancy for noisy
sequences from the noiseless case is asymptotically negligible,
and focuses on lower bounds on the redundancy in such cases.
The section is partitioned into two parts. First, we discuss
asymptotic bounds on the redundancy, showing conditions in
which the noisy redundancy decreases negligibly. In the sec-
ond part, we give examples of some channels and demonstrate
how the theorems can be used for these channels.

A. Redundancy Bounds

In [14], it was shown that for an arbitrarily small
�ãÃÂ�

,N 5� � ?  ml # ���+ ! � �*� ! � 5�ä# ��� � (20)



Note that the logarithm in [14] takes argument ! � 5�ä â # .
However, the proof method, in fact, results in # �	� in the
denominator, where the

���
term is absorbed in the low order

terms. The difference is insignificant in the asymptotic regime
for !Fwåy , as well as when # grows with ! , but is more
significant, otherwise, for short sequences and small # . It was
also shown that a similar boundN � � L � 0  ml # ���+ ! � �*� ! � 5�ä# ��� (21)

holds for every code L �>M  and almost every
0u} ? except for

a set
�

of sources for which { �ih C � �  �	&'� �§ , where { �ih C �>M  
is the uniform prior over ? . Upper bounds on the redundancy
of the same form, where # is allowed to grow with ! , were
obtained in several works (see, e.g., [11], [14]), and showed
that there exists a code with length function L Ë �>M  for whichN � � L Ë � 0  m� � �mtQ�* # ���+ ! � �*� !# ��� (22)

for every
0�} ? . If the KT probability estimates Sçæ 7 � ���  ,

described in Section VII, are used, redundancy ofN � � S�æ 7 � 0  �� # ���+ ! � �*� ! # téè # � �*��ê�§+ ! t # � � �*��êë ! � ��ì�í �!sî
(23)

is achieved for every
0R} ? (see, e.g., [14]). Specifically, for# � + , it was shown in [18] thatN � � S�æ 7 h 3-ï � � 0  m� �+ ! � �*� ! t �! � (24)

The upper bounds of (22)-(23) hold for every
0ð} ? . Hence,

they also hold for the maximin redundancy
N 5� � ?  . By Theo-

rem 1, they also hold for
N 5� � » $ ®  , and thus by Corollary 1,

there exists a code (the one achieving the minimum in (14))
for which the bounds also hold for every ¯ } » . Specifically,
if � � # , one can use the KT estimates on � � to obtain
the redundancy of (23) w.r.t. � . Thus, if � r # , there is an
obvious decrease in redundancy.

While Theorem 1 obtains an upper bound on the redundancy
for coding the noisy data, it does not completely characterize
it. One would expect that a necessary condition for the
redundancy not to decrease asymptotically is for Rank �k   � #
if # is fixed, and Rank �k   wñ# for large # . However, it turns
out that this is not a sufficient condition even for very large! . While this condition guarantees that the cardinality of »
remains of the same order as that of ? , a second condition
is necessary to guarantee that the range of each parameter in
the new noisy parameter space does not significantly decrease.
We continue by showing when the redundancy asymptotically
decreases negligibly.

Define ò ��¡  7   � (25)

A symmetric real (or Hermitian) # -by- # matrix ó is said to be
Positive Semi Definite (PSD) (see, e.g., [6]) if for all nonzero
(real) column vectors ô }ðõ 3ô 7 óéô l���� (26)

The matrix ó is Positive Definite (PD) if a strict inequality
holds.

Theorem 2: Fix
� Ò Ã��ãÃ�� , and let !uw�y . Then, if there

exists a positive ö Ã��;â ! äº÷ � such that the matrix
ò � öùø is

PSD, where ø is the identity matrix, thenN 5� � » $ ®  �l # ���+ ! � �*� ! � 5�ä Ó# ��� � (27)

and N � � L � ¯ $ ®  �l # ���+ ! � �*� ! � 5�ä Ó# ��� (28)

for every code L �>M  and almost every ¯ } » except for a set�
of sources for which { �ih Ç � �  �W&'� �§ , where { �ih Ç �>M  is the

uniform prior over » .
Theorem 3: Fix

� Ò Ã¡�vÃF� , let !xwáy , and let ö denote
the smallest eigenvalue of

ò
. Then, if ö Ãµ�;â ! äº÷ � both (27)

and (28) hold.
Theorems 2 and 3 are very related. Specifically, the condi-

tion on the positivity of the minimal eigenvalue of
ò

implies
that

ò
is PD and that Rank �k   � # (see, e.g., [6]). This

implies that if  � Rank �k   Qr # , the condition does not
hold. This is expected because if  r # the cardinality
of the parameter space » must be smaller. Again, however,
this is a necessary condition and not sufficient, because if
the cardinality of the parameter space does not decrease but
the range of each component of the parameter does, the
redundancy may still decrease. The condition of ö Ãµ�;â ! äº÷ �
covers both cases. Note that it can be loosened to having a
larger fraction of

�
in the exponent, as long as it is smaller

than
�
.

As we will see in the examples at the end of this section, it
will sometimes be simpler to consider a different matrix fromò

. Let ú Ò �� � ¢ � ��¢ 3 ��¢ � ��¢ 3 ����������¢ 365 � ��¢ 3 � (29)

be a matrix whose # ��� columns are the differences between
the first # �Q� column vectors of   and the last column of   .
Define û Ò �� ú Ò 7 ú Ò � (30)

Now, let

ú ¸ q �ã� ¶ � � � be the matrix

ú Ò with the ¶ th row
removed. Define û ¸ �� ú 7¸ ú ¸ � (31)

Theorem 4: a) Fix
� Ò Ã��¡Ãü� , and let !ÀwÎy . Then,

if there exists a positive ö Ã��;â ! äº÷ � such that the matrixû Ò � öùø is PSD then both (27) and (28) hold. Alternatively,
if the smallest eigenvalue ö of

û Ò satisfies ö Ãµ�;â ! äº÷ � , then
both (27) and (28) hold.

b) If there exists ¶ , �9� ¶ � � , such that either the first
condition or the second condition of part a are satisfied forû ¸ , then both (27) and (28) hold.

Theorem 4 allows us to remove the dependence on the
constraint component of the parameter vector in ? (part a).
It also allows us to remove dependence on a constraint com-
ponent of the parameter vector in » (part b). The importance of
Theorem 4, however, is in the implementation of the condition.



As the examples at the end of the section show, it will result in
much simpler matrices, specifically the

û ¸ matrices, that will
provide the limiting value of ö immediately in many cases.
We continue by outlining the proofs of the three theorems.
The complete proofs are found in [15].

Proof of Theorem 2: The proof relies on the proof of the
bound (21) on the redundancy for most sources in [14]. The
idea for proving (27) is to take one set ~�C of points

0ð} ? that
are placed at centers of # �R� dimensional spheres with radius�;â*ý ! � 5�ä packed in ? . The number of spheres is bounded as
in (21). Each

0�} ~�C can be transformed to ¯ } » with (9)
forming a set ~ ÇÂþ » . Then, it is shown that the condition
of Theorem 2 guarantees that the error probability BH� based
on estimation of Í by observing � � diminishes. Using the
weak version of the redundancy-capacity theorem, the proof of
(27) is complete. Using the fact that two spheres of the same
volume in ? transform to two objects of the same volume in» , this proof also carries over to most sources, implying (28).

Proof of Theorem 3: We show that the condition on
the eigenvalues of

ò
leads to the same bound on the square

distance between two points in » as the same distance obtained
with the PSD condition in Theorem 2. This results in the same
diminishing error probability on estimation of Í by observing� � . The proof is concluded similarly to that of Theorem 2.

Proof of Theorem 4: Since a probability parameter in ?
is defined by its first # ��� components, we can consider the
Euclidean distance in the # �Â� dimensional space, including
only the first # ��� components of the parameter. To prove part
a of Theorem 4, one can use the distance of the � components
of a point ¯ } » from another point ¯ Ò } » induced by the
respective points

0
and

0 Ò in ? . The � components of the
distance can be obtained from the first # �W� components of0

and
0 Ò . If the distance is above some threshold, there will

be diminishing probability of estimating ¯ Ò by observing � � ,
if ¯ is the point corresponding to

0
which generated <Q� .

This leads to part a of the theorem in the same manner as
Theorems 2-3 are obtained, but this time w.r.t. the first # ���
free components of

0
. Part b is proved in a similar way by

only considering � ��� free parameters in the space » .

B. Examples

1) The Binary (Symmetric) Channel: The transition matrix
for a general binary channel is given in (11). The matrix for
the special BSC case is given in (10). By definition, it is shown
that û

BC
����� �s�Q
u��ÿ � � (32)

where the index ¶ is omitted because an identical matrix is
obtained for both ¶ � � and ¶ � + . For the special BSC case,
we have û

BSC
���p� �s�x+4
D � � � (33)

For ö � � �s�Q
u��ÿ � for the general BC case and ö �� �s�x+4
D � for the specific BSC case,
û � öùø is PSD (and thus

also
ò � öùø is also PSD). Specifically, it can be shown that

the smallest eigenvalue of
ò

BSC equals � �s�x+4
D � . Hence, in
order for the condition of Theorems 4 (and of Theorem 3)
to hold, we must have � � �� � �s�Q
u��ÿ � Ã��;â ! äº÷ � for the
general BC and � �s�x+4
D � ÃF�;â ! äº÷ � for the BSC, where � is
the range of the single parameter ² in » .

If ��� è ½ � � ! ä � � Yÿ� ! tW�§ mÃW½'� (34)

then � ! té�§ ê 5���� ��� · � 5	�'5�
 ¹ � �  r ê 5�� r���� �*� è . With tighter
bounding than used in the proofs of Theorems 2-4, one can
show [15] that in the binary case, the expression on the left
hand side of (34) bounds the exponent of the error probability.
The decrease in redundancy can then be considered negligible
w.r.t. the redundancy if (34) holds. For ! � ê ��� and

� ���� �
, this is true for


¡�F��� � ë��
in the BSC case and for


ðtµ����� � ���
in the BC case. Thus for the above values of !

and
�
, the decrease in redundancy is less than

��� è�� of the
redundancy as long as BSC crossover is not greater than

��� � ë��
.

If the crossover is greater, so is the decrease in redundancy. In
a similar manner, the redundancy will decrease by less than��� è�� for ! � �6� � � and the same

�
for a BSC with


x�Â��� � � è .
2) The Z Channel: The Z Channel is a special case of the

BC, with transition matrix 
Z
�Ñ¾ � 
� �s�Q
�¿ � (35)

By definition, we obtain,û
Z
� � � �s�Q
D � � � (36)

Thus for the conditions of Theorems 2-4 to hold, we must
have � ���Â
D � Ã��;â ! äº÷ � . For more accurate results we can
use (34) with � � �U��
 to guarantee decrease of less than��� è�� in redundancy.

3) The Binary Symmetric Binary Erasure Channel: The
Binary Symmetric Binary Erasure Channel (BSC-BEC) is
given by the transition matrix 

BSC-BEC
� £¥ �s�Q
u�� 
 
 �s�Q
u�� ª¬ � (37)

Here, � Ã # . The BSC in (10) and BEC in (19) are special
cases of (37).

There are two different matrices
û ¸ that can be obtained

for this channel,û � h BSC-BEC
� �p� �s�Q
u�x+;ÿ � �û � h BSC-BEC
� � + � �s�Q
u�x+;ÿ � � � (38)

Matrix
û � h BSC-BEC is obtained from

ú Ò by removing the first
or third row, and matrix

û � h BSC-BEC is obtained from

ú Ò by
removing the second row. By Theorem 4, either one can be
used. Hence, for this channel if

+ � �s�Q
u�x+;ÿ � Ãü�;â ! äº÷ � ,
negligible asymptotic redundancy decrease is obtained. Note
that the factor

+
can also be obtained for the BC if one uses

the matrix
û Ò and part a of Theorem 4. Again, we can use



(34) with � �µ� �s�Q
u�x+;ÿ to guarantee decrease of less than��� è�� in redundancy. (Note that (34) must be used w.r.t. one
component of the parameter, and thus the

+
factor does not

apply.)
4) The Symmetric Channel: Finally, we consider a sym-

metric channel, whose transition matrix is given by

 
sym
� £¤¤¤¥

�s�Q
 �365 � ����� �365 ��365 � �s�Q
 ����� �365 �
...

...
. . .

...�365 � �365 � �����ñ�s�Q

ª «««¬ � (39)

The simplest matrix
û

that can be obtained for this channel
is û

sym
� í_�s�Q
ð� 
# ��� î � ø � (40)

Using Theorem 4, it is immediate to see that if � � �� �s�Q
ð� �365 � � � ÃÎ�;â ! äº÷ � , the condition holds, and the
asymptotic redundancy decreases negligibly. The examples
presented illustrate the simplicity in using Theorem 4 instead
of Theorems 2 or 3.

V. REDUNDANCIES WITH SPECIFIC CHANNELS

In this section we consider symmetric channels, with transi-
tion matrix   as defined in (39). For such channels we upper
and lower bound the maximin and most sources redundancies,
and show that the lower bounds are achievable. The bounds
are reduced from those of the noiseless case, demonstrating
the decrease in redundancy obtained to the noisy case for
finite length (although large) sequences. We then bound the
redundancy for a general BC.

Theorem 5: Fix
� Ò Ã��ãÃÂ� , and let !Rw�y . Then, for the

symmetric channel defined by the matrix in (39) the following
hold:
a) N 5� � » $ ® sym

 �l # ���+ ! � �*� � �s�Q
u� �365 � � � ! � 5�ä Ó# ��� �
(41)

b) N � � L � ¯ $ ® sym

 ml # ���+ ! � �*� � �s�Q
u� �365 � � � ! � 5�ä Ó# ��� (42)

for every code L �>M  and almost every ¯ } » except for a set�
of sources for which { �ih Ç � �  �W&'� �§ , where { �ih Ç �>M  is the

uniform prior over » .
c) There exists a code with length function LoË �>M  , for whichN � � L Ë � ¯ $ ® sym

 m� # ���+ ! � �*� � �s�Q
u� �365 � � � ! � T ä Ó# ��� (43)

for every ¯ } » .
Theorem 5 shows that the redundancy decreases by� � �*� � �s�Q
u�Q
´â � # ���§ � for each parameter. This is simply

because of the decrease in the range that such a parameter

can take. Namely, the matrix   sym dictates that each com-
ponent of the parameter vector is restricted to the interval²´: } � 
´â � # ���§ -�����Q
_� . The decrease in the range leads to a
decrease in the number of packed spheres in the parameter
space proportional to the square of the decrease in range
of each parameter. The same decrease is also reflected in
nonuniform griding that leads to a similar upper bound. Note
that the same square decrease is reflected in the matrices

ò
,û Ò , or

û ¸ , and their eigenvalues. While Theorem 5 applies
only to the symmetric channel defined in (39), it may be
possible to extend the concept to more general channels, where
the decreases in ranges of the parameters are reflected in the
decrease in redundancy.

Proof of Theorem 5: To prove the lower bounds, we
pack the parameter space » with spheres of radius

�;âiý ! � 5�ä .
Sources at the centers of the spheres constitute ~ Ç , where
in order to use the strong random coding version of the
redundancy-capacity theorem, the set ~ Ç is chosen by ran-
domly shifting one set | Ç . All shifts of this set form a
covering of » . Unlike Theorems 2-4, here the spheres are
packed in » , and not in ? , but with the same radius as
those packed in ? in the proofs of these theorems. Since
the volume of » reduces from that of ? , a smaller number
of spheres can be packed. This leads to the gain over the
noiseless case. In order to compute the volume of » , we need
to consider displacement components from the minimum value
each component can take, which is


´â � # ���§ .
To prove the upper bound, a nonuniform grid, as used in

[14] is used to quantize the components of an estimate of ¯
from � � . The quantized estimate is the ML estimate as long
as the empirical distribution of � � satisfies the constraints on¯ imposed by » . Otherwise, it is a quantized vector in »
for which the representation of a sequence � � is the shortest
possible among all quantized vectors possible. The quantiza-
tion cost is shown to be negligible in the average, and the
representation cost is bounded with a bound like that in (43)
(with

�ur	� Ò ). The bound is achieved, again, by considering
a displacement vector representing the displacement of each
parameter from its minimum possible value. This concludes
the proof of Theorem 5. The complete details of the proof of
can be found in [15].

In a similar manner to Theorem 5, we can show that in the
binary case N � � L � ¯ $ ® binary

 �l �+ ! � �*� ��� � ! � 5�ä Ó � (44)

for every code L �>M  and almost every ¯ } » and also for the
maximin redundancy, where � is the length of the interval of
the single parameter determining ¯ . Similarly, there exists a
code L�Ë �>M  , for whichN � � L Ë � ¯ $ ® binary

 m� �+ ! � �*� � � � ! � T ä Ó � (45)

for every ¯ } » . The last two bounds apply to a general binary
input channels, as the BC in (11), with the special cases of a
BSC and the Z channel. It also applies to the BSC-BEC. In [3],
the precise expression for the individual sequence minimax



redundancy for the binary case in which the parameter is
limited to the interval

� �F�Ñ
����� ���
was computed. For

an arbitrary small
� Ò and !µw°y , the expressions in (44)-

(45) are slightly smaller than the expression in [3] because
they express the asymptotic behavior of the average case
redundancy. The average redundancy is upper bounded by the
individual sequence minimax redundancy.

For finite sequences the decrease in redundancy is rather
significant. For example, if we have a BSC with


 � ��� ½ ���� ½ ! 5�� , � rÂ��� ½ , the redundancy becomesN � � L � ¯ $ ®  �� � �s�x+ �  + ! � �*� ��! ��� ä Ó Ó � (46)

where
� Ò Ò absorbs the lower order terms, and � denotes

addition for upper bound and subtraction for lower. This
demonstrates a significant gain in redundancy for short se-
quences with such values of



, where the redundancy becomes

a fraction of the noiseless redundancy.
For example, consider ! � �6� � � bits coded over a BSC

with crossover
��� ë ½

. For this “short” sequence,
��� ½ � �*� ! ������ +

. The redundancy decreases here by
� � �*� ��� ������� � +

bits. Hence, the noisy channel results in approximately
�6� �

decrease in redundancy, even for sequences that are very long.
For very short sequences, say, ! � �6�*�

, this redundancy
decrease is even not negligible w.r.t. the actual source entropy.

VI. NOISY SOURCE ENTROPY

Intuitively one would expect the source entropy of the noisy
data to increase from that of the noiseless data. However,
this is not always the case. If the channel is symmetric, the
entropy will increase, but otherwise it may increase or decrease
depending on the channel parameters. Consider, for example,
the Z channel described in (35). If


 � � , then ¯ ��� �*�º�  7
regardless of

0
and then

P�Ç �k� �  � � . This is the extreme
case. Figure 1 shows the noiseless and noisy entropies for
different values of



as function of the noiseless parameter 1 .

It shows that the behavior of the noisy entropy depends on the
specific

0
and the parameter



. For alphabets " � � �F( �*�º� . ,

if
0 �K�21 ���s� 1  �7 , where 1 is the probability of

�
, we have¯ �µ�2² ���s� ²  >7 , where²��W1 t¼
 � �s� 1  �µ� �s�Q
D 1 t¼
�� (47)

In general, as we observe in Figure 1, for larger 1 , the noisy
entropy decreases from the noiseless one, whereas for smaller1 it decreases. Specifically, since ² l 1 , then for 1 Ã)��� ½ ,
we observe a decrease in entropy since the binary entropy is
monotonically decreasing in this region.

We define a general symmetric channel as a channel with a
square transition matrix   , where each row of   is a permu-
tation of the first row, and each column of   is a permutation
of the first column. We state the following theorem:

Theorem 6: Let   define a symmetric channel. Then,P�Ç�� � � $ ® � � P�Ç�� � � �IlÂP C � < � � � (48)
Theorem 6 states that the entropy cannot decrease for a

symmetric channel. The proof is based on the definition of a
symmetric channel and Jensen’s inequality and is included in
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Fig. 1: Entropy of random variable � at the output of a Z
Channel with different crossover parameters as function of the
noiseless parameter 1 generating <�� .
the complete version of the paper [15]. (Note that once the
parameter ¯ is known, conditioning in ® is unnecessary.)

VII. SEQUENTIAL PROBABILITY ASSIGNMENT

Consider binary input/output alphabets " � � �ü( �*�º� . .
Let 1 denote the probability of a noiseless

�
, and ² be

the probability of a noisy
�
, i.e., 1K�±EHG6� < � �§ 

, and²��KEHG6�k�ü� �§ . A BC with positive crossovers transforms1 into ² that is restricted to an interval
� �x�)
���µ�Þ���

. In
compressing � � , one can use the fact that ² may be limited
to a known interval shorter than

� �������
to benefit in redundancy

performance (as shown in Section V). This section focuses on
deriving a sequential probability assignment method that takes
advantage of this shrinkage of the parameter space from ? to» . More generally, one can consider the material in this section
as the derivation of a universal method for compressing binary
sequences, for which the probability of

�
is not necessarily in� �������

, but can be in a smaller interval restricted by
� 
�����

.
Using the Dirichlet-

�;â4+
prior, which is used to derive the

KT estimates [8], one can assign the following universal
mixture probability to a sequence ��� :S � � �  � e 
� �� � 
���ÿ ! ²g� �o� ²  ² �#" · � ¹ � �s� ²  �#" · � ¹ j*² �

(49)
where !%$ ��Û  is the number of times bit Û occurs in ��� , and
the constant

� � 
���ÿ is given by� �� � � 
���ÿ � e 
� � � � �s� �  j �� + � [ X Y 5 �  9� [ X Y 5 � ý 
 � � (50)

The constant
�

guarantees that the prior integrates to
�

over� 
�����
.

Theorem 7: The probability assigned to � � in (49) can be
computed sequentially by an initialization stepS Ý � � à � � (51)



and an update step,S Ý �'& T � à � S Ý �'&>à M ! & � � & T �  It¼��� ½( tW� t� + � & T � ���§ M 
 �#) · � ¹ T ��� � � �s�Q
D �#) · � ¹ T ��� �� M*� ( tW�§ �
� + � & T � ���§ M  � ) · � ¹ T ��� � � �s��ÿ � ) · � ¹ T ��� �� M*� ( tW�§ (52)

where ! & ��Û  is the occurrence count of bit Û in � & , and+ � & T � ��� �+* � if � & T � � ����
if � & T � � � � (53)

Note that the KT estimates are a special case of the above
sequential assignment with

� 
 � ���� � ��� . Specifically, in
that case,

� � 
���ÿ �-, , and (52) reduces to the binary form
of the KT estimator,S Ý � & T � à � S Ý � &>à M ! & � � & T �  It¼��� ½( tW� �

(54)

Proof: Using (49), we can express the probability of � &
followed by a

�
bit, S � � & �§ , asS Ý � & � à � e 
� ��  ²g� �o� ²  ² �#) · � ¹ T � � �s� ²  �#) · � ¹ j*²� �� e 
� ² �#) · � ¹ T ��� � � �s� ²  �#) · � ¹ 5���� � j*²·ÕÔ-¹� � �� ² �#) · � ¹ T ��� � � �s� ²  �#) · � ¹ T ��� �! & � �  It¼��� ½ .....



� t! & � �§ _t¼��� ½� � ! & � �  It¼��� ½* Me 
� ² �#) · � ¹ 5���� � � �s� ²  �#) · � ¹ T ��� � j*²� �� � ! & � �  It¼��� ½* M� 
 �#) · � ¹ T ��� � � �s�Q
D �#) · � ¹ T ��� � � �#) · � ¹ T ��� � � �o��ÿ �#) · � ¹ T ��� � � t� ! & � �§ _t¼��� ½* � ! & � �  _t¼��� ½* M S Ý � & � à � (55)

Equality �kÚ  follows from integration by parts with / �2²  �² �#) · � ¹ T ��� � and 0 Ò �2²  �Þ� �g� ²  �#) · � ¹ 5���� � . Since S �k� &  is a
joint probability measure on all possible � & for every

(
, we

must have S Ý � &>à � S Ý � & � à t S Ý � & � à � (56)

Substituting (55) in (56), we obtainS Ý �'&>à � �� � ! & � �  It¼��� ½* M� 
 �#) · � ¹ T ��� � � �s�Q
D �#) · � ¹ T ��� � � �#) · � ¹ T ��� � � �o��ÿ �#) · � ¹ T ��� � � t� ( tW�§ � ! & � �  _t¼��� ½* M S Ý � & � à � (57)
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Fig. 2: Redundancy for the KT estimates and the sequential
algorithm shown in Theorem 7 averaged over

�6�*�*�
simulations

for ! � ½4�*� bits where 1 } � ��� �*�º��� +§� . The gain of the proposed
method over KT is shown in solid curves.

where the equality follows from ! & � �  �t ! & � �§ � (
. Reor-

ganizing (57), expressing S � � & �  in terms of S � � &  yields
(52) for � & T � � � . Substituting S � � & �  in (55), again using! & � �  �t ! & � �§ � (

, yields (52) for � & T � � � . The proof of
Theorem 7 is concluded.

Figure 2 shows redundancy for the sequential probability
assignment in (52) compared to that achieved by the standard
KT estimates. Specifically, average curves over

�6�*�*�
simula-

tions are shown for up to
½4�*�

bits coded with 1 } � ��� �*�º��� +§� .
The algorithm assumes


 � ��� � and
 � ��� + . The solid curves

express the decrease in redundancy from the standard binary
KT estimates with the proposed method. For short blocks,
the gain in redundancy recovers the loss of the KT estimates,
but for longer blocks it becomes constant. It is, however, not
negligible w.r.t. the overall redundancy for the values of !
demonstrated.

Figure 2 shows that the new probability estimator, based
on a mixture over a limited interval, appears to reduce the
redundancy at the center of the interval w.r.t. the KT estimator
by about

� � �*� � bits, where � � R�¼
 . The same behavior
is obtained for other intervals with the same value of � . This
decrease in redundancy is the one anticipated by the bounds in
(44)-(45). However, at the boundaries of the interval ( ²¡� 

and ²K�  ), the redundancy decrease is smaller. This may
result from the extraction of part of the boundary neighbor-
hood from the universal mixture. To improve performance at
the boundary, a margin can be taken to include



and


inside
the mixture interval. However, such a margin will increase � ,
trading off the gain from including



and


as inner points

in the parameter interval. It is possible that a different prior
from the Dirichlet-

�;â4+
may be better here. However, there is

no guarantee that if such a better prior is found it can be used
to obtain a low-complexity sequential update procedure such
as that described in Theorem 7.

While it reduces the redundancy in coding finite blocks of



data, larger benefits from the sequential estimator proposed
in Theorem 7 may be gained in many other applications
beyond that of compression of noisy data. It can be used
in sequential prediction, where the parameter is limited in
range (see, e.g., [7]). Specifically, it can be used in Context
Tree Weighting (CTW) [18] based prediction, where the data
contains memory, and within each memory context different
ranges of statistical parameters govern the data. Specifically,
recent work [19] used the context tree method for prediction. If
the parameter is known to be limited as hypothesized, using
the estimator in (52) may gain in terms of prediction error
much more significantly than the gain one would expect in
compression. Another related application is that of universal
investment portfolios.

One potential compression application where larger gains
are anticipated with the new method is bit decomposition of
data, in which the parameters of a source over some alphabet
whose cardinality is greater than

+
are decomposed into the

bits that constitute them. Instead of having the probability of
each letter as a parameter, the bits of the alphabet symbols
are stored in a tree, and the overall probability of each bit
constitutes a parameter. If bits are known to have probabilities
within a given interval, the overall compression gain can
accumulate over the various bit probabilities. Since many
states have small occurrences in practice, the gains anticipated
may be significant fractions of the actual redundancy.

Another application for which the new estimator is useful is
sequential channel estimation with channel decoding. Consider
a real time sequential decoder of a convolutional code. The
channel is a BSC which occasionally changes abruptly (even
at a-priori known instances). The crossover at each segment
is unknown in advance. A Viterbi decoder must estimate the
crossover in each segment. If one uses the KT estimates, the
initial estimate of the crossover of the first bit in a segment
is
��� ½

, implying that the received data is noise, and leading to
potentially catastrophic performance. Usually with a BSC, one
can assume that the crossover is less than

��� ½
. If the maximum

possible crossover is


, using the estimator of Theorem 7, the
crossover hypothesized for the first bit isS �k� � � �§ � ��� ½g�   � �o��ÿ + [ X Y 5 � ý  � (58)

Specifically, if
 � ��� ½

, the expression in (58) results in
crossover estimate of

��� � �
at the first time unit. For

 � ��� +*½ ,
it gives

��� � � è .
The application proposed above can even be extended to

include inverting channels. One can consider two different
estimators. For one ² } � ���º��� ½§�

, and for the other ² }� ��� ½'�����
. Both can be updated, and the one that yields a greater

probability in (52) can be used as the estimate of the channel.
Partitioning like those described here (including finer ones for
more intervals) can also be used for classification problems.

VIII. SUMMARY AND CONCLUSIONS

We studied universal lossless compression for noisy data.
We showed that while the entropy can either increase or

decrease, depending on the known noisy channel, universal
compression redundancy can only decrease. We derived con-
ditions on negligible asymptotic decrease in redundancy, and
tightly bounded the redundancy for specific channels. For sym-
metric channels whose transition matrix is given in (39) each
parameter cost reduces by the logarithm of

�ÿ��
ã��
´â � # �u�§ ,
and for binary sources the redundancy reduces by

� � �*� � ,
where � is the length of the noisy parameter interval. It was
shown that for symmetric channels the entropy of the noisy
data must increase. Finally, a sequential probability assignment
algorithm was proposed for coding binary sequences for which
the probability of

�
is limited within a known interval.

ACKNOWLEDGMENTS

The authors thank W. Szpankowski for providing informa-
tion about the results in [3], and A. Cohen for pointing out
the work in [16].

REFERENCES

[1] T. M. Cover and J. A. Thomas, Elements of Information Theory, second
edition, John Wiley & Sons, 2006.

[2] L. D. Davisson, “Universal noiseless coding,” IEEE Trans. Inform.
Theory, vol. IT-19, no. 6, pp. 783-795, Nov. 1973.

[3] M. Drmota, and W. Szpankowski, “Precise minimax redundancy and
regret,” IEEE Trans. Infrom. Theory, vol. 50, no. 11, pp. 2686-2707,
Nov. 2004.

[4] P. Elias, “Universal codeword sets and representation of the integers,”
IEEE Trans. Inform. Theory, vol. IT-21, no. 2, pp. 194-203, Mar. 1975.

[5] R. G. Gallager, “Source coding with side information and universal
coding,” unpublished manuscript, Sept. 1976.

[6] R. A. Horn, and C. R. Johnson, Matrix Analysis, Cambridge University
Press, 1985 (reprinted 1999).

[7] S. S. Kozat, and A. C. Singer, “Universal piecewise linear prediction
via context trees,” submitted for publication.

[8] R. E. Krichevsky and V. K. Trofimov, “The performance of universal
encoding,” IEEE Trans. Inform. Theory, vol. IT-27, pp. 199-207, Mar.
1981.

[9] N. Merhav and M. Feder, “A strong version of the redundancy-capacity
theorem of universal coding,” IEEE Trans. Inform. Theory, vol. 41, pp.
714-722, May 1995.

[10] E. Ordentlich, and T. Weissman, “On the optimality of symbol-by-
sybmol filtering and denoising,” IEEE Trans. Inform. Theory, vol. 52,
no. 1, pp. 19-40, Jan. 2006.

[11] A. Orlitsky, and N. P. Santhanam, “Speaking of infinity,” IEEE Trans.
Inform. Theory, vol. 50, no. 10, pp. 2215-2230, Oct. 2004.

[12] J. Rissanen, “Universal coding, information, prediction, and estima-
tion,” IEEE Trans. Inform. Theory, vol. IT-30, no. 4, pp. 629-636, July
1984.

[13] B. Ya. Ryabko, “Coding of a source with unknown but ordered
probabilities,” Problems of Information Transmission, vol. 15, no. 2,
pp. 134-138, Oct. 1979.

[14] G. I. Shamir, “On the MDL principle for i.i.d. sources with large
alphabets,” IEEE Trans. Inform. Theory, vol. 52, no. 5, pp. 1939-1955,
May 2006.

[15] G. I. Shamir, T. J. Tjalkens, and F. M. J. Willems, “Universal noiseless
compression for noisy data,” in preparations for IEEE Trans. Inform.
Theory.

[16] T. Weissman, and N. Merhav, “Universal prediction of individual binary
sequences in the presence of noise,” IEEE Trans. Inform. Theory, vol.
47, no. 6, pp. 2151-2173, Sept. 2001.

[17] T. Weissman, E. Ordentlich, G. Seroussi, S. Verdú, M. J. Weinberger,
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