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Abstract— We examine the problem of determining which
nodes are neighbors of a given one in a wireless network. We
consider an unsupervised network operating on a frequency-
flat Gaussian channel, where K + 1 nodes associate their
identities to nonorthogonal signatures, transmitted at random
times, synchronously, and independently. A number of neighbor-
discovery algorithms, based on different optimization criteria, are
introduced and analyzed. Numerical results show how reduced-
complexity algorithms can achieve a satisfactory performance.

I. I NTRODUCTION

Of late, wireless networks, and in particular sensor net-
works, have been the object of a good deal of interest, also
spurred by the manifold applications they can be associated
with (see, for example, their applications to classification
and tracking [1] and to monitoring [2]). A characteristic
requirement of several wireless networks, which enables them
to adapt themselves to a changing environment, is that they
be “self-configuring,” i.e., that a large number of wireless
nodes organize themselves to perform the tasks required by
the application they have been deployed for: examples of self-
configuration include construction of routing paths, clustering,
and formation of minimum-weight trees. In this paper, we
consider an aspect of self-configuration in wireless networks
referred to asneighbor discovery(ND). Neighbor discovery is
the determination of all nodes in the network a given node may
directly communicate with. Knowledge of neighbors is essen-
tial for all routing protocols, medium-access control protocols,
and several other topology-control algorithms. Ideally, nodes
should discover their neighbors as quickly as possible, which
will allow nodes to save energy in their discovery phase. Also,
rapid discovery allows for other protocols (such as routing
protocols) to quickly start their execution. In addition, ND
may also be the solution for “partner selection” in cooperative
wireless networks. In fact, cooperation among users may carry
advantages only if the partners are chosen in a proper way: for
example, “decode-and-forward” (DAF) protocols may suffer
from cooperation with weak users, thus failing in the goal of
increasing the diversity order [3].

Recently, a number studies on ND algorithms have appeared
(see, e.g., [4], [5] and the references therein). Most of these ap-
proach ND at a protocol level, defining nodeA to be a neighbor
of nodeB if A can exceedB’s signal to noise-ratio requirement:

as a consequence,A is inserted in the neighbor list ofB based
solely upon successful reception, at nodeB, of a packet sent
by nodeA. Moreover, the Internet Engineering Task Force
proposes to perform Neighbor Discovery “at IP Layer” [6].
The corresponding protocol assumes a broadcast capabilityat
physical layer, and a MAC which handles contention. Now,
ND algorithms for wireless networks may not be contention-
based when energy constraints are tight: retransmission inthe
case of a collision costs energy, which might be a resource at
a premium. In this context, we consider a transmission scheme
which avoids collisions at modulation level and is based on
simultaneous transmission of signatures. In principle, ifthe
nodes’ waveforms were orthogonal, no collision would occur.
In practice, these waveforms have a small correlation, causing
an interference whose amount may be controlled by multiuser-
detection algorithms.

ND can be performed in a supervised or unsupervised
manner. In supervised methods, there is a central controller
(e.g., a leader node) which processes the signal received
from all nodes, determines the network configuration, and
communicates to all nodes their neighbor lists. SupervisedND
algorithms are expected to cost a large amount of energy, and
hence they should be discarded for energy-limited networks.
Unsupervised ND algorithms have no central controller: there,
each node discovers its own neighbors. Another important
issue in ND problems is the timing aspect. In [7], the frame-
synchronous assumption is justified by the presence in each
node of Global Positioning System (GPS) devices. In [5],
asynchronous algorithms are addressed, assuming that nodes
can synchronize at bit level (which is the assumption we make
in the following).

The goal of this work is to provide the foundations of
signal processing for ND in wireless networks. We consider
an unsupervised wireless network in a frequency-flat Gaus-
sian multiple-access channel, shared byK + 1 nodes which
transmit, synchronously and independently, a set of known sig-
natures according to the scheme advocated in [5]. Each node
is identified by its own unique signature, and every node keeps
a list of all the signatures of the network. A node is called a
neighborof the reference node if its amplitude, received by
the latter, exceeds a preassignedactivity threshold, say τA.
Moreover, nodes cannot transmit and receive simultaneously



on the same channel,1 and the maximum number of active
nodes is fixed and finite. We clarify that a neighbor relation
between two nodes need not be bidirectional, since each node
discovers those nodes it can receive from.

The organization of this paper is the following. In Section II
we provide a model for the physical aspects of the networks,
and we formulate our problem. ND algorithms are introduced
in Section III, and analyzed in Section IV. Section V shows
some numerical results, while Section VI concludes the paper.

II. SIGNAL MODEL AND PROBLEM FORMULATION

Our scenario is based on the transmission scheme illustrated
in Fig. 1, which corresponds to node0 searching its own
neighbors among four other nodes.2 In every time interval
(“slot”), each nodei, i = 1, . . . ,K, transmits its own sig-
nature, independently of the other nodes, with probabilityεi,
while otherwise (and hence with probability1 − εi) it senses
the channel.

#1
#2
#3
#4

receive interval of reference user
transmit interval of neighboring users

TD

T

Fig. 1. A scheme for synchronous neighbor discovery.

The ND algorithm runs in a finite period, called adiscovery
session, whose duration is denotedTD. During TD, every
active node transmits a number of signals containing one or
more copies of its signature. Each signal has durationT =
TD/N , with N the number of slots in the discovery session.
The network is assumed to be unsupervised, which implies
that all nodes are independent and at the same hierarchical
level: as a consequence, the ND algorithm is run in parallel
by all nodes. Under the assumptions made in Section I, the
baseband representation of the signal received by node0 in
the time interval

[
(n− 1)T, nT

)
, n ∈ {1, 2, . . . , N}, is

y(t) =

{ ∑K

k=1 ψk,nαksk

(
t− (n− 1)T

)
+ z(t) if ψ0,n = 0

0 if ψ0,n = 1
(1)

whereαk denotes the channel gain, i.e., the complex amplitude
of the signal received from nodek and assumed to be
constant during all the discovery session,sk(·) is the kth
node signature,ψk,n is a random variable taking value1 if
nodek is transmitting at timen, and value0 otherwise (so
that P(ψk,n = 1) = εk), andz(t) is additive white complex
Gaussian noise having spectral density2N0. We assumeαk

1For simplicity, we disregard the more general case of nodes that can be
in an idle state, i.e., they are neither receiving nor transmitting.

2We consider node0 to be the reference node. Since all nodes are at the
same hierarchical level, the same analysis applies to any node.

to be modeled by a complex circularly symmetric Gaussian
random variable with variance2σ2

k. The signatures can be
expressed as

sk(t) =

L∑

l=1

sl,kφ
(
t− (l − 1)Tc

)
/
√
L (2)

wheresl,k ∈ {−1,+1} is the lth chip of thekth signature,
L is the processing gain,Tc = T/L is the chip duration, and
φ(·) is the (unit-energy) chip waveform.3 The slots devoted
to channel sensing need not be adjacent: however, due to our
flat-fading assumption, we may assume, without any loss of
generality, a sensing phase of

M =

N∑

n=1

(1 − ψ0,n) = N − ν0 (3)

consecutive slots with intermittent other-users activity, with
ν0 the number of slots where node ”0” is transmitting. Notice
thatM is random (N is assumed fixed and node 0 has its own
activity factorε0), but the value it takes is known to node0.
Hence, in all subsequent derivations we refer to a given value
of M . Of course, we may adopt the silent phases of node0
as a time scale, recasting (1), with a slight notational abuse,
in the form:4

y(t) =
K∑

k=1

ψk,pαksk

(
t− (p− 1)T

)
+ z(t) (4)

where0 ≤ t ≤ MT and p = 1, 2, . . . ,M . Our problem is
now reduced to determining the indexesk such that{|αk|}K

k=1

exceed an “activity threshold”τA, based on model (4).
Sincez(t) is white Gaussian noise, the components ofy(t)

orthogonal to the subspace spanned by the signatures are
irrelevant to our detection problem [8]. As a consequence, we
might in principle adopt the signatures themselves, and their
delayed versions, as an expansion basis for such a subspace.
Alternatively, we may use theL−dimensional orthonormal
basis

L−1⋃

`=0

{
φ
(
t− `Tc − (p− 1)T

)}
(5)

to expand the signal in the interval
[
(n − 1)T, nT

)
. The

two approaches are obviously equivalent, but the latter is
mandatory in situations where the discovering node has no
prior information as to the signatures of other users: although
we do not deal blind ND in this paper, we choose this one
due to its inherent flexibility.

Defining the scalar products

yi,p ,

∫ pT

(p−1)T

y(t)φ∗
(
t− (i− 1)Tc − (p− 1)T

)
dt (6)

with ∗ denoting conjugation, we obtain a vector representation
yp , [y1,p, y2,p, . . . , yL,p]

′ of the signal received in
[
(p −

3The signatures are assumed to have unit energy.
4Notice that the indexn refers to consecutive time slots, whilep refers to

the time scale defined by the silent phase of node ”0”.



1)T, pT
)
:

yp =

K∑

k=1

ψk,pαksk + np = SΨpα + zp (7)

where sk , 1√
L

[s1,k, s2,k, . . . , sL,k]T , S , [s1, s2, . . . , sK ],

Ψp , diag(ψ1,p, ψ2,p, . . . , ψK,p), α , [α1, α2, . . . , αK ]T ,
zp , [z1,p, z2,p, . . . , zL,p]

T , and

zi,p ,

∫ pT

(p−1)T

z(t)φ∗
(
t− (i− 1)Tc − (p− 1)T

)
dt (8)

The ND problem now consists of assessing, after observing the
set ofM vectorsy1:M , {y1, . . . ,yM}, which ones, among
|α1|, . . . , |αK |, exceed the “activity threshold”τA.

III. ND ALGORITHMS

A sensible criterion for the selection of a ND algorithm
consists of minimizing the probability of choosing, among the
K network nodes under scrutiny, an erroneous set of neighbors
of node0. Since there are2K such sets, each corresponding
to one hypothesisH , this error probability is minimized by
the maximum a posteriori (MAP) decision rule:

Ĥ = argmax
H

P (H)p(y1:M | H) (9)

whereP (H) is the a priori probability of hypothesisH , and
p(y1:M |H) is the probability density of the observations given
H .

Now,p(y1:M | H) depends on the actual pattern of transmit/
receive intervals of each node, denotedΨ1:M . Since this
is unknown under our assumption that the transmission of
signatures is not coordinated, it should be obtained from the
marginalization

∑

Ψ1:M

p(y1:M | H,Ψ1:M )P {Ψ1:M}

which has a complexity that grows exponentially withKM .
To overcome this complexity obstacle, the decision on the

neighbor set works as follows. We first obtain estimates of

the instantaneous powerŝ|αi|2 of all nodes, next we decide
that a node is a neighbor by comparing each of them with a
threshold, i.e.,

̂|αi|2
H1
>
<
H0

τ2
i (10)

where

H1: The received instantaneous power exceedsτ2
A.

H0: The received instantaneous power is belowτ2
A.

The performance of this test can be expressed through its
probabilityP (i)

F of a false-alarmand its probabilityP (i)
M of a

miss, defined as:

P
(i)
F = P

{
|α̂i|2 > τ2

i | |αi| < τA
}

P
(i)
M = P

{
|α̂i|2 < τ2

i | |αi| > τA
} (11)

These are related to the overall error probability through5

P (i)(e) = P
(i)
F P {|αi| < τA} + P

(i)
M P {|αi| > τA} (12)

Now, the maximum-likelihood (ML) estimators of the in-
stantaneous powers can be obtained by jointly estimatingα

and the matrix sequenceΨ1:M . Straightforward calculations
show that the ML estimates ofα and Ψ1:M result from the
solution of the2KM linear systems — each corresponding to
an outcomeΨ1:M,i of the matrix sequenceΨ1:M :

(
M∑

p=1

Ψp,iS
†SΨp,i

)
α =

(
M∑

p=1

Ψp,iS
†yp

)
. (13)

Computing

α̂ML = arg min
i=1:,...,2KM

M∑

p=1

‖ yp − SΨp,iα̂i ‖2 (14)

with α̂i the solution corresponding toΨ1:M,i, and recalling
that ML estimates commute under nonlinear transformations,

test (10) can be implemented by usinĝ|αi|2 = |α̂ML,i|2,
Even with this receiver, implementation complexity would

be unrealistic, and hence a further simplification is calledfor.
Instead of dealing with the receive/transmit pattern related to
the whole discovery session, we rather obtain estimates based
on a singleT -interval observation, which are then combined
according to a suitable integration strategy.

A. Suboptimum ND algorithms

Consider again model (7). The ML estimate ofΨpα, based
upon the observationyp available in slotp, is

Ψ̂pα = (S†S)−1S†yp = S+yp (15)

whereS+ denotes the pseudo-inverse of the tall matrixS.
A closer look at this solution reveals that, since

S+yp = S+SΨpα + S+zp = Ψpα + wp (16)

with E[wpw
†
p] = 2N0(S

†S)−1, the interference from the
other users is completely eliminated, at the price of some
noise enhancement, reflecting the increase of the variance
of its ith component by the factor{(S†S)−1

i,i }K
i=1. It is

interesting to notice that this estimate is noise-limited,but not
interference-limited, implying that any receiver based on(15)
is asymptotically efficient[10]; likewise,near-far resistanceis
granted [10].

Since there areM sensing phases, theM estimates resulting
from repeated application of (15) should be combined to
yield the final test statistic. Borrowing techniques from radar
detection theory, reasonable combination criteria arecoherent
integration (CI), wherein an estimate of the instantaneous
power is obtained as

̂|αi|2CI ,

∣∣∣∣∣
1

M

M∑

p=1

(S+yp)i

∣∣∣∣∣

2

(17)

5In what follows, the superscripts will be skipped whenever no confusion
is induced by this notational simplification.



and incoherent integration(II)

̂|αi|2II ,
1

M

M∑

p=1

|(S+yp)i|2 (18)

Notice that

E
[
̂|αi|2CI

∣∣∣M, |αi|2
]

= εi|αi|2
[
εi +

1 − εi

M

]

+
2N0(S

†S)−1
i,i

M
(19)

E
[
̂|αi|2II

∣∣∣M, |αi|2
]

= εi|αi|2 + 2N0(S
†S)−1

i,i (20)

implying that both ̂|αi|2II and ̂|αi|2CI can be interpreted
as biased estimators of the instantaneous power received in
each slot from nodei: biases can however be absorbed in the
detection thresholdsτi, while what matters here is that they
are bothconsistentin the mean square sense, a property that
will be exploited later on. Inserting (17) and (18) into (10),
and skipping factors that can be absorbed in the detection
thresholds, we obtain thecoherent detector(CD)




∣∣∣
∑M

p=1(S
+yp)i

∣∣∣
2

> τ2
i → nodei is a neighbor

∣∣∣
∑M

p=1(S
+yp)i

∣∣∣
2

< τ2
i → nodei is not a neighbor

(21)
and theincoherent detector(ID):
{ ∑M

p=1 |(S+yp)i|2 > τ2
i → nodei a neighbor∑M

p=1 |(S+yp)i|2 < τ2
i → nodei is not a neighbor

(22)
Notice how the CD can also be interpreted in a different

way. Indeed, it may be obtained by first pre-processing the
observations so as to form the cumulative sum:

y ,

M∑

p=1

yp

=

M∑

p=1

( K∑

k=1

ψk,pαksk + zp

)

=

K∑

k=1

νkαksk + z

= SVα + z

where

νk ,

M∑

p=1

ψk,p z ,

M∑

p=1

zp (23)

andV , diag(ν1, . . . , νK), then multiplying the new observa-
tion by S+ and finally extracting theith component to form
the test statistic (21). Rewriting equation (23) in the form:

y = νiαisi︸ ︷︷ ︸
useful signal

+
∑

k 6=i

νkαksk

︸ ︷︷ ︸
interference

+ z︸︷︷︸
noise

(24)

with z ∼ Nc(0, 2N0MI), the CD is easily seen to be a
member of the family oflinear ND tests(LNDT), wherein
a decision on the proximity of useri is made based on the
rule:

|c†iy|2
H1
>
<
H0

τ2
i (25)

Thus, the CD (21) can be also interpreted as the zero-forcing
(ZF) member of the family (25), obtained as the unique
solution to the constrained minimization problem:

{
ci,ZF = arg minci

E
[
|c†i
∑

k αkνksk|2
]

c
†
i,ZF si = β2 (26)

with β 6= 0, which yields6

ci,ZF =
(
IL − SiS

+
i

)
si = Pisi (27)

whereIL is theL × L identity matrix,Si is theL × (K −
1) matrix obtained skipping thei−th column fromS andPi

denotes the projector onto the orthogonal complement of the
column span ofSi. For future reference we remind here that
[10]

|c†i,ZF sk|2 =

{
0 if k 6= i

|s†iPisi|2 =‖ si,⊥ ‖4 if k = i
(28)

where si,⊥ denotes the projection ofsi on the above or-
thogonal complement: needless to say, since‖ si,⊥ ‖2=
1/[(S†S)−1

i,i ], the noise power is enhanced by a factor
(S†S)−1

i,i .
The vectorci can be designed according to a number of

different criteria. For example, in [12] an LNDT based on
conventional matched filtering (MF), i.e., assuming

ci,MF , si (29)

has been proposed and analyzed for ND. MF is indeed simple,
but it results into interference-limited performance, as we shall
prove soon, nor does it retain the near-far resistance property
granted by ML-based detectors.

A possible alternative to the ZF criterion is offered by the
minimum-mean-output-energy (MMOE) strategy, first intro-
duced in [11], wherein the vectorci is obtained as the unique
solution to the following constrained minimization problem:




ci,MMOE = argminci
E

[∣∣∣∣c
†
i

(∑
k αkνksk + z

)∣∣∣∣
2]

c
†
i,MMOEsi = 1

(30)
namely:

ci,MMOE =
M−1

yysi

s
†
iM

−1
yysi

(31)

whereMyy ,
∑K

k=1 2σ2
kE[ν2

k ]sks
†
k + 2N0MIL. Due to the

invariance of the decision rule to any positive scaling of the
test statistic, an equivalent detector relies upon setting

ci,MMOE = M−1
yysi (32)

6Notice from (27) that the parameterβ2 has been set to 1

(S
†
S)−1

i,i



It might be worth recalling here that, since

lim
N0→0

M−1
yysi ∝ Pisi (33)

MMOE is itself asymptotically efficient. Likewise, it retains
the near-far resistance property since the projection direction
ci,MMOE tends to become orthogonal to those signatures
whose amplitudes become increasingly large [11]. The ad-
vantage of (32) over ZF is that it easily lends itself to
adaptive implementations in situations where the signatures
of the active users are unknown. Even though we do not deal
with adaptive ND in this paper, we anticipate that a number
of reduced complexity algorithms, ranging from theO(L)-
complex Least Mean Squares to theO(L2)-complex Recursive
Least Squares, can be easily applied for adaptive MMOE
implementation.

IV. A NALYSIS

From now on we assume that the node to be detected is
node ”1”. Consider first the ID. The conditional false-alarm
and miss probabilities in assessing the proximity of node1
can be written as:

PM = P(χ1 < τ2
1

∣∣|α1| > τA,Ψ1:M ) (34)

PF = P(χ1 > τ2
1

∣∣|α1| < τA,Ψ1:M ) (35)

with χ1 ,
∑M

p=1 |(S+yp)1|2. Given |α1| and Ψ1:N , χ1 is
noncentral chi-square distributed with2M degrees of freedom
and parametersν1|α1|2 andσ2

n,1 = (S†S)−1
1,1N0, implying

P(χ1 > τ2
1 | |α1|,Ψ1:M ) = QM

(√
ν1|α1|
σn,1

,
τ1
σn,1

)
(36)

whereQM (·, ·) is the Marcum function of orderM . Using the
series expansion of modified Bessel functions

In(x) =

∞∑

k=0

(x/2)n+2k

k!Γ(n+ k + 1)
(37)

we obtain

P(χ1 > τ2
1 | |α1|,Ψ1:M ) (38)

= e−
|α1|2

ν1

σ2
n,1

2

∞∑

k=0

(
|α1|

√
ν1

σ2

n,1

)2k

2kk!Γ(M + k)
Γ

(
M + k;

τ2
1

2σ2
n,1

)

P(χ1 > τ2
1 , |α1| > τA

∣∣Ψ1:M ) (39)

=
1

1 + ν1ρ1

∞∑

k=0

(
ν1ρ1

1 + ν1ρ1

)k

Q

(
M + k;

τ2
1

2σ2
n,1

)

× Q

(
k + 1;

τ2
A

2σ2
1

(1 + ν1ρ1)

)

where

Γ(k;x) ,

∫ ∞

x

tk−1e−tdt , Q(k;x) =
Γ(k;x)

Γ(k)
(40)

are the upper incomplete Gamma function and its regularized
version, respectively, whileρ1 is the signal-to-noise ratio after
decorrelation, i.e.:

ρ1 =
σ2

1

σ2
n,1

=
σ2

1

N0(S
†S)−1

1,1

(41)

We thus obtain the conditional measure

PM = 1 − e
τ2

A

2σ2
1

1 + ν1ρ1

∞∑

k=0

(
ν1ρ1

1 + ν1ρ1

)k

Q

(
M + k;

τ2
1

2σ2
n,1

)

× Q

(
k + 1;

τ2
A

2σ2
1

(1 + ν1ρ1)

)
(42)

which should be averaged overν1 to yield the conditional
probability of a miss givenM . Similar developments hold for
PF , yielding

P(χ1 > τ2
1 , |α1| < τA

∣∣Ψ1:M ) (43)

=
1

1 + ν1ρ1

∞∑

k=0

(
ν1ρ1

1 + ν1ρ1

)k

Q

(
M + k;

τ2
1

2σ2
n,1

)

× P

(
k + 1;

τ2
A

2σ2
1

(1 + ν1ρ1)

)
(44)

where

P (k;x) =
γ(k;x)

Γ(k)
, γ(k;x) ,

∫ x

0

tk−1e−tdt (45)

are the lower incomplete Gamma function and its regularized
version, respectively. Finally, from (43) we easily obtain

PF =
e

τ2
A

4σ2
1

2(1 + ν1ρ1)
csch

(
τ2
A

4σ2
1

) ∞∑

k=0

(
ν1ρ1

1 + ν1ρ1

)k

(46)

× Q

(
M + k;

τ2
1

2σ2
n,1

)
P

(
k + 1;

τ2
A

2σ2
1

(1 + ν1ρ1)

)

Consider now the test family (25). Notice that, since

g1 = c
†
1y = ν1c

†
1s1α1︸ ︷︷ ︸

useful signal

+

K∑

k=2

νkc
†
1skαk + c

†
1z

︸ ︷︷ ︸
interference+noise

(47)

|g1|2 is conditionally chi-square with two degrees of freedom,
given α1, {νi}K

i=1 and M , with non-centrality parameter
|ν1c†1s1α1|2 = |α1|2ν2

1c
†
1s1s1

†c1 and scale parameter

Σ2(c1) ,

K∑

k=2

|νkc
†
1sk|2σ2

k +MN0‖c1‖2

=

K∑

k=2

σ2
kν

2
kc

†
1sksk

†c1 +MN0‖c1‖2



whereby, reproducing the same steps leading to (42) and (46),
we obtain

PM = 1 − e
τ2

A

2σ2
1

1 + ν2
1ρeq

∞∑

k=0

(
ν2
1ρeq

1 + ν2
1ρeq

)k

(48)

× Q

(
k + 1;

τ2
1

2Σ2(c1)

)
Q

(
k + 1;

τ2
A

2σ2
1

(1 + ν2
1ρeq)

)

PF =
e

τ2
A

4σ2
1

2(1 + ν2
1ρeq)

csch

(
τ2
A

4σ2
1

) ∞∑

k=0

(
ν2
1ρeq

1 + ν2
1ρeq

)k

(49)

× Q

(
k + 1;

τ2
1

2Σ2(c1)

)
P

(
k + 1;

τ2
A

2σ2
1

(1 + ν2
1ρeq)

)

whereρeq represents the signal-to-interference-plus-noise ratio
(SINR) at the output of the linear filter, i.e.:

ρeq =
σ2

1c
†
1s1s1

†c1

Σ2(c1)
(50)

Relationships (48) and (49) are quite reminiscent of (42) and
(46), respectively, one major difference being the dependency
of the performance onν2

1ρeq, rather thanν1ρ1. Of course, the
quadratic factor inν1 stems from the fact that linear detectors
operate on a coherent combination of the observations, while
ID combines the slot-by-slot estimates incoherently. Notice,
however, that the above relationships represent conditional
measures, givenM (i.e., givenν0) and {νi}K

i=1. If the dis-
covery session is long enough, so that the matrix sequence
Ψ1:M may exhibit its typical behavior, namely, ifN(1−ε0) �
1, then theνk ’s tend in probability toMεk, whereby the
unconditional performances may be obtained by averaging the
corresponding conditional measures on the typical set of values
of {νk}K

k=1 andM only, implying

• M ' N(1 − ε0);
• νk 'Mεk = Nεk(1 − ε0).

In this limiting situation, it is interesting to notice the rela-
tionship between the ”cumulated” SNR’s for ID and CD (i.e.,
the ZF of (27)), i.e. (see also (28) and subsequent comments):

ν2
1ρeq =

σ2
1ν

2
1 ‖ s1,⊥ ‖4

MN0 ‖ s1,⊥ ‖2
=

ν2
1σ

2
1

MN0(S
†S)−1

1,1

' ε1ν1ρ1 (51)

Thus, in terms of cumulated signal-to-noise ratio and for
large N , ID seems to be preferable to CD, even though a
global superiority cannot be claimed due to the different forms
assumed by the respective false-alarm and miss probabilities.

So far no criterion has been given to select the decision
threshold τ1. Notice, however, that the consistency of the
estimates (17) and (18) allows devising the asymptoticallyop-
timum thresholds (those achieving minimum error probability
for largeN ) from (19) and (20) in the form

τ2
1,CD = N(1 − ε0)

[
ε1τ

2
A[N(1 − ε0)ε1 + (1 − ε1)]

+ 2N0(S
†S)−1

1,1

]
(52)

τ2
1,ID = N(1 − ε0)

[
τ2
Aε1 + 2N0(S

†S)−1
1,1

]
(53)

For short discovery sessions, and under known activity factors
of nodes to be discovered, optimum detection thresholds can
be obtained by evaluating numerically the unconditional error
probability, and then determining the points where it has a
minimum.

V. RESULTS

We consider here a fully loaded network withK + 1 =
7, each node being assigned a length-7 m-sequence. As in
previous section, we assume that node0 has to decide on
the proximity of node1. Figure 2 assumes SNR1 , σ2

1/N0 =
0 dB,N = 100, a power-controlled scenario wherein all nodes
are received with the same average power, uniform activity
factor (εk = ε = 0.5), and an activity threshold equal to
the median of the fading amplitude distribution, i.e., suchthat
P(|α1| > τA) = 0.5. The figure represents the pairPM ,
PF for the various receivers examined so far. Interestingly,
“conventional” MF [12] suffers from the presence of the other
nodes even in this rather benign situation, while MMOE, ZF
and CD take advantage of their asymptotic efficiency.

The reliability of the asymptotic approximation for long
discovery sessions can be assessed through figures 3-4 for the
CD, and through figures 5-6 for the ID, which refer to the
same scenario as in Fig. 2.

The curves of these figures represent

• The unconditional false alarm and miss probabili-
ties obtained by simulation.
• The same pair obtained by a semi-analytical
method, i.e., by estimating the averages of their
conditional counterparts.
• The asymptotic approximation.

From the plots, it is evident that the asymptotic approximation
tends to overestimate the performances in the interesting
region of low error probabilities, while coming closer and
closer to the true performance asN increases: notice that the
approximation is extremely tight forN = 500, a realistic value
indeed in real applications, which, forε0 = 0.5, corresponds to
M ' 250. However, it should be kept in mind that, for larger
activity factors of the discovering node, the minimum value
of N for the asymptotic behavior to be reached inevitably
increases.

Fig. 7 is aimed at comparing CD and ID. It represents the
error probability versus the signal-to-noise ratio SNR1 using
the optimal thresholds for both receivers, and assuming again
ε = 0.5, N = 500, andτA as before. It is interesting to notice
that CD outperforms ID for small signal-to-noise ratios, while
ID is preferable for medium-to-large values of SNR1.

VI. CONCLUSIONS

We have examined the problem of discovery which nodes
are neighbors in a wireless network operating over a fading
channel. The optimum Bayesian decision rule has been de-
rived, showing that its complexity is practically prohibitive.
Two suboptimum neighbor-discovery algorithms have been
introduced, based on standard techniques of coherent and
incoherent integration. We show how coherent integration



may be viewed as a particular case of a family of algorithm
akin to Linear Neighbor Discovery Tests (LNDT). Theoretical
analysis allows one to understand the design of a system em-
ploying such algorithms according to constraints on error rate,
signal-to-noise ratio and discovery session duration. Finally,
algorithm optimization was considered, and formulas were
derived for asymptotical optimum threshold.
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Fig. 2. Performance of various ND algorithms under perfect power control,
2σ2

1 = 2N0 = 1 (SNR1=0 dB),N = 100, fully-loaded network.
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Fig. 3. Performance of the CD for2σ2
1 = 2N0 = 1 (SNR1=0 dB),N = 100
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Fig. 4. Performance of the CD for2σ2
1 = 2N0 = 1 (SNR1=0 dB),N = 500
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Fig. 5. Performance of the ID for2σ2
1 = 2N0 = 1 (SNR1=0 dB),N = 100.
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Fig. 6. Performance of the ID for2σ2
1 = 2N0 = 1 (SNR1=0 dB),N = 500.
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Fig. 7. Global comparison between CD and ID,N = 500, ε = 0.5, 2σ2
1 = 1.


