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Abstract—We examine the problem of determining which as a consequencA,is inserted in the neighbor list & based
node_s are neighbors (_)f a given one in a ywreless network. We solely upon successful reception, at ndgleof a packet sent
consider an unsupervised network operating on a frequency- py node A. Moreover, the Internet Engineering Task Force

flat Gaussian channel, where K + 1 nodes associate their ¢ f Neighbor Di “at P L " 16
identities to nonorthogonal signatures, transmitted at random proposes 1o perform Neighbor Liscovery a ayer” [6].

times, synchronously, and independently. A number of neighor- ~ The corresponding protocol assumes a broadcast capaility
discovery algorithms, based on different optimization crteria, are  physical layer, and a MAC which handles contention. Now,
introduced and analyzed. Numerical results show how reduck  ND algorithms for wireless networks may not be contention-
complexity algorithms can achieve a satisfactory performace. p5gad when energy constraints are tight: retransmissitein
case of a collision costs energy, which might be a resource at
a premium. In this context, we consider a transmission sehem
which avoids collisions at modulation level and is based on
Of late, wireless networks, and in particular sensor nesimultaneous transmission of signatures. In principlethé
works, have been the object of a good deal of interest, alsodes’ waveforms were orthogonal, no collision would occur
spurred by the manifold applications they can be associat@dpractice, these waveforms have a small correlation,ingus
with (see, for example, their applications to classifiaatioan interference whose amount may be controlled by multiuser
and tracking [1] and to monitoring [2]). A characteristicdetection algorithms.
requirement of several wireless networks, which enablesth ND can be performed in a subervised or unsupervised
to adapt themselves to a changing environment, is that thn%%nner In su Ierised methods tr?ere is a central ([:)ontrolle
be “self-configuring,” i.e., that a large number of wirelesi a. Ieade[r) node) which r’ocesses the sianal received
nodes organize themselves to perform the tasks requirede' " P 9

the application they have been deployed for: examples &f se :nnmalLiHOS est, de”t(re]rrglnefh t?ren nietr\]/\éorrk“ Ctonfégurart::;ir;édand
configuration include construction of routing paths, cuistg, co unicates to all nodes their neighbor ists. supe

and formation of minimum-weight rees. I s paper, wEOCTITS 218 SSCEC L0 cox g amountef enera
consider an aspect of self-configuration in wireless netaor y gy

referred to ameighbor discoveryND). Neighbor discovery is U;CS#pfg\égegis'\égvaelgsori'gn;\?vgaxgi nr?b%errs]tril\rfgt?]:?lli?r:mgr(taant
the determination of all nodes in the network a given node m 9 : P

directly communicate with. Knowledge of neighbors is essehglSue in ND problems is the timing aspect. In [7], the frame-

tial for all routing protocols, medium-access control pials, synchronous assumption is justified by the presence in each

) . node of Global Positioning System (GPS) devices. In [5],
and several other topology-control algorithms. |deallydes .asynchronous algorithms are addressed, assuming thas node

should discover their neighbors as quickly as possiblecihi i . o ;
will allow nodes to save energy in their discovery phaseoAIs.C"Jm synchromze at bit level (which is the assumption we make
rapid discovery allows for other protocols (such as routin'gr]] the following).
protocols) to quickly start their execution. In additionDN  The goal of this work is to provide the foundations of
may also be the solution for “partner selection” in coopeeat signal processing for ND in wireless networks. We consider
wireless networks. In fact, cooperation among users may caan unsupervised wireless network in a frequency-flat Gaus-
advantages only if the partners are chosen in a proper way: $t&an multiple-access channel, shared Ky+ 1 nodes which
example, “decode-and-forward” (DAF) protocols may sufferansmit, synchronously and independently, a set of kndgen s
from cooperation with weak users, thus failing in the goal afatures according to the scheme advocated in [5]. Each node
increasing the diversity order [3]. is identified by its own unique signature, and every node &eep
Recently, a number studies on ND algorithms have appeagedist of all the signatures of the network. A node is called a
(see, e.g., [4], [5] and the references therein). Most cfelap- neighbor of the reference node if its amplitude, received by
proach ND at a protocol level, defining nodéo be a neighbor the latter, exceeds a preassigresdtivity threshold say 74.
of nodeB if A can excee®'s signal to noise-ratio requirement:Moreover, nodes cannot transmit and receive simultangousl

|I. INTRODUCTION



on the same chann&land the maximum number of activeto be modeled by a complex circularly symmetric Gaussian
nodes is fixed and finite. We clarify that a neighbor relatiorandom variable with variancs?. The signatures can be
between two nodes need not be bidirectional, since each neaeressed as
discovers those nodes it can receive from. L

The organization of this paper is the following. In Section | se(t) = sird(t— (1 —1)T.)/VL 2)
we provide a model for the physical aspects of the networks, =1
and we formulate our problem. ND algorithms are introduced

in Section Ill, and analyzed in Section IV. Section V show?hereslvk € {-1,+1} is thelth chip of thekth signature,

is the processing gairf,. = T'/L is the chip duration, and
(-) is the (unit-energy) chip waveforiThe slots devoted
Il. SIGNAL MODEL AND PROBLEM FORMULATION to channel sensing need not be adjacent: however, due to our

Our scenario is based on the transmission scheme iIILBtrangt'fadmg assumption, we may assume, without any loss of

in Fig. 1, which corresponds to node searching its own generality, a sensing phase of

neighbors among four other nodésin every time interval N

(“slot”), each nodei, i = 1,..., K, transmits its own sig- M=) (1-ton)=N-uw )

nature, independently of the other nodes, with probabiljity n=1

while otherwise (and hence with probability— ¢;) it senses consecutive slots with intermittent other-users actjvitjth

the channel. o the number of slots where node "0” is transmitting. Notice

that M is random (V is assumed fixed and node 0 has its own

activity factoreg), but the value it takes is known to node

N O,OdGdGg Hence, in all subsequent derivations we refer to a givenevalu
| of M. Of course, we may adopt the silent phases of node

as a time scale, recasting (1), with a slight notational epus

some numerical results, while Section VI concludes the pap

To

in the form#
K
N receive interval of reference user y(t) = Z rpansk(t — (p—1T) + 2(t) 4)
I transmit interval of neighboring us: k=1

where0 < ¢t < MT andp = 1,2,..., M. Our problem is
Fig. 1. A scheme for synchronous neighbor discovery. now reduced to determining the indexesuch that{|ak|}kK=1
exceed an “activity threshold?s, based on model (4).

The ND algorithm runs in a finite period, callecescovery  Sincez(t) is white Gaussian noise, the components @f
session whose duration is denote@dp. During Tp, every orthogonal to the subspace spanned by the signatures are
active node transmits a number of signals containing one itielevant to our detection problem [8]. As a consequenae, w
more copies of its signature. Each signal has durafios might in principle adopt the signatures themselves, anit the
Tp/N, with N the number of slots in the discovery sessiorjelayed versions, as an expansion basis for such a subspace.

The network is assumed to be unsupervised, which impliggernatively, we may use thé.—dimensional orthonormal
that all nodes are independent and at the same hierarchiggdis

level: as a consequence, the ND algorithm is run in parallel L=l
by all nodes. Under the assumptions made in Section I, the U {e@t— 1. - (p-1)T)} ()
baseband representation of the signal received by foihe =0
the time interval[(n — 1)T,nT), n € {1,2,..., N}, is to expand the signal in the intervd{n — 1)T,nT). The

i two approaches are obviously equivalent, but the latter is
K f pPp y €q
y(t) = { Yokm1 Yk newsk(t — (n = 1)T) + 2(1) !f Yo.n =0 mandatory in situations where the discovering node has no
0 it Yo,n ? 1 prior information as to the signatures of other users: alifo
ye do not deal blind ND in this paper, we choose this one
due to its inherent flexibility.
Defining the scalar products

whereay, denotes the channel gain, i.e., the complex amplitu
of the signal received from nodé and assumed to be
constant during all the discovery sessiony-) is the kth
node signatureyy, ,, is a random variable taking valuk if A [P
node k is transmitting at timen, and value0 otherwise (so “p /(
that P(¢y.., = 1) = &), and z(t) is additive white complex
Gaussian noise having spectral dengfy,. We assumeyy

or yt)p*(t—(i—1)T.— (p—1)T) dt (6)

with * denoting conjugation, we obtain a vector representation

Yp = [Wip,Y2,p,---,yLp) Of the signal received if(p —
1For simplicity, we disregard the more general case of nobatdan be
in anidle state, i.e., they are neither receiving nor transmitting. 3The signatures are assumed to have unit energy.
2We consider nod® to be the reference node. Since all nodes are at the“Notice that the index: refers to consecutive time slots, whiterefers to
same hierarchical level, the same analysis applies to adg.no the time scale defined by the silent phase of naale ”



nT, pT):

K

Yp = Zdjk,paksk +n,=S¥,a+2, (7)
k=1
WherAesk_é %[Sl,hszk;---asL,k]T,As £ [s1,82,...,8k],
‘Ilp = dlaqwl,pa 1/}2,;0; e awK,p)! o = [041, Qg, ... aaK]T’
z, £ [Z1,ps Z2,py - - zL_,p]T, and
pT
an® [0 (- - VT - - 1T) i @)
(p—1)T

The ND problem now consists of assessing, after observing th .
.y}, which ones, among Computing

set of M vectorsy;.as 2 {y1,...
laa|, ..., |ak|, exceed the “activity threshold,.

IIl. ND ALGORITHMS

These are related to the overall error probability thréugh
PO(e) = PP {Jau| < 7a} + PUP{las| > 74} (12)

Now, the maximum-likelihood (ML) estimators of the in-
stantaneous powers can be obtained by jointly estimading
and the matrix sequenc®;.,,;. Straightforward calculations
show that the ML estimates at and ¥,.,; result from the
solution of the2XM [inear systems — each corresponding to
an outcome¥ ., ; of the matrix sequenc@®;.,;:

M M
<Z q:p7isfsq:p7i> a= (Z \Ilpﬂsfyp) :

p=1 p=1

(13)

M
G =arg _ min Sy, - S¥.a: |2 (14)
_ P

A sensible criterion for the selection of a ND algorithnwith a; the solution corresponding t&;.,,,, and recalling
consists of minimizing the probability of choosing, amohg t that ML estimates commute under nonlinear transformations

K network nodes under scrutiny, an erroneous set of neighbgsst (10) can be implemented by usihjg|2

= |@mr.il?

of node0. Since there are™ such sets, each corresponding Even with this receiver, implementation complexity would
to one hypothesid?, this error probability is minimized by pe unrealistic, and hence a further simplification is cafted

the maximum a posteriori (MAP) decision rule:
H= argmgxP(H)p(yLM | H) 9)

where P(H) is the a priori probability of hypothesi#, and

Instead of dealing with the receive/transmit pattern sslab
the whole discovery session, we rather obtain estimatesdbas
on a singleT-interval observation, which are then combined
according to a suitable integration strategy.

p(y1.:m|H) is the probability density of the observations give\. Suboptimum ND algorithms

H

Consider again model (7). The ML estimate®f,«, based

Now, p(y1.ar | H) depends on the actual pattern of transmitipon the observatiop, available in slofp, is

receive intervals of each node, denotdd.,;. Since this
is unknown under our assumption that the transmission of
signatures is not coordinated, it should be obtained froe tmlhereSJ“

marginalization

Z p(yrm | Hy O )P{®10s}
Wi

which has a complexity that grows exponentially wih\/.

T,a = (S'S)7'STy, = 57y, (15)

denotes the pseudo-inverse of the tall maix

A closer look at this solution reveals that, since
S+yp = S+SlIlpa + S+zp =¥,o+ w, (16)

with Efw,w]] = 2No(STS)~!, the interference from the
other users is completely eliminated, at the price of some

To overcome this complexity obstacle, the decision on thgjise enhancement, reflecting the increase of the variance

neighbor set works as follows. We first obtain estimates @ its jth component by the factof (S1S); 11K

It is

i Ji=1"

the instantaneous powefs;|> of all nodes, next we decide interesting to notice that this estimate is noise-limiteat, not
that a node is a neighbor by comparing each of them withirterference-limited, implying that any receiver based(d5)

threshold, i.e.,
—— H
sl 2 7 (10)
Hy
where
Hi:  The received instantaneous power exceegls

Hy:  The received instantaneous power is belojv

is asymptotically efficienfl0]; likewise, near-far resistancés
granted [10].

Since there ar@/ sensing phases, thd estimates resulting
from repeated application of (15) should be combined to
yield the final test statistic. Borrowing techniques fromaa
detection theory, reasonable combination criteriacaigerent
integration (Cl), wherein an estimate of the instantaneous
power is obtained as

The performance of this test can be expressed through its 9

probabilitfoJ) of a false-alarmand its probabilityPJS}) of a
miss defined as:

po

p P{|G;? > 72 | ai| < 7}
p
M

P{|a;|? <77 | |a;| > 7a}

(11)

M
— 1
|ail?cq = M Z(S+y[))i 17)

p=1

5In what follows, the superscripts will be skipped wheneverconfusion
is induced by this notational simplification.



andincoherent integratior(ll) with z ~ N.(0,2NyMTI), the CD is easily seen to be a
member of the family ofinear ND tests(LNDT), wherein

M
- 1 e - »
a2, a1 Z |(S+y,,)i|2 (18) a d(?Z‘CISIOI’] on the proximity of useris made based on the
M rule:
p=1 H;
Notice that cly? 2 77 (25)
Hy
T 2 2 l—e . .
E {IO@I C;‘ M, || } = giloyl® |ei + i Thus, the CD (21) can be also interpreted as the zero-forcing
fono1 (ZF) member of the family (25), obtained as the unique
+2N0(5 S)ii (19) Solution to the constrained minimization problem:
M
Y 3 = ine. E T 2
E [Jo2 | M) = el + 28(818);} (20) 7+ = aremine, Elle; 3 onsef’] (26)
’ Ci,zFrSi = B
implying that both |E,-\|2H and |Ei\|2m can be interpreted with 3 # 0, which yield$
as biased estimators of the instantaneous power received in _ I
each slot from nodeé: biases can however be absorbed in the cizr = (I —8i8T) si = Pisi (27)

detection thresholds;, while what matters here is that theywhereI,, is the L x L identity matrix,S; is the L x (K —

are bothconsistentin the mean square sense, a property tha} matrix obtained skipping thé—th column fromS and P;

will be exploited later on. Inserting (17) and (18) into (L0)denotes the projector onto the orthogonal complement of the
and skipping factors that can be absorbed in the detectiomlumn span ofS,. For future reference we remind here that

thresholds, we obtain theoherent detectofCD) [10]
2 0 if k+£14
‘Zﬁil(S*yp)i > 72 — nodei is a neighbor |Cj,zpsk|2 = { siPisil? =) s |4 if & iz (28)
2
‘Zﬁil(S*yp)i < 72 — nodei is not a neighbor where s; | denotes the projection of; on the above or-
(21) thogonal complement: needless to say, sifices; | 2=
and theincoherent detectofID): 1/[(S'S);}], the noise power is enhanced by a factor
M + 2.3 2 ; i (STS);’}' . :
Z%ﬂ |(STy,):l° > 77 — nodei a neighbor The vectorc; can be designed according to a number of
Zpil |(S+yp)i|2 < 72 — nodei is not a neighbor different criteria. For example, in [12] an LNDT based on
(22) conventional matched filtering (MF), i.e., assuming
Notice how the CD can also be interpreted in a different c: . (29)
way. Indeed, it may be obtained by first pre-processing the LME = S
observations so as to form the cumulative sum: has been proposed and analyzed for ND. MF is indeed simple,
M but it results into interference-limited performance, asshall
y 2 Zyp prove soon, nor does it retain the near-far resistance psope
et granted by ML-based detectors.
M K A possible alternative to the ZF criterion is offered by the
_ Z (Z"l}k,paksk +z,,) minimqm-mean-outp_ut-energy (MMOE) _strategy, first _intro—
=1 Vo duced in [11], wherein the vectet, is obtained as the unique
K solution to the following constrained minimization proile
= Z VpQESk + Z 2
=1 C, MMOE = argming, E[ cl-L (Zk aLVESE + z) ]
= SVa+z
C; mmoESi =1
where Ny Ny I (30)
namely:
Vg £ Z wk,p z & Z Zp (23) g M;;Sz
p=1 p=1 Ci, MMOE = -1 (31)
s, Myys;
andV £ diagv,, ..., vk), then multiplying the new Observa'whereMyy N Zszl QUzE[Vz]SkSL + 2N, MT,. Due to the

. + . - .
tion by S and finally extracting théth component to form i ariance of the decision rule to any positive scaling @ th
the test statistic (21). Rewriting equation (23) in the form (et statistic, an equivalent detector relies upon setting

-1
Y= viuisi + Y Vkosi+ 2z (24) ci,MmmoE = Myys; (32)
useful signal K77 noise o
— Notice from (27) that the paramet@?® has been set t(?i)

1
. —1
interference Sts iy



It might be worth recalling here that, since are the upper incomplete Gamma function and its regularized
version, respectively, whilg; is the signal-to-noise ratio after

A}é{loM si o¢ Pis; (33)  decorrelation, i.e.:
MMOE is itself asymptotically efficient. Likewise, it retzs o? o?
the near-far resistance property since the projectiorctiine pP1= o2 = NO(STS)‘I (41)
cimmop tends to become orthogonal to those signatures ’ b
whose amplitudes become increasingly large [11]. The age thus obtain the conditional measure
vantage of (32) over ZF is that it easily lends itself to
adaptive implementations in situations where the sigeatur 2*_%2 o 2
of the active users are unknown. Even though we do notdegl _ | _ et Z ( Y1ip1 ) Q<M + k >
with adaptive ND in this paper, we anticipate that a number I1+uvip; k 0 I+uvipy ,L 1
of reduced complexity algorithms, ranging from tigL)-
complex Least Mean Squares to théL?)-complex Recursive X Q (k: +1; oy (1 + V1p1)) (42)
Least Squares, can be easily applied for adaptive MMOE o1
implementation. which should be averaged ovei to yield the conditional
probability of a miss given\/. Similar developments hold for
IV. ANALYSIS Py, yielding
From now on we assume that the node to be detected is
node "1”. Consider first the ID. The conditional false-alarm P(x1 > 71, |o1| < 7a|®1.01) (43)
and miss probabilities in assessing the proximity of nade 1 0 k 2
can be written as: = 11 Z (1 1151 ) Q(M+ k; ;—é)
, 1137 101 On,1
Py = Plx1 <7il|loa| > 74, ¥1.m (34) i
12“ | ) P<k+ ;-4 +1/1p1)> (44)
Pr = Pha > ‘|a1| <74, W) (35) 207
with x1 £ 5207 [(STy,):[2. Given |ai| and 1.y, x1 is where
noncentral chi-square distributed wi2i/ degrees of freedom ' .
and parameters, o 2 ando? ; = (S'S); } No, implying P(k;x) = ng}j)c) . k) 2 / thletdr  (45)
0
2 Viilea| 7
PO > 71 | feal, @rar) = QM( o1 Un_l) (36) " are the lower incomplete Gamma function and its regularized

version, respectively. Finally, from (43) we easily obtain
whereQ@ (-, -) is the Marcum function of orde}/. Using the

2

series expansion of modified Bessel functions TA

s 9\n+2k Pr = Lcsc)(ig) i ( V1p1 )k (46)
Infw) = % (37) 2(1+np) , doj k=0 12+ Vip1
we obtain B x Q(M+k J:211) (k+1 0 %(1+V1p1))
P(x1 > ¢ | |ai], ®1.0m) (38) Consider now the test family (25). Notice that, since

= €

o1l S5 <|a1|4/ ) ) K
- N — T — T T T 47
Z SR T F) <M+k, = ) g1 =cly erZukclskakJrclz (47)

_ n,l R =
k=0 ™ useful signal k=2

interference+noise

P(x1 > 71, |a1| > 74| ¥y, 39 _ . : ,
(b > 71, fou TA| 1) (39) lg1]? is conditionally chi-square with two degrees of freedom,

k
= ! i( a1 ) Q(M+k~7—12) given oy, {v;}X, and M, with non-centrality parameter
14+wvip1 1+vipy " 952 |y1cTsla1|2 |a1|2V1C S151TC1 and scale parameter

n,l
2

x Q<k+1 A +V1p1))

¥ (c1) £ Z vrelsil?of + MNole: ||?
where

K
r(k;x)é/ t*letdt . Qk;x) = F(}f) (40) = Zokvkc sisk' €1 + MNo|ley|?




whereby, reproducing the same steps leading to (42) and (48)r short discovery sessions, and under known activityofact

we obtain of nodes to be discovered, optimum detection thresholds can
.2 be obtained by evaluating numerically the unconditionebrer
e1 i( V3 Peq )k 48) probability, and then determining the points where it has a
Py = - > 4 minimum.
Lt v3peq £ \ 1+ Vipeq
. 72 1 2 " V. RESULTS
< QR+ " 252(cy) @LF+ ’Tc%( +Vipeq) We consider here a fully loaded network wifki + 1 =
-2 7, each node being assigned a lengthws-sequence. As in
e 72 v b revious section, we assume that naddas to decide on
Pr = s —csoh 4 ) S (A% ) (a9) P - section, . €
2(1+ v2peq) 402 —\1+ V2 Peq the proximity of nodel. Figure 2 assumes SNR: 07 /Ny =

9 9 0 dB, N = 100, a power-controlled scenario wherein all nodes
X Q(k+ 1; %)P(lﬁr 1; T_AQ(1 + preq)) are received with the same average power, uniform activity
2532(c1) 207 factor €, = ¢ = 0.5), and an activity threshold equal to
wherep,, represents the signal-to-interference-plus-noise rafi¢¢ median of the fading amplitude distribution, i.e., sthwt

(SINR) at the output of the linear filter, i.e.: P(lea| > 74) = 0.5. The figure represents the palty,
Pr for the various receivers examined so far. Interestingly,

“conventional” MF [12] suffers from the presence of the athe
nodes even in this rather benign situation, while MMOE, ZF

. . . " and CD take advantage of their asymptotic efficiency.
Relationships (48) and (49) are quite reminiscent of (42) an The reliability of the asymptotic approximation for long

(46), respectively, one major difference being the depragle jiscoyery sessions can be assessed through figures 3-&for th

of the performance onf).,, rather than/, p,. Of course, the o~ and through figures 5-6 for the 1D, which refer to the
guadratic factor in;, stems from the fact that linear detector§ame scenario as in Fig. 2.

operate on a coherent combination of the observationsewhil 114 urves of these figures represent
ID combines the slot-by-slot estimates incoherently. biti
however, that the above relationships represent condition
measures, gived/ (i.e., givenwy) and {v;}X . If the dis-
covery session is long enough, so that the matrix sequence
W, may exhibit its typical behavior, namely, N (1—¢¢) >

1, then thew,'s tend in probability toMeg, whereby the
unconditional performances may be obtained by averagiag th

corresponding conditional measures on the typical setlabga From the plots, it is evident that the asymptotic approxiorat
of {vx}X_, and M only, implying tends to overestimate the performances in the interesting

] region of low error probabilities, while coming closer and
o M~N(1-eo); closer to the true performance asincreases: notice that the
o vy = Mey, = Ney(1 — co). approximation is extremely tight fa¥ = 500, a realistic value
In this limiting situation, it is interesting to notice thela- indeed in real applications, which, fag = 0.5, corresponds to
tionship between the "cumulated” SNR's for ID and CD (i.e.ps ~ 250. However, it should be kept in mind that, for larger
the ZF of (27)), i.e. (see also (28) and subsequent commenigtivity factors of the discovering node, the minimum value
o202 || 11 | 202 of N for the asymptotic behavior to be reached inevitably
2y = AN PLLE 171 ~eiv1py (51) increases.
Fig. 7 is aimed at comparing CD and ID. It represents the

2.t
o?clsysife;

Peq = T2 a) (50)

e The unconditional false alarm and miss probabili-
ties obtained by simulation.

e The same pair obtained by a semi-analytical
method, i.e., by estimating the averages of their
conditional counterparts.

e The asymptotic approximation.

2 _
e = 2N s |7~ MNo(ST S)i1

Thus, in terms of cumulated signal-to-noise ratio and f&TOr Probability versus the signal-to-noise ratio SNising
large N, ID seems to be preferable to CD, even though the optimal thresholds for both receivers, and assuminghaga

global superiority cannot be claimed due to the differentfe € = 0-3, V = 500, and7, as before. It is interesting to notice

assumed by the respective false-alarm and miss probesilitithat CD outperforms ID for small signal-to-noise ratios,ikeh
So far no criterion has been given to select the decisidR IS Préferable for medium-to-large values of SNR

threshold ;. Notice, however, that the consistency of the VI. CONCLUSIONS

estimates (17) and (18) allows devising the asymptotiazily

timum thresholds (those achieving minimum error probgpbili

for large N) from (19) and (20) in the form

We have examined the problem of discovery which nodes
are neighbors in a wireless network operating over a fading
channel. The optimum Bayesian decision rule has been de-

2., = N(1- 50)[5173,[]\7(1 —ep)er + (1 —e1)] rived, showi_ng that it_s compl_exity is practic_ally prohité.
' Fan1 Two suboptimum neighbor-discovery algorithms have been
+ 2No(S S)LJ (52) introduced, based on standard techniques of coherent and

rﬁm = N(l—so)[Ti€1+2N0(STS)iﬂ (53) incoherent integration. We show how coherent integration
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Fig. 2. Performance of various ND algorithms under perfect powetro$y ~ Fig. 5. Performance of the ID f@o? = 2N = 1 (SNR =0 dB), N = 100.
207 = 2Ny = 1 (SNR =0 dB), N = 100, fully-loaded network.
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) Fig. 6. Performance of the ID fd2o2 = 2Ny = 1 (SNR; =0 dB), N = 500.
Fig. 3. Performance of the CD f@w? = 2Ny = 1 (SNR =0dB), N = 100
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Fig. 4. Performance of the CD f@? = 2Ny = 1 (SNR =0dB),N = 500  Fig. 7. Global comparison between CD and IB,= 500, ¢ = 0.5,207 = 1.



