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Abstract— In this paper, analysis on undetected error prob-
ability of ensembles of m × n binary matricies is presented.
Two ensembles are considered: One is an ensemble of dense
matrices and another is an ensemble of sparse matrices. The
main contributions of this work are (i) derivation of the error
exponent of average undetected error probability and (ii) closed
form expressions of the variance of undetected error probability.
It is shown that the behavior of the exponent for a sparse
ensemble is fairly different from that for a dense ensemble. The
analysis for the sparse ensemble indicates the error detection
performance achievable with time complexity O(n). The variance
of undetected error probability leads to a concentration result.
Furthermore, as a byproduct of the proof of the variance
formulas, simple covariance formulas of the weight distribution
have been derived.

I. INTRODUCTION

The random coding is extremely powerful technique to
show the existence of a code satisfying certain properties. It
has been used for proving direct part (achievability) of many
types of coding theorems. In recent days, the idea of random
coding is becoming more important as well from the practical
point of view. An LDPC (Low-density parity-check) code can
be constructed by choosing a parity check matrix from a sparse
matrix ensemble. Thus, there are growing interests in randomly
generated codes.

One of the largest problems for such a randomly generated
code is that it is difficult to evaluate properties or performance
of a randomly generated code such as minimum distance,
weight distribution, ML decoding performance, etc.. To over-
come this problem, we can take a probabilistic approach. In
such an approach, an ensemble of parity check matrices is
firstly assumed: i.e., probability is assigned to each matrix in
the ensemble. In such a case, a property of a matrix (e.g.,
minimum distance, weight distributions) can be regarded as
a random variable. It is natural to consider statistics of the
random variable such as mean, variance, higher moments and
covariance. In some cases, we can show that a property is
strongly concentrated to its expectation. Such a concentration
result justifies the use of the probabilistic approach.

Recent advance of analysis on average weight distributions
of LDPC codes, such as Litsyn and Shevelev [3][4], Burshtein
and Miller [5] Richardson and Urbanke [8] shows that the
probabilistic approach is useful to investigate typical properties
of codes and matrices, which are not easy to obtain from an

instance. Furthermore, the second moment analysis on weight
distribution of LDPC codes [6][7] can be utilized to prove
some concentration results on weight distributions.

To evaluate the error detection probability of a given code
(or given parity check matrix) is a classical problem in coding
theory [2] and some results on this topic have been derived
from the view point of the probabilistic approach. For example,
the inequality for a linear code ensemble, PU < 2−m, has
been long known where PU is the undetected error probability
and m is the number of rows of a parity check matrix. Since
the undetected error probability can be expressed as a linear
combination of weight distribution of a code, there are natural
connection between expectation of weight distribution and
expectation of undetected error probability.

In this paper, analysis on undetected error probability of en-
sembles of m×n binary matrices is presented. Two ensembles
are considered: One is an ensemble of dense matrices, called
a random ensemble, and another is an ensemble of sparse
matrices, called a sparse matrix ensemble. An error detection
scheme is a crucial part of a feedback error correction scheme
such as ARQ. Detailed knowledge on error detection perfor-
mance of a matrix ensemble would be useful for performance
assessment for a feedback error correction scheme.

The contents of this paper are as follows: Firstly, we
will focus on the error exponent of average undetected error
probability. It will be shown that the asymptotic growth rate
of the weight distribution determines the exponent. Then, the
variance of undetected error probability will be discussed.
To derive the variance, we need to know the covariance of
the weight distribution. Simple covariance formulas for the
random ensemble and the sparse matrix ensemble are derived
based on a combinatorial approach.

II. AVERAGE UNDETECTED ERROR PROBABILITY

In this section, ensemble average of undetected error prob-
ability of a given matrix ensemble is discussed.

A. Notations

For a given m × n(m, n ≥ 1) binary parity check matrix
H , let C(H) be the binary linear code of length n defined by
H , namely,

C(H)
4
= {x ∈ Fn

2 : Hxt = 0}, (1)



where F2 is the Galois field with two elements {0, 1} (the
addition over F2 is denoted by ⊕). In this paper, a boldface
letter, like x, denotes a binary row vector.

Throughout the paper, a binary symmetric channel (BSC)
with the crossover probability ε (0 < ε < 1/2) is assumed.
We assume the conventional scenario for error detection. A
transmitter send a codeword x ∈ C(H) to a receiver via BSC
with crossover probability ε. The receiver obtain a received
word y = x ⊕ et, where e denotes an error vector. The
receiver firstly computes the syndrome s = Hyt and then
check whether s = 0 holds or not.

An undetected error event occurs when Het = 0 and e 6= 0.
This means that the error vector e ∈ C(e 6= x) causes an
undetected error event. Thus, the undetected error probability
PU (H) can be expressed as

PU (H) =
∑

e∈C(H),e 6=0
εw(e)(1 − ε)n−w(e) (2)

where w(x) denotes the Hamming weight of vector x. The
above equation can be rewritten as

PU (H) =
n∑

w=1

Aw(H)εw(1 − ε)n−w, (3)

where Aw(H) is defined by

Aw(H)
4
=

∑
x∈Z(n,w)

I[Hxt = 0]. (4)

The set {Aw(H)}n
w=0 is usually called the weight distribution

of C(H). The notation Z(n,w) denotes the set of n-tuples with
weight w. The notation I[condition] is the indicator function
such that I[condition] = 1 if condition is true; otherwise, it
gives 0.

Suppose that G is a set of binary m × n matrices (m,n ≥
1). Note that we allow that G contains some matrices with
same configuration. Such matrices should be distinguished
as distinct matrices. A matrix H in G is associated with
probability P (H). Thus, G can be considered as an ensemble
of binary matrices. Let f(H) be a real-valued function which
depends on H ∈ G. The expectation of f(H) with respect to
the ensemble G is defined by

EG [f(H)]
4
=

∑
H∈G

P (H)f(H). (5)

The average weight distribution of a given ensemble G is given
by EG [Aw(H)]. This quantity is very useful for performance
analysis of binary linear codes including the undetected error
probability.

B. Binary matrix ensembles

Two ensembles are mainly considered in this paper: the
random ensemble and the sparse matrix ensemble. In this
subsection, the definition and the average weight distribution
of both ensembles are briefly reviewed.

1) Random ensemble: The random ensemble Rm,n in-
cludes all the binary m × n matrices (m,n ≥ 1). From this
definition, it is evident that the size of Rm,n is 2mn. For each
matrix in Rm,n, equal probability P (H) = 1/2mn is assigned.
It is well known [1] that the average weight distribution of
Rm,n is given by

ERm,n [Aw(H)] = 2−m

(
n

w

)
(6)

for w ∈ [0, n]. The notation [a, b] means the set of consecutive
integers from a to b. Because a typical instance of this
ensemble contains O(n2) ones, the ensemble can be regarded
as an ensemble of dense matrices.

2) Sparse matrix ensemble: The sparse matrix ensemble
Tm,n,k contains all the binary m×n matrices (m,n ≥ 1). The
elements in a m×n binary matrix included in the sparse matrix
ensemble are regarded as i.i.d. binary random variables such
that an element takes the value 1 with probability p

4
= k/n.

The parameter k(0 < k ≤ n/2) is a positive real number
which represents the average number of ones for each row. In
other words, a matrix H ∈ Tm,n,k can be considered as an
output from the Bernoulli source such that symbol 1 occurs
with probability p.

From the above definition, it is clear that a matrix H ∈
Tm,n,k is associated with the probability

P (H) = pw̄(H)(1 − p)mn−w̄(H), (7)

where w̄(H) is the number of ones in H (i.e., Hamming
weight of H). The average weight distribution of sparse matrix
ensemble is given by

ETm,n,k
[Aw(H)] =

(
1 + xw

2

)m (
n

w

)
(8)

for w ∈ [0, 1n] where x
4
= 1 − 2p. The average weight

distribution of this ensemble was firstly discussed by Litsyn
and Shevelev [3]. If k is a constant (i.e., not a function of n), a
typical matrix in the ensemble contains O(n) ones. Thus, this
ensemble can be considered as an ensemble of sparse matrices.

C. Average undetected error probability of an ensemble

For a given m×n matrix H , the evaluation of the undetected
error probability PU (H) is computationally difficult in general
because we need to know the weight distribution of C(H) for
such evaluation. On the other hand, in some cases, we can
evaluate the average of PU (H) for a given ensemble. Such a
average probability is useful to estimate the undetected error
probability of a matrix which belongs to the ensemble.

Taking ensemble average of the undetected error probability
over a given ensemble G, we have

EG [PU (H)] = EG

[
n∑

w=1

Aw(H)εw(1 − ε)n−w

]

=
n∑

w=1

EG [Aw(H)]εw(1 − ε)n−w. (9)



In the above equations, H can be regarded as a random
variable. From this equation, it is evident that the average
of PU (H) can be evaluated if we know the average weight
distribution of the ensemble. For example, in the case of
the random ensemble Rm,n, the average undetected error
probability has the simple closed form.

Lemma 1: The average undetected error probability of ran-
dom ensemble Rm,n is given by

ERm,n [PU (H)] = 2−m(1 − (1 − ε)n). (10)

(Proof) Combining (6) and (9), we have

ERm,n [PU (H)] =
n∑

w=1

ERm,n [Aw(H)]εw(1 − ε)n−w

=
n∑

w=1

2−m

(
n

w

)
εw(1 − ε)n−w

= 2−m(1 − (1 − ε)n). (11)

The last equality is due to the binomial theorem.

D. Error exponent of undetected error probability

For a given sequence of (1 − R)n × n matrix ensembles
(n = 1, 2, 3, . . . , ), the average undetected error probability is
usually exponentially decreasing function of n, where R is a
real number satisfying 0 < R < 1 (called design rate). Thus,
the exponent of the undetected error probability has prime
importance to grasp the asymptotic behavior of the undetected
error probability.

1) Definition of error exponent: Let {Gn}n>0 be a series
of ensembles such that Gn consists of (1 − R)n × n binary
matrices. In order to see the asymptotic behavior of the
undetected error probability of this sequence of ensembles, it
is reasonable to define the error exponent of undetected error
probability in the following way.

Definition 1: The asymptotic error exponent of the average
undetected error probability for a series of ensembles {Gn}n>0

is defined by

TGn

4
= lim

n→∞

1
n

log2 EGn [PU ] (12)

if the limit exists.
Note that, from here, dependency to H is often omitted as PU

instead of PU (H) if there are no fear of confusion.
The following example shows the exponent of the random

ensemble.
Example 1: Consider the series of random ensembles

{Rn,(1−R)n}n>0. It is easy to evaluate TR(1−R)n,n
:

TR(1−R)n,n
= lim

n→∞

1
n

log2 ER(1−R)n,n
[PU ]

= lim
n→∞

1
n

log2 2−(1−R)n(1 − (1 − ε)n)

= −(1 − R). (13)

This equality implies that the average undetected error proba-
bility of the sequence of random ensembles behaves like

ER(1−R)n,n
[PU ] ' 2−n(1−R) (14)

if n is sufficiently large. Note that the exponent −(1 − R) is
independent from the crossover probability ε.

2) Error exponent and asymptotic growth rate: The asymp-
totic growth rate of the average weight distribution (for
simplicity, it is abbreviated as asymptotic growth rate), which
is a basis of the derivation of the error exponent, is defined as
follows.

Definition 2: Suppose that a series of ensembles {Gn}n>0

is given. If

lim
n→∞

1
n

log2 EGn [A`n]

exists for 0 ≤ ` ≤ 1, then we define the asymptotic growth
rate f(`) by

f(`)
4
= lim

n→∞

1
n

log2 EGn [A`n]. (15)

The parameter ` is called normalized weight.
From this definition, it is obvious that

EGn [A`n] = 2n(f(`)+o(1)) (16)

holds. The notation o(1) represents the term which converges
to 0 as n goes to infinity. The asymptotic growth rate of some
ensembles of binary matrices can be found in [3][4][5].

The next theorem gives the error exponent of the undetected
error probability for a series of ensembles {Gn}n>0.

Theorem 1: The error exponent of {Gn}n>0 is given by

TGn = sup
0<`≤1

[f(`) + ` log2 ε + (1 − `) log2(1 − ε)], (17)

where f(`) is the asymptotic growth rate of {Gn}n>0.
(Proof) Based on the definition of asymptotic growth rate, we
can rewrite TGn in the following form:

TGn = lim
n→∞

1
n

log2 EGn [PU ]

= lim
n→∞

1
n

log2

n∑
w=1

EGn [Aw]εw(1 − ε)n−w

= lim
n→∞

1
n

log2

n∑
w=1

2n(f( w
n )+K(ε,n,w)+o(1)),

where K(ε, n, w) is defined by

K(ε, n, w)
4
=

w

n
log2 ε +

(
1 − w

n

)
log2(1 − ε). (18)

Using a conventional technique for bounding summation, we
have the following upper bound on TGn :

TGn = lim
n→∞

1
n

log2

n∑
w=1

2n(f( w
n )+K(ε,n,w)+o(1))

≤ lim
n→∞

1
n

log2 n
n

max
w=1

2n(f( w
n )+K(ε,n,w)+o(1))

= lim
n→∞

n
max
w=1

1
n

log2 2n(f( w
n )+K(ε,n,w)+o(1))

= lim
n→∞

n
max
w=1

[
f

(w

n

)
+ K(ε, n, w) + o(1)

]
= sup

0<`≤1
[f(`) + ` log2 ε + (1 − `) log2(1 − ε)] . (19)



We can also show that TGn is greater than or equal to the
right hand side of the above inequality (19) in a similar
manner. This means that the right hand side of the inequality
is asymptotically equal to TGn .

The next example discuss the case of random ensemble.
Example 2: Let us consider the series of the random ensem-

ble {R(1−R)n,n}n>0 again. This ensembles has the asymptotic
growth rate f(`) = h(`) − (1 − R). The function h(x) is the
binary entropy function defined by

h(x)
4
= −x log2 x − (1 − x) log2(1 − x). (20)

In this case, due to Theorem 1, we have

TR(1−R)n,n
= sup

0<`≤1
[h(`)−(1−R)+` log2 ε+(1−`) log2(1−ε)].

(21)
Let

D`,ε
4
= ` log2

(
`

ε

)
+ (1 − `) log2

(
1 − `

1 − ε

)
. (22)

By using D`,ε, we can rewrite (21) as follows:

TR(1−R)n,n
= sup

0<`≤1
[−(1 − R) − D`,ε]. (23)

Since D`,ε can be considered as Kullback-Libler divergence
between two probability distributions (ε, 1− ε) and (`, 1− `),
D`,ε is always non-negative and D`,ε = 0 holds if and only if
` = ε. Thus, we get

sup
0<`≤1

[−(1 − R) − D`,ε] = −(1 − R), (24)

which is identical to the exponent obtained in (13).
Let g

(rnd)
ε (`)

4
= h(`)−(1−R)+` log2 ε+(1−`) log2(1−ε).

Figure 1 presents the behavior of g
(rnd)
ε (`) when R = 0.5.

This figure indicates that the maximum (sup0<`≤1 g
(rnd)
ε (`) =

−0.5) is certainly attained at ` = ε.
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Fig. 1. The curves of gε(`) for random ensembles with R = 0.5

E. Error exponent of sparse matrix ensemble

The asymptotic growth rate of the sparse matrix ensemble
Tm,n,k [3] with a constant k and design rate R is given by

f(`) = h(`) + (1 − R) log2

(
1 + e−2k`

2

)
. (25)

The error exponent of this ensemble shows quite different
behavior from that of random ensemble.

Example 3: Consider the sparse matrix ensemble with pa-
rameters R = 0.5 and k = 20. Let

g(spm)
ε (`)

4
= H(`) + (1 − R) log2

(
1 + e−2k`

2

)
+ ` log2 ε + (1 − `) log2(1 − ε). (26)

Figure 2 includes the curves of g
(spm)
ε (`) where ε =

0.1, 0.2, 0.4. We can see that g
(spm)
ε (`) is no more a concave

function like g
(rnd)
ε (`) of random ensemble. The shape of the

curve of g
(spm)
ε (`) depends on the crossover probability ε. For

large ε, gε(`) takes the largest value around ` = ε. On the other
hand, for small ε, g

(spm)
ε (`) have supremum at ε = 0.

Figure 3 presents the error exponent of sparse matrix
ensemble with parameters R = 0.3, 0.5, 0.7, 0.9 and k = 20.
An an example, consider the exponent for R = 0.5. In the
regime where ε is smaller than (around) 0.3, the error exponent
is a monotonically decreasing function of ε.
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Fig. 2. The curves of g
(spm)
ε (`) for sparse matrix ensembles

The example suggest that a sparse ensemble has less
powerful error detection performance than that of a dense
ensemble (such as random ensemble) in terms of the error
exponent. However, the crossover probability is sufficiently
large, the difference in exponent of sparse and dense ensembles
is negligble. For example, the exponent of the sparse matrix
ensemble in Fig. 3 is almost equal to that of random ensemble
when ε is larger than (around) 0.3.

The above properties on the error exponents of sparse matrix
ensemble can be explained by its average weight distributions
(or asymptotic growth rate). Figure 4 presents the asymptotic
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growth rates of random ensemble and sparse matrix ensemble.
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The weight of typical error vectors is very close to εn
when n is sufficiently large. If ε is high such as ε = 0.4,
the average weight distribution around w = 0.4n, namely
EG [A0.4n], dominates the undetected error probability. In such
a range, the difference of the average weight distribution
between random ensemble and sparse matrix ensemble is very
small. On the other hand, if the crossover probability is small,
weight distributions of low weight become the most influential
parameter. The difference in the average weight distributions
of small weight results in the difference in the error exponent.

Note that time complexity of error detection operation
(multiplication of received vector and a parity check matrix)
takes O(n2)-time for a typical instance of random ensemble
and O(n)-time for that of sparse matrix ensemble. The linear
time error detection with a sparse matrix achieves almost
same error detection performance of a dense matrix if ε is
sufficiently large.

The next lemma is useful to grasp the behavior of error
exponent without detailed numerical optimization.

Lemma 2: If f(`) has the form f(`) = h(`) + α(`), then
the following lower bound on TGn holds:

TGn
≥ max {α(0) + log2(1 − ε), α(ε)} . (27)

(Proof) Let

gε(`)
4
= f(`) + ` log2 ε + (1 − `) log2(1 − ε). (28)

It is obvious that

sup
0<`≤1

[f(`)+` log2 ε+(1−`) log2(1−ε)] ≥ max{gε(0), gε(ε)}

(29)
holds. Since h(0) = 0, we have

g(0) = α(0) + log2(1 − ε). (30)

On the other hand, g(ε) is obtained in such a way:

g(ε) = h(ε) + α(ε) + ε log2 ε + (1 − ε) log2(1 − ε)
= h(ε) + α(ε) − H(ε)
= α(ε). (31)

Combining Theorem 1 and these results, we get the claim of
the lemma.

III. VARIANCE OF UNDETECTED ERROR PROBABILITY

In this section, we first discuss variance of undetected error
probability for random ensemble. We then discuss the case of
sparse matrix ensemble.

A. Variance of undetected error probability: random ensemble

1) Covariance formula: In the previous section, we have
seen that the average weight distribution plays an important
role in the derivation of average undetected error probability.
Similarly, we need covariance of weight distribution to handle
the variance of undetected error probability.

Definition 3: For 0 ≤ w1, w2 ≤ n and a given ensemble G,
covariance of weight distribution is defined by

CovG(Aw1 , Aw2)
4
= EG [Aw1Aw2 ]−EG [Aw1 ]EG [Aw2 ]. (32)

The next lemma is a basis of the derivation of variance of
the undetected error probability for random ensemble.

Lemma 3: For random ensemble Rm,n, covariance of Aw1

and Aw2 is given by

CovRm,n(Aw1 , Aw2)

=
{

0, 0 < w1, w2 ≤ n,w1 6= w2

(1 − 2−m)2−m
(

n
w

)
, 0 < w1 = w2 ≤ n.

(33)

(Proof) See the forthcoming full paper version.
Remark 1: The variance of weight distribution, namely

CovRm,n(Aw, Aw) = (1 − 2−m)2−m
(

n
w

)
, has already shown

in [8]. Thus, the new contribution of this lemma is the part
CovRm,n(Aw1 , Aw2) = 0 when w1 6= w2.



Remark 2: Covariance of weight distribution for a given
ensemble G is useful not only for evaluation of variance of
PU . Let X be a random variable represented by

X =
n∑

w=0

α(w)Aw, (34)

where α(w) is a real-valued function of w. The covariance
of weight distribution is required for evaluation of variance of
X , which is given by

σ2
X =

n∑
w1=0

n∑
w2=0

CovG(Aw1 , Aw2)α(w1)α(w2). (35)

A specialized version (the case where X = PU ) of this
equation will be derived in the proof of Theorem 2. For
example, if a(w) = 1(w ∈ [0, n]), X denotes the number of
codewords in C(H). Based on the covariance, we can derive
variance of number of codewords for a given ensemble G.

2) Variance of undetected error probability: The variance
of the undetected error probability PU is given by

σ2
Rm,n

4
= ERm,n

[(PU − µ)2]. (36)

The next theorem gives a closed formula of the variance
σ2
Rm,n

.
Theorem 2: For random ensemble Rm,n, variance of the

undetected error probability PU is given by

σ2
Rm,n

= (1 − 2−m)2−m
(
(ε2 + (1 − ε)2)n − (1 − ε)2n

)
.

(37)
(Proof) We first consider the second moment of the undetected
error probability:

ERm,n [P 2
U ]

=ERm,n

(
n∑

w=1

Awεw(1 − ε)n−w

)2


=ERm,n

[
n∑

w1=1

n∑
w2=1

Aw1Aw2ε
w1+w2(1 − ε)2n−w1−w2

]

=
n∑

w1=1

n∑
w2=1

ERm,n [Aw1Aw2 ] ε
w1+w2(1 − ε)2n−w1−w2.(38)

The squared average undetected error probability can be
expressed as

ERm,n [PU ]2 =ERm,n

[(
n∑

w=1

Awεw(1 − ε)n−w

)]2

=
n∑

w1=1

n∑
w2=1

ERm,n [Aw1 ]ERm,n [Aw2 ]

× εw1+w2(1 − ε)2n−w1−w2. (39)

Combining these equalities and the covariance of the weight
distribution (Lemma 3), variance of undetected error probabil-

ity σ2
Rm,n

can be obtained in the following way:

σ2
Rm,n

=ERm,n [P 2
U ] − ERm,n [PU ]2

=
n∑

w1=1

n∑
w2=1

CovRm,n [Aw1 , Aw2 ] ε
w1+w2(1 − ε)2n−w1−w2

=
n∑

w=1

CovRm,n
[Aw, Aw] ε2w(1 − ε)2n−2w

=
n∑

w=1

(1 − 2−m)2−m

(
n

w

)
ε2w(1 − ε)2n−2w. (40)

The last equalities are due to Lemma 3. We can further
simplify the expression using the binomial theorem in the
following way:

σ2
Rm,n

= (1 − 2−m)2−m
n∑

w=0

(
n

w

)
(ε2)w((1 − ε)2)n−w

− (1 − 2−m)2−m(1 − ε)2n

= (1 − 2−m)2−m

×
(
(ε2 + (1 − ε)2)n − (1 − ε)2n

)
. (41)

The last equality is the claim of the theorem.
Example 4: Table I includes the weight distributions and

undetected error probabilities for the 4-instances in R1,2. Since

TABLE I
WEIGHT DISTRIBUTIONS AND UNDETECTED ERROR PROBABILITIES

H C(H) A1(H) A2(H) PU (H)
(0,0) {00, 01, 10, 11} 2 1 2ε − ε2

(0,1) {00, 10} 1 0 ε − ε2

(1,0) {00, 01} 1 0 ε − ε2

(1,1) {00, 11} 0 1 ε2

equal probability is assigned to each matrix, the average of PU

can be written as

ER1,2 [PU ] =
(2ε − ε2) + 2(ε − ε2) + ε2

4

= ε − 1
2
ε2. (42)

On the other hand, from Lemma 1, we have

ER1,2 [PU ] = 2−1(1 − (1 − ε)2)

= ε − 1
2
ε2, (43)

which is identical to (42).
We then consider the variance. From Table I, it is easy to

compute the second moment of PU in such a way:

ER1,2 [P
2
U ] =

(2ε − ε2)2 + 2(ε − ε2)2 + (ε2)2

4

=
3
2
ε2 − 2ε3 + ε4. (44)



Subtracting the squared first moment from the second moment,
we get the variance:

σ2
R1,2

= ER1,2 [P
2
U ] − ER1,2 [PU ]2

=
3
2
ε2 − 2ε3 + ε4 −

(
ε − 1

2
ε2

)2

=
1
2
ε2 − ε3 +

3
4
ε4. (45)

Note that Theorem 2 gives

σ2
R1,2

= (1 − 2−1)2−1
(
(ε2 + (1 − ε)2)2 − (1 − ε)4

)
=

1
2
ε2 − ε3 +

3
4
ε4, (46)

which is exactly the same result as (45).
3) Concentration to average: The variance derived Theo-

rem 2 can be used to show the following concentration result.
Corollary 1: The ratio of PU and ERm,n [PU ] converges to

1 in probability, namely,

PU

ERm,n [PU ]
→ 1 in probability (47)

as n goes to infinity if ε(0 < ε < 1/2) satisfies

1 − R + log2(ε
2 + (1 − ε)2) < 0. (48)

(Proof) Let µ
4
= ERm,n [PU ] and σ

4
= σRm,n . From Chebyshev

inequality, we have

Pr

[
PU

µ
∈ (1 − α, 1 + α)

]
≤ σ2

α2µ2
, (49)

where α is a positive real number. If the equation

lim
n→∞

σ2

µ2
= 0 (50)

holds, then the right hand side of inequality (49) converges to
0 as n goes to infinity regardless of choice of α. This means
PU/µ converges to 1 in probability.

We now are going to discuss the asymptotic behavior of
the ratio σ2/µ2. The ratio can be rewritten into the following
form:

σ2

µ2
=

(1 − 2−m)2−m
(
(ε2 + (1 − ε)2)n − (1 − ε)2n

)
2−2m(1 − (1 − ε)n)2

=
(2m − 1)

(
(ε2 + (1 − ε)2)n − (1 − ε)2n

)
(1 − (1 − ε)n)2

≤ 2(1−R)n(ε2 + (1 − ε)2)n

(1 + o(1))2
. (51)

From the above inequatliy, we get

lim
n→∞

σ2

µ2
≤ lim

n→∞
2(1−R)n(ε2 + (1 − ε)2)n (52)

= lim
n→∞

2n(1−R+log2(ε
2+(1−ε)2)). (53)

We can see that σ2/µ2 converges to zero if the exponent 1−
R + log2(ε2 + (1 − ε)2) takes a negative value.

Let ε∗ be the root of the equation

1 − R + log2(ε
∗2 + (1 − ε∗)2) = 0. (54)

Table II presents some values of ε∗. When ε > ε∗, we have
1 − R + log2(ε∗2 + (1 − ε∗)2) < 0. In such a region, PU

concentrates its average as n grows to infinity.

TABLE II
ROOTS OF 1 − R + log2(ε∗2 + (1 − ε∗)2) = 0

R ε∗

0.1 0.366047
0.2 0.307193
0.3 0.259613
0.4 0.217375
0.5 0.178203
0.6 0.140933
0.7 0.104872
0.8 0.069564
0.9 0.034687

B. Variance of undetected error probability: sparse matrix
ensemble

1) Covariance formula: The covariance of the weight
distribution for the sparse matrix ensemble is given in the
following lemma.

Lemma 4: The covariance of weight distribution for sparse
matrix ensemble Tm,n,k is given by

CovTm,n,k
(Aw1 , Aw2) = ψ(w1, w2), (55)

for 1 ≤ w1, w2 ≤ n. The function ψ(w1, w2) is defined by

ψ(w1, w2)
4
=

(
1 + xw1

2

)m (
1 + xw2

2

)m

×
w1∑
j=1

(
n

w1

)(
w1

j

)(
n − w1

w2 − j

) (
ξm
w1,w2,j − 1

)
, (56)

if 1 ≤ w1 ≤ w2 ≤ n. If 1 ≤ w2 < w1 ≤ n, ψ(w1, w2) is
defined by

ψ(w1, w2)
4
= ψ(w2, w1). (57)

The symbol ξw1,w2,j represents

ξw1,w2,j
4
= 1 − xw1+w2 − xw1+w2−2j

(1 + xw1)(1 + xw2)
(58)

for 1 ≤ w1 ≤ w2 ≤ n, 0 ≤ j ≤ w1.
(Proof) See the forthcoming full paper version.

Remark 3: When k = n/2, sparse matrix ensemble coin-
cides with random ensemble because p = 1/2 means P (H) =
1/2mn for any H . We discuss this case here.

To simplify the discussion, we assume that 1 ≤ w1 ≤ w2 ≤
n. Let p = 1/2 (i.e., k = n/2). In such a case, we have
x = 1 − 2p = 0 and ξw1,w2,j takes the following value:

ξw1,w2,j =

 1 w1 < w2

1 w1 = w2, j < w1

2 w1 = w2, j = w1.
(59)



Substituting x = 0 into (56), we get

Cov(Aw1 , Aw2) =
{

0, 1 ≤ w1 < w2 ≤ n
2−2m

(
n
w

)
(2m − 1), 1 ≤ w1 = w2 ≤ n.

(60)
These equations coincide with the covariance of random
ensemble given in Lemma 3.

2) Variance of undetected error probability: The variance
of undetected error probability is a straightforward conse-
quence of Lemma 4.

Theorem 3: The variance of undetected error probability of
sparse matrix ensemble, σ2

Tm,n,k
is given by

σ2
Tm,n,k

=
n∑

w1=1

n∑
w2=1

ψ(w1, w2)εw1+w2(1 − ε)2n−w1−w2 .

(61)
(Proof) From Lemma 4, the claim of the lemma follows in the
following way:

σ2
Tm,n,k

=
n∑

w1=1

n∑
w2=1

CovTm,n,k
(Aw1 , Aw2)ε

w1+w2(1 − ε)2n−w1−w2

=
n∑

w1=1

n∑
w2=1

ψ(w1, w2)εw1+w2(1 − ε)2n−w1−w2 . (62)

Example 5: Let us consider the sparse matrix ensemble
with m = 1, n = 2 and k = 1/2(p = 1/4). From the
definition of sparse matrix ensemble, the following probability
is assigned for each matrix: P ((0, 0)) = 9/16, P ((0, 1)) =
3/16, P ((1, 0)) = 3/16, P ((1, 1)) = 1/16. Combining the
undetected error probabilities presented in Table I and the
above probability assignment, we immediately have the first
and second moment:

ET1,2,1/2 [PU ] =
2
3
ε − 7

8
ε2 (63)

ET1,2,1/2 [P
2
U ] =

21
8

ε2 − 3
8
ε3 + ε4. (64)

From these moments, the variance can be derived:

σ2
T1,2,1/2

= ET1,2,1/2 [P
2
U ] − ET1,2,1/2 [PU ]2

=
3
8
ε2 − 3

8
ε3 +

15
64

ε4. (65)

We then consider another route to derive variance. From the
definition of ψ in (56), we have

ψ(1, 1) = 3/8 (66)
ψ(1, 2) = ψ(2, 1) = 3/16 (67)
ψ(2, 2) = 15/64. (68)

From Theorem 3, we obtain the variance

σ2
T1,2,1/2

=
2∑

w1=1

2∑
w2=1

ψ(w1, w2)εw1+w2(1 − ε)4−w1−w2

= ψ(1, 1)ε2(1 − ε)2 + ψ(1, 2)ε3(1 − ε)1

+ ψ(2, 1)ε3(1 − ε)1 + ψ(2, 2)ε4(1 − ε)0

= (3/8)ε2(1 − ε)2 + (3/16)ε3(1 − ε)
+ (3/16)ε3(1 − ε) + (15/64)ε4

=
3
8
ε2 − 3

8
ε3 +

15
64

ε4,

which is identical to (65).
The next example would help us to understand how mean

and variance of PU behave.
Example 6: We here consider random ensemble with m =

20, n = 40 and sparse matrix ensemble with m = 20, n =
40, k = 5. Figure 5 presents average (mean) undetected
error probabilities of two ensembles. It can be observed that
the average undetected error probability of random ensemble
monotonically decreases as ε gets small. On the other hand,
the curve for the sparse matrix ensemble has peak around
ε = 0.025. Figure 6 shows variance of PU for the above
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two ensembles. Two curves have similar shape but variance of
the sparse ensemble is always larger than that of the random
ensemble.

3) Asymptotic behavior: We here discuss the asymptotic
behaviors of covariance of weight distribution and variance
of PU for sparse matrix ensemble. The following corollary
explains the asymptotic behavior of covariance of weight
distribution which is a consequence of Lemma 4.

Corollary 2: For 0 < `1 ≤ `2 ≤ 1, the equality

lim
n→∞

1
n

log2 ψ(`1n, `2n) = sup
0<κ≤`1

L(`1, `2, κ), (69)
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holds where L(`1, `2, κ) is defined by

L(`1, `2, κ)

= −2(1 − R) + h(`1) + h

(
κ

`1

)
+ h

(
`2 − κ

1 − `1

)
+ (1 − R) log2

(
1 + e−2k`1 + e−2k`2 + e−2k(`1+`2−2κ)

)
.

(Proof) Let us assume that 0 < w1 ≤ w2. In this case,
ψ(w1, w2) defined in (56) can be rewritten into the following
form:

ψ(w1, w2)

=
(

1 + xw1

2

)m (
1 + xw2

2

)m

×
w1∑
j=1

(
n

w1

)(
w1

j

)(
n − w1

w2 − j

)(
ξm
w1,w2,j − 1

)
= 2−2m

w1∑
j=1

(
n

w1

)(
w1

j

)(
n − w1

w2 − j

)
× (1 + xw1 + xw2 + xw1+w2−2j)m(1 − δ), (70)

where δ is defined by

δ
4
=

(
1 + xw1 + xw2 + xw1+w2

1 + xw1 + xw2 + xw1+w2−2j

)m

. (71)

In the above derivation, the following identity was used:

ξw1,w2,j

= 1 − xw1+w2 − xw1+w2−2j

(1 + xw1)(1 + xw2)

=
(1 + xw1)(1 + xw2) − xw1+w2 + xw1+w2−2j

(1 + xw1)(1 + xw2)

=
1 + xw1 + xw2 + xw1+w2−2j

(1 + xw1)(1 + xw2)
. (72)

Note that
1 + xw1 + xw2 + xw1+w2

1 + xw1 + xw2 + xw1+w2−2j
< 1 (73)

holds when j > 0. This is because x = 1 − 2k/n < 1.
Letting w1 = `1n, w2 = `2n,m = (1−R)n and using (70)

we have an upper bound (1/n) log2 ψ(`1n, `2n):

1
n

log2 ψ(`1n, `2n)

≤ −2(1 − R) +
log2(`1n)

n

+
`1n
max
j=1

1
n

log2

((
n

`1n

)(
`1n

j

)(
n − `1n

`2n − j

))
+ (1 − R) log2(1 + x`1n + x`2n + x`1n+`2n−2j)

+
1
n

log2(1 − δ). (74)

It is obvious that the following equations hold:

lim
n→∞

log2(`1n)
n

= 0, (75)

lim
n→∞

1
n

log2

((
n

`1n

)(
`1n

j

)(
n − `1n

`2n − j

))
= h(`1) + h

(
κ

`1

)
+ h

(
`2 − κ

1 − `1

)
, (76)

where κ is a real number satisfying 0 < κ ≤ `1 and j = κn.
If k is a constant and 0 ≤ ` ≤ 1, the equation

lim
n→∞

(
1 − 2

(
k

n

))`n

= lim
n→∞

x`n

= e−2k`, (77)

holds [3] and it gives the following equality:

lim
n→∞

(1 − R) log2(1 + x`1n + x`2n + x`1n+`2n−2j)

= (1 − R)
× log2(1 + e−2k`1 + e−2k`2 + e−2k(`1+`2−2κ)). (78)

Finally, from inequality (73), we have

1
n

log2(1 − δ) = 0. (79)

Applying these equations to inequality (74), we get

lim
n→∞

1
n

log2 ψ(`1n, `2n) ≤ sup
0<κ≤`1

L(`1, `2, κ). (80)

On the other hand, in a similar way, we can prove the the
opposite direction inequality as well:

lim
n→∞

1
n

log2 ψ(`1n, `2n) ≥ sup
0<κ≤`1

L(`1, `2, κ). (81)

Combining these two inequalities, we obtain the claim of the
corollary.

We here extend the definition of L(`1, `2, κ) in order to
make it consistent with the definition of ψ(w1, w2):

L(`1, `2, κ)
4
= L(`2, `1, κ) (82)

if `1 > `2. The following corollary gives the asymptotic
growth rate of the σ2

T(1−R)n,n,k
.



Corollary 3: The asymptotic growth rate of the variance of
undetected error is given by

lim
n→∞

1
n

log2 σ2
T(1−R)n,n,k

= sup
0<`1≤1

sup
0<`2≤1

sup
0<κ≤`1

U(`1, `2, κ),

(83)
where U(`1, `2, κ) is given by

U(`1, `2, κ) = (`1 + `2) log2 ε + (2 − `1 − `2) log2(1 − ε)
+ L(`1, `2, κ). (84)

(Proof) Applying Corollary 2 to Theorem 3, we obtain

lim
n→∞

1
n

log2 σ2
Tm,n,k

= sup
0<`1≤1

sup
0<`2≤1

[ lim
n→∞

1
n

log2 ψ(`1n, `2n)

+ lim
n→∞

1
n

log2 ε`1n+`2n(1 − ε)2n−`1n−`2n

= sup
0<`1≤1

sup
0<`2≤1

[ sup
0κ≤`1

L(`1, `2, κ)

+ (`1 + `2) log2 ε + (2 − `1 − `2) log2(1 − ε)]. (85)
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