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Abstract— Following recent works on the rate region of the further improved by exploiting the inter-sequence correlation
quadratic Gaussian two-terminal source coding problem and (as done in the MPEG-2 stereo video coding standard [10]) in
limit-approaching code designs, this paper examines multiter- a joint encoding setup.

minal source codipg of two correlgted vide.o. sequences to save For MT vid di ith h th d t i
the sum rate over independent coding. Specifically, the first video or video coding, although the encoders cannot com
sequence is coded by H.264 and used at the join’[ decoder to faci|_mun|cate with each Other, the binocular correlation between
itate Wyner-Ziv coding of the second video sequence. An efficient the stereo pair can still be extracted from the 3D geometric
stereo matching algorithm based on loopy belief propagation is information of the cameras. This leads stereo matching
then adopted at the decoder to produce pixel-level disparity \yhjch js a fundamental problem in stereo vision, and has been
maps between the corresponding frames of the two decoded - L .
video sequences on the fly. Based on the disparity maps, sigeEXtensively studied in the past by many res_earchers._Assumlng
information for both motion vectors and motion-compensated Knowledge of the stereo camera configuration, classical stereo
residual frames of the second sequence are generated at thematching attempts to compute a disparity/depth map from a
decoder before Wyner-Ziv encoding. Preliminary results on stereo  stereo image pair.
V|de(_) sequences using H.264 in conjunction with LDPC c_odes for | general, stereo matching can be formulated as an op-
Slepian-Wolf coding of the motion vectors show savings in terms timization problem that minimizes the image dissimilarity
of the sum rate when compared to separate coding at the same . X " . .
video quality. energy, e.g., squared intensity difference, absolute intensity
difference, and shift absolute difference [11]. Boyketw al.
l. INTRODUCTION [12] and Kolmogorov and Zabih [13] presented efficient graph-

Multiterminal (MT) source coding [1] is gaining researctcut based stereo algorithms, which find a smooth disparity
interest lately due to its potential applications in distributechap that is consistent with the image intensities. Geggexl.
sensor networks and distributed multiview video coding. Th§t4] derived an occlusion process and a disparity field using
oretical limit of MT source coding of jointly Gaussian sourcedynamic programming. Based on Markov random fields, Sun
was given recently in [2] for the direct setting (with twoet al.[15] proposed a stereo algorithm using belief propagation
encoders) where the encoders directly observe the sourd®s$), which considers three coupled Markov random fields:
and in [3], [4] for the indirect/CEO setting where the encodeis smooth disparity field, a spatial line process, and a binary
observe independently corrupted versions of the same souerlusion process. Quantitative evaluations of different stereo
Practical MT code designs based on generalized coset codi®rithms in terms of “bad” pixel percentage (available at
were provided by Pradhan and Ramchandran in [5]. In earliettp://cat.middlebury.edu/stereo) showed that the BP based
works, we proposed a framework for practical MT sourcalgorithm [15] is among the most efficient.
coding based on Slepian-Wolf coded quantization [6], [7], According to the theory [2], a technique that integrates
which employs the optimal approach of vector quantizatidhe best stereo matching algorithm (that handles the binoc-
followed by Slepian-Wolf coding (SWC) [8]. However, theular redundancy) with the most efficient H.264 monocular
code designs in [5], [6], [7] are for ideal Gaussian sourcesdeo compression standard (that removes spatial and temporal
assuminga priori known correlation. When dealing withredundancies) is potentially the best solution for MT video
practical sources (e.g., video), correlation modeling is one odding. With the powerful H.264, one approach to MT video
the key issues in efficient MT video coding. In this workcoding is to use the disparity maps generated by the stereo
we focus on MT video code design for two correlated vidematching algorithm to exploit the redundancy in each part of
sequences captured by calibrated stereo cameras. the H.264 bitstream (e.g., overhead bits, motion vector bits,

In general, effective coding of a single/monocular videand texture bits for DCT coefficients). Such an MT video coder
sequence necessitates exploitation of both spatial and temilt perform no worse than separate H.264 coding of the two
poral redundancies within the sequence. H.264 [9] providesleo sequences.
the currently most efficient solution by using motion esti- We describe in this paper an MT video coder (without
mation/compensation to strip off the temporal redundan&jiowing collaboration among the two encoders) that is capable
between frames, the DCT of the resulting motion-compensatefdoutperforming separate H.264 coding of two stereo video
residual frames for energy compaction and decorrelation, asgfjuences. Our coder shares the basic structure of Slepian-
variable-length coding for compression. Wolf coded quantization [6] for direct MT source coding of

For stereo video sequences synchronously captured by timm Gaussian sources. Specifically, the left video sequence
calibrated video cameras, the compression efficiency canibecompressed by the first encoder using H.264 and a recon-
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Fig. 1. Multiterminal video coding framework.

structed version is available at the joint decoder. Then, thaed motion field will introduce much more noise to the side
first frame of the right sequence is intra-coded by H.264 amaformation of residual frame pixels than to that of the motion
its reconstruction is used to generate the first disparity mapvatctors (which are generated at macroblock level instead of
the joint decoder by employing the BP based stereo matchipigel level). This is part of our ongoing research.
algorithm [16]. Knowing the disparity map as a point-to-point
correspondence between the first pair of stereo video frames, Il. MT VIDEO CODING
we impose an “identical motion constraint” (which means the
corresponding points in the left and right scenes must haveOur proposed MT video coding scheme is depicted in Fig.
identical 3D motions) to explore the redundancy in the nett Let £ = {Ly, Lo,...,L,} and R = {Ry, Ry, ..., R,} be
frame. Under this constraint, we devise a novel algoriththe left and right stereo video sequences, respectively. First,
that incorporates a 3D geometric model to quantitativetire left sequence is compressed at Encoder 1 by H.264 and
fuse the left motion field with the disparity map, producingransmitted to the joint decoder, using a transmission rate of
an estimation of the right motion field. With this estimate¢R, bits per second (bps). Assume that only the first fraime
motion field, the joint decoder not only generates the side intra-coded I-frame and all the other framgs, ..., L,, are
information for the motion vectors in H.264, but also warpmter-coded P-frames. Similarly, the right sequefiteés also
the reconstructed first frame of the right sequence to foreompressed by H.264 at Encoder 2, but only the first frame
an estimation of its second frame. Finally, side informatiois directly transmitted. Denot®&}, as the bit rate (in bps) that
for the H.264 motion-compensated residual frame is obtainEticoder 2 spent on coding;. The coded bitstream for the
by taking the difference between the warped version and theh inter-coded frameR, (k = 2,3,...,n) consists of three
H.264 motion-compensated version of the second frame. Wijghrts, namely, the overhead bit?, the motion vector bits
side information available at the decoder, we apply SW@® %, and texture bitsC}* for the DCT coefficients. Let the
implemented via low-density parity-check (LDPC) code teeconstructed version of left and right sequencesCbe =
the motion vectors, and Wyner-Ziv coding (WZC) [17] of the{LP, ..., LD} andR” = {RP, ..., RP}, respectively.
motion-compensated residual frames by using Slepian-WolfBefore compressing;, for k = 2,...,n at Encoder 2, we
coded scalar quantization. assume that the joint decoder has access to the reconstructions
As mentioned earlier, H.264 bitstream consists of headgt? ... LP LP} and {RP,...,RP |}. We first employ
bits, motion vector bits, and texture bits. In the low-ratetereo matching to generate disparity réap , betweenZ?
regime, most the of the rate budget is spent on the formadR? . Using a slightly modified stereo matching algorithm
two; and there is not much room for further savings in thghy allowing vertical disparities), we also obtain a forward
texture bits from WZC in this scenario. This paper focuses enotion field ML from L | to LP. Then, assume that the
the low-rate regime and presents some initial results on SV@D stereo camera settings are known, and follow the “identical
of the motion vector bits that indicate savings in terms of th@otion constraint” we apply a novel motion fusing algorithm
sum rate when compared to separate H.264 coding at the samgroduce the right forward motion field1 based on the
video quality. known informationD;,_; andMﬁ. Clearly, the motion vectors
In the high-rate regime, additional WZC of the motion//® in the H.264 bitstream are correlated to the motion field
compensated residual frames is a must, but it is more chak? as shown in Fig. 2. Hence SWC can be employed to code
lenging because the “bad” matching pixels in the disparity may;® with M7 as decoder side information.



Next, RP , is warped according to the right motion field 1) Initialize all messagesus:(z;) as uniform distributions
ME, generating an estimat®}” of the k-th frame Ry.. As- and messages:s(z;s) = exp(—pa(xs)).
sume ideal Slepian-Wolf decoding, such tidf’ is perfectly 2) Update messages;(x;) iteratively fori =1,2,....,T
reconstructed at the decoder, then exactly the same motion

compensated fram&/ at the encoder can be formed by mf (wr) — “H}SXQXP(_PP(QCMxt))mé(xs)
warping RY | according toM . Consequently, thesource H mi 6
and theside informationfor WZC can be computed as ks (@) ©)
o w u zREN(2s)\s
Xe=He—Rs - Vo= Ry — I, @ 3) compute beliefs
respectively.
Finally, WZC is employed to explore the remaining corre- bs(ws) — mms(zs) [ muslas),

lation betweenX; andY; and and joint decoder reconstructs TREN (zs)
RP = {RP,RY,.., R} using a total transmission rate of eMAP — arg max b, (z,). (7
Ry = > R bps Tk

60 : : : : : : In our experiments, we use a modified BP algorithm de-

sol | Motion vectors M| | scribed in [16], which is more time efficient without sacrificing

—__ _ Side information the quality of matching results.
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0l IV. MOTION FIELD ESTIMATION

Although originally designed for stereo matching, the BP
based algorithm can also be applied for motion field es-
timation. Since most stereo cameras are aligned such that
no vertical disparity exists between corresponding pixels, the
algorithm in [15] only allows horizontal disparities, which are
clearly not enough for motion field. Hence we slightly modify
the above algorithm by allowing vertical disparities. First, all
BT e e 30 a0 a0 s0 700 8w 900 ds's in equations (2) - (7) become vectods, and absolute

value ‘|- |” becomesL!-norm “|| - ||”. Also, the Birchfield and
Tomasi's pixel dissimilarity F'(s, ds, I)| is changed to
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Fig. 2. Comparison of motion vectoer and their hard-decision side
information.

I1l. EFFICIENT STEREO MATCHING ALGORITHM F(s,ds,I) = min{d(s, ', I) oy, d(s',5,1) o}, (8)

Let I = {L, R} be a pair of stereo images. Dendeas \here d(s, s’ ]) - min{|IL( ) — Ir(s))], IIL( ) —

the smooth disparity field\' as a spatial line process, andp—( N IL(s) = I ()], L (s) — ( N, L (s) — ( I3
O as a binary process indicating the occlusion regions. Th%m is the matchlng plxel ofs W|th disparity d and
according to [15], {157 ("), I (s), IL ("), Ix(s")} are the linearly mterpolated
P(D,N,0|I) exp(—F(s,dg, I exp(—7.(0s intensity halfway betwee@’ and its neighboring pixel to the
( D) Sgg P(=F( ))H P(=me(0)) left, right, top and bottom, respectively, ang is the image

noise variance that depends on the quality of input pictures.
[T TI exp(-6(dedi)(1 — o) + (1), P ey of pHt

5 teN(s) V. MOTION FUSION
where s, ¢ represent pixels in the reference fram¥é(s) de-
notes the set of neighboring pixelsothat is larger thar, and
ds, 05 are the disparity and occlusion of pixel respectively.
We can further write the posterior probability ovBras [15]

In this section, we describe the algorithm used to fuse the
disparity mapD and the left motion field\1~ to estimate the
right motion field MY". As shown in Fig. 3, the 3D motion
vector can be decomposed into three components: horizontal
DII) o [ ex ex (ds,d 3) motion V}, that is parallel too;o,, vertical motionV, that is
PO H p(~puld 1:[,561;[(5 p(=pp ) @) perpendicular to theo,o, plane, and parallel motiofr, that
where is p_erpendi_cular to _botIVh and V,, (which is ignored in the

motion fusion algorithm). Denotd’ as the focal length of
pa(dy) = —In ((1 — eg) exp(— )+ ed)7 (4) both camerasB as the base line distanego, between two
cameras, and as the convergence distance. The stereo scene
(dy,d;) = —In ((1 _ ep)exp(_\ds - dt|) +ep)7 (5) geometry is illustrated in Fig. 4. The stereo motion fusion
Op algorithm has the following steps.
and|F(s,ds, I)| is Birchfield and Tomasi’s pixel dissimilarity 1) Estimating the depth. Calculate anglesand 8 using

[11]. Hence the standard “max-product” algorithm can be  the horizontal coordinate of the pixel Then the depth
implemented by the following steps [15]. of s is H, = B/[(tan(a))~! + (tan(3))~'].

|[F(s,ds, )|

g4



2) Estimating the right horizontal motion vectar, =
Vyrp/ R, based on the deptH,, and the left horizonal
motion vectorv), = V}!1,,/L,, using (note tha¥! = V}")

also compute the required transmission rates for each bit-
plane of the quantization indices, and send the corresponding
syndrome bits for Slepian-Wolf compression. Finally, the joint
decoder uses the syndrome bits and the log-likelihood ratios
to reconstructX ;. Detailed encoding/decoding algorithms can
be found in [7].

vp sin(a + &) sin(B)
vh LR,  sin(8+ %) sin(a)’
3) Estimating the right vertical motion vector using

rpLlp

)

VIl. SIMULATION RESULTS

In our simulations, we use the Y-component of the 720
x 288 “tunnel” stereo video sequences downloaded from
“http://www.tnt.uni-hannover.de/project/eu/distima/images”.
Both the left and right sequences are coded by H.264
standard, coding parameters and some statistics of the
resulting bitstream are given in Table I.

_ sin(a+ 3)sin(8) (120

.
v _ Y

ob  wb sin(3 + ¢) sin(e)

TABLE |

H.264COMPRESSION PARAMETERS AND STATISTICS

Parameters Left sequenceC Right sequenc&k
QP | frame 35 35
QP P frame 33 33
Total frames 20 20
Fig. 3. 3D motion vector decomposition. Inter-search modd| 16x16,16x8,8x16 | 16x16,16x8,8x16
Motion precision quarter-pel quarter-pel
0 Statistics Left bitstream Right bitstream
I-frame 95,112 bits 94,448 bits
o\ 0= 2arcin( ) Overhead 16,994 bits 16,822 bits
2b Motion vectors 39,494 bits 38,970 bits
Coefficients 139,160 bits 136,108 bits
Total 287,248 bits 286,584 bits
Bit rate 436.40 kbps 429.88 kbps
Average SNR 31.11 dB 31.18 dB

‘originardisparity map .

Decoded di sparity map
-

B =87.5mm
Fig. 4. 3D geometry for stereo video pair.

VI. WZC OF MOTION COMPENSATED RESIDUAL
COEFFICIENTS

In WZC of X based on the decoder side informatibp
the key assumption is that we know the correlation between the
target frameX;, and the side informatiol},. However, unlike
ideal sources (e.g., i.i.d. jointly Gaussian), the correlation
between X, and Y, is not availablea priori. As in other
works on distributed video coding in the literature (e.g., [18]),
we use training video sequences to find an average difference
distribution betweenX; and Yj, and assume an additive
noise correlation model. Moreover, classification of H.264
macroblocks (e.g., between occluded and non-occluded ones)
may also help to build different correlation models for different
classes. Fig. 5. Generated disparity maps (top two) and motion fields (bottom two).

Then the encoder quantizes; using scalar quantization. Fig. 5 shows the disparity maps and motion fields generated
Knowing the averaged additive noise model, the encoder day the modified stereo matching algorithm described in Sec-

Oiginal notion field

Decoded notion field




tions Il and IV. The parameter values in (2) - (7) are consistent T i ' ' '
with those in [15]:eq = 0.01,04 = 8,¢, = 0.05,0, = 0.6. ~ Jointencoding
We also incorporate segmentation results produced by the Multterminal coding ]
mean-shift algorithm [19].

Since the sum rate is low (866.28 kbps at a frame rate of
30 frames/sec), we can see that the disparity map and the,|
motion field generated by the decoded frames are not @ry
reliable compared to those from the originals. Hence only ¢her 3
motion vectors for the inter-coded blocks are Slepian-V@lf
coded based on the side information generated at the decod@r|
Using a multilevel Slepian-Wolf code implemented by LDPC
codes, we are able to save 3,747 bits from the 38,970 motiGh?[~
vector bits in the right bitstream. All the other components are
directly transmitted to the decoder. Figs. 6 and 7 compare the*
rate-distortion performance for separate encoding, MT codlng bo
and joint encoding of “tunnel” stereo video sequences, where 0 5 10 15 20 25 30 35 40
in the joint encoding case we interleave the left and right Frame number (interleaved)
stereo video sequences and use H.264 to code the interleaugd;. comparison (in terms of PSNR vs. frame number) between separate

sequence with two reference frames in motion estimation, @64 encoding, MT coding, and joint encoding (with same sum rate of 860.6

bps). The frame indices are for the interleaved version of the left and right
generate a benchmark for MT video coding. Segu)ences (20 frames each) in each case. 9
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