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Abstract— Following recent works on the rate region of the
quadratic Gaussian two-terminal source coding problem and
limit-approaching code designs, this paper examines multiter-
minal source coding of two correlated video sequences to save
the sum rate over independent coding. Specifically, the first video
sequence is coded by H.264 and used at the joint decoder to facil-
itate Wyner-Ziv coding of the second video sequence. An efficient
stereo matching algorithm based on loopy belief propagation is
then adopted at the decoder to produce pixel-level disparity
maps between the corresponding frames of the two decoded
video sequences on the fly. Based on the disparity maps, side
information for both motion vectors and motion-compensated
residual frames of the second sequence are generated at the
decoder before Wyner-Ziv encoding. Preliminary results on stereo
video sequences using H.264 in conjunction with LDPC codes for
Slepian-Wolf coding of the motion vectors show savings in terms
of the sum rate when compared to separate coding at the same
video quality.

I. I NTRODUCTION

Multiterminal (MT) source coding [1] is gaining research
interest lately due to its potential applications in distributed
sensor networks and distributed multiview video coding. The-
oretical limit of MT source coding of jointly Gaussian sources
was given recently in [2] for the direct setting (with two
encoders) where the encoders directly observe the sources,
and in [3], [4] for the indirect/CEO setting where the encoders
observe independently corrupted versions of the same source.
Practical MT code designs based on generalized coset codes
were provided by Pradhan and Ramchandran in [5]. In earlier
works, we proposed a framework for practical MT source
coding based on Slepian-Wolf coded quantization [6], [7],
which employs the optimal approach of vector quantization
followed by Slepian-Wolf coding (SWC) [8]. However, the
code designs in [5], [6], [7] are for ideal Gaussian sources
assuminga priori known correlation. When dealing with
practical sources (e.g., video), correlation modeling is one of
the key issues in efficient MT video coding. In this work,
we focus on MT video code design for two correlated video
sequences captured by calibrated stereo cameras.

In general, effective coding of a single/monocular video
sequence necessitates exploitation of both spatial and tem-
poral redundancies within the sequence. H.264 [9] provides
the currently most efficient solution by using motion esti-
mation/compensation to strip off the temporal redundancy
between frames, the DCT of the resulting motion-compensated
residual frames for energy compaction and decorrelation, and
variable-length coding for compression.

For stereo video sequences synchronously captured by two
calibrated video cameras, the compression efficiency can be

further improved by exploiting the inter-sequence correlation
(as done in the MPEG-2 stereo video coding standard [10]) in
a joint encoding setup.

For MT video coding, although the encoders cannot com-
municate with each other, the binocular correlation between
the stereo pair can still be extracted from the 3D geometric
information of the cameras. This leads tostereo matching,
which is a fundamental problem in stereo vision, and has been
extensively studied in the past by many researchers. Assuming
knowledge of the stereo camera configuration, classical stereo
matching attempts to compute a disparity/depth map from a
stereo image pair.

In general, stereo matching can be formulated as an op-
timization problem that minimizes the image dissimilarity
energy, e.g., squared intensity difference, absolute intensity
difference, and shift absolute difference [11]. Boykovet al.
[12] and Kolmogorov and Zabih [13] presented efficient graph-
cut based stereo algorithms, which find a smooth disparity
map that is consistent with the image intensities. Geigeret al.
[14] derived an occlusion process and a disparity field using
dynamic programming. Based on Markov random fields, Sun
et al. [15] proposed a stereo algorithm using belief propagation
(BP), which considers three coupled Markov random fields:
a smooth disparity field, a spatial line process, and a binary
occlusion process. Quantitative evaluations of different stereo
algorithms in terms of “bad” pixel percentage (available at
http://cat.middlebury.edu/stereo) showed that the BP based
algorithm [15] is among the most efficient.

According to the theory [2], a technique that integrates
the best stereo matching algorithm (that handles the binoc-
ular redundancy) with the most efficient H.264 monocular
video compression standard (that removes spatial and temporal
redundancies) is potentially the best solution for MT video
coding. With the powerful H.264, one approach to MT video
coding is to use the disparity maps generated by the stereo
matching algorithm to exploit the redundancy in each part of
the H.264 bitstream (e.g., overhead bits, motion vector bits,
and texture bits for DCT coefficients). Such an MT video coder
will perform no worse than separate H.264 coding of the two
video sequences.

We describe in this paper an MT video coder (without
allowing collaboration among the two encoders) that is capable
of outperforming separate H.264 coding of two stereo video
sequences. Our coder shares the basic structure of Slepian-
Wolf coded quantization [6] for direct MT source coding of
two Gaussian sources. Specifically, the left video sequence
is compressed by the first encoder using H.264 and a recon-
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Fig. 1. Multiterminal video coding framework.

structed version is available at the joint decoder. Then, the
first frame of the right sequence is intra-coded by H.264 and
its reconstruction is used to generate the first disparity map at
the joint decoder by employing the BP based stereo matching
algorithm [16]. Knowing the disparity map as a point-to-point
correspondence between the first pair of stereo video frames,
we impose an “identical motion constraint” (which means the
corresponding points in the left and right scenes must have
identical 3D motions) to explore the redundancy in the next
frame. Under this constraint, we devise a novel algorithm
that incorporates a 3D geometric model to quantitatively
fuse the left motion field with the disparity map, producing
an estimation of the right motion field. With this estimated
motion field, the joint decoder not only generates the side
information for the motion vectors in H.264, but also warps
the reconstructed first frame of the right sequence to form
an estimation of its second frame. Finally, side information
for the H.264 motion-compensated residual frame is obtained
by taking the difference between the warped version and the
H.264 motion-compensated version of the second frame. With
side information available at the decoder, we apply SWC
implemented via low-density parity-check (LDPC) code to
the motion vectors, and Wyner-Ziv coding (WZC) [17] of the
motion-compensated residual frames by using Slepian-Wolf
coded scalar quantization.

As mentioned earlier, H.264 bitstream consists of header
bits, motion vector bits, and texture bits. In the low-rate
regime, most the of the rate budget is spent on the former
two; and there is not much room for further savings in the
texture bits from WZC in this scenario. This paper focuses on
the low-rate regime and presents some initial results on SWC
of the motion vector bits that indicate savings in terms of the
sum rate when compared to separate H.264 coding at the same
video quality.

In the high-rate regime, additional WZC of the motion-
compensated residual frames is a must, but it is more chal-
lenging because the “bad” matching pixels in the disparity map

and motion field will introduce much more noise to the side
information of residual frame pixels than to that of the motion
vectors (which are generated at macroblock level instead of
pixel level). This is part of our ongoing research.

II. MT VIDEO CODING

Our proposed MT video coding scheme is depicted in Fig.
1. Let L = {L1, L2, ..., Ln} andR = {R1, R2, ..., Rn} be
the left and right stereo video sequences, respectively. First,
the left sequenceL is compressed at Encoder 1 by H.264 and
transmitted to the joint decoder, using a transmission rate of
RL bits per second (bps). Assume that only the first frameL1

is intra-coded I-frame and all the other framesL2, ..., Ln are
inter-coded P-frames. Similarly, the right sequenceR is also
compressed by H.264 at Encoder 2, but only the first frame
is directly transmitted. DenoteR1

R as the bit rate (in bps) that
Encoder 2 spent on codingR1. The coded bitstream for the
k-th inter-coded frameRk (k = 2, 3, ..., n) consists of three
parts, namely, the overhead bitsOR

k , the motion vector bits
MR

k , and texture bitsCR
k for the DCT coefficients. Let the

reconstructed version of left and right sequences beLD =
{LD

1 , ..., LD
n } andRD = {RD

1 , ..., RD
n }, respectively.

Before compressingRk for k = 2, ..., n at Encoder 2, we
assume that the joint decoder has access to the reconstructions
{LD

1 , ..., LD
k−1, L

D
k } and {RD

1 , ..., RD
k−1}. We first employ

stereo matching to generate disparity mapDk−1 betweenLD
k−1

andRD
k−1. Using a slightly modified stereo matching algorithm

(by allowing vertical disparities), we also obtain a forward
motion fieldML

k from LD
k−1 to LD

k . Then, assume that the
3D stereo camera settings are known, and follow the “identical
motion constraint” we apply a novel motion fusing algorithm
to produce the right forward motion fieldMR

k based on the
known informationDk−1 andML

k . Clearly, the motion vectors
MR

k in the H.264 bitstream are correlated to the motion field
MR

k as shown in Fig. 2. Hence SWC can be employed to code
MR

k with MR
k as decoder side information.



Next, RD
k−1 is warped according to the right motion field

MR
k , generating an estimateRW

k of the k-th frameRk. As-
sume ideal Slepian-Wolf decoding, such thatMR

k is perfectly
reconstructed at the decoder, then exactly the same motion
compensated frameRM

k at the encoder can be formed by
warping RD

k−1 according toMR
k . Consequently, thesource

and theside informationfor WZC can be computed as

Xk = Rk −RM
k ; Yk = RW

k −RM
k , (1)

respectively.
Finally, WZC is employed to explore the remaining corre-

lation betweenXk andYk and and joint decoder reconstructs
RD = {RD

1 , RD
2 , ..., RD

n } using a total transmission rate of
RY =

∑n
i=1 Ri

Y bps.
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III. E FFICIENT STEREO MATCHING ALGORITHM

Let I = {L,R} be a pair of stereo images. DenoteD as
the smooth disparity field,N as a spatial line process, and
O as a binary process indicating the occlusion regions. Then,
according to [15],

P (D,N ,O|I) ∝
∏

s/∈O
exp(−F (s, ds, I))

∏
s

exp(−ηc(os))

∏
s

∏

t∈N(s)

exp(−φ(ds, dt)(1− ls,t) + γ(ls,t)), (2)

wheres, t represent pixels in the reference frame,N(s) de-
notes the set of neighboring pixels ofs that is larger thans, and
ds, os are the disparity and occlusion of pixels, respectively.
We can further write the posterior probability overD as [15]

P (D|I) ∝
∏
s

exp(−ρd(ds))
∏
s

∏

t∈N(s)

exp(−ρp(ds, dt)), (3)

where

ρd(ds) = − ln
(
(1− ed) exp(−|F (s, ds, I)|

σd
) + ed

)
, (4)

ρp(ds, dt) = − ln
(
(1− ep) exp(−|ds − dt|

σp
) + ep

)
, (5)

and|F (s, ds, I)| is Birchfield and Tomasi’s pixel dissimilarity
[11]. Hence the standard “max-product” algorithm can be
implemented by the following steps [15].

1) Initialize all messagesmst(xt) as uniform distributions
and messagesms(xs) = exp(−ρd(xs)).

2) Update messagesmst(xt) iteratively for i = 1, 2, ..., T

mi+1
st (xt) ← κ max

xs

exp(−ρp(xs, xt))mi
s(xs)

∏

xk∈N(xs)\xs

mi
ks(xs). (6)

3) Compute beliefs

bs(xs) ← κms(xs)
∏

xk∈N(xs)

mks(xs),

xMAP
s = arg max

xk

bs(xk). (7)

In our experiments, we use a modified BP algorithm de-
scribed in [16], which is more time efficient without sacrificing
the quality of matching results.

IV. M OTION FIELD ESTIMATION

Although originally designed for stereo matching, the BP
based algorithm can also be applied for motion field es-
timation. Since most stereo cameras are aligned such that
no vertical disparity exists between corresponding pixels, the
algorithm in [15] only allows horizontal disparities, which are
clearly not enough for motion field. Hence we slightly modify
the above algorithm by allowing vertical disparities. First, all
ds’s in equations (2) - (7) become vectorsds, and absolute
value “| · |” becomesL1-norm “‖ · ‖”. Also, the Birchfield and
Tomasi’s pixel dissimilarity|F (s,ds, I)| is changed to

F (s, ds, I) = min{d̄(s, s′, I)/σf , d̄(s′, s, I)/σf}, (8)

where d̄(s, s′, I) = min{|IL(s) − IR(s′)|, |IL(s) −
I←R (s′)|, |IL(s)− I→R (s′)|, |IL(s)− I↑R(s′)|, |IL(s)− I↓R(s′)|},
s′ is the matching pixel ofs with disparity ds, and
{I←R (s′), I→R (s′), I↑R(s′), I↓R(s′)} are the linearly interpolated
intensity halfway betweens′ and its neighboring pixel to the
left, right, top and bottom, respectively, andσf is the image
noise variance that depends on the quality of input pictures.

V. M OTION FUSION

In this section, we describe the algorithm used to fuse the
disparity mapD and the left motion fieldMX to estimate the
right motion fieldMY . As shown in Fig. 3, the 3D motion
vector can be decomposed into three components: horizontal
motion Vh that is parallel toolor, vertical motionVv that is
perpendicular to theoolor plane, and parallel motionVp that
is perpendicular to bothVh and Vv (which is ignored in the
motion fusion algorithm). DenoteF as the focal length of
both cameras,B as the base line distanceolor between two
cameras, andD as the convergence distance. The stereo scene
geometry is illustrated in Fig. 4. The stereo motion fusion
algorithm has the following steps.

1) Estimating the depth. Calculate anglesα and β using
the horizontal coordinate of the pixels. Then the depth
of s is Hp = B/[(tan(α))−1 + (tan(β))−1].



2) Estimating the right horizontal motion vectorvr
h =

V r
h rp/Rp based on the depthHp and the left horizonal

motion vectorvl
h = V l

hlp/Lp using (note thatV l
h = V r

h )

vr
h

vl
h

=
rpLp

lpRp
=

sin(α + θ
2 ) sin(β)

sin(β + θ
2 ) sin(α)

. (9)

3) Estimating the right vertical motion vector using

vr
v

vl
v

=
vr

h

vl
h

=
sin(α + θ

2 ) sin(β)
sin(β + θ

2 ) sin(α)
. (10)
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Fig. 3. 3D motion vector decomposition.
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VI. WZC OF MOTION COMPENSATED RESIDUAL

COEFFICIENTS

In WZC of Xk based on the decoder side informationYk,
the key assumption is that we know the correlation between the
target frameXk and the side informationYk. However, unlike
ideal sources (e.g., i.i.d. jointly Gaussian), the correlation
betweenXk and Yk is not availablea priori. As in other
works on distributed video coding in the literature (e.g., [18]),
we use training video sequences to find an average difference
distribution betweenXk and Yk, and assume an additive
noise correlation model. Moreover, classification of H.264
macroblocks (e.g., between occluded and non-occluded ones)
may also help to build different correlation models for different
classes.

Then the encoder quantizesXk using scalar quantization.
Knowing the averaged additive noise model, the encoder can

also compute the required transmission rates for each bit-
plane of the quantization indices, and send the corresponding
syndrome bits for Slepian-Wolf compression. Finally, the joint
decoder uses the syndrome bits and the log-likelihood ratios
to reconstructX̂k. Detailed encoding/decoding algorithms can
be found in [7].

VII. S IMULATION RESULTS

In our simulations, we use the Y-component of the 720
× 288 “tunnel” stereo video sequences downloaded from
“http://www.tnt.uni-hannover.de/project/eu/distima/images”.
Both the left and right sequences are coded by H.264
standard, coding parameters and some statistics of the
resulting bitstream are given in Table I.

TABLE I

H.264COMPRESSION PARAMETERS AND STATISTICS.

Parameters Left sequenceL Right sequenceR
QP I frame 35 35
QP P frame 33 33
Total frames 20 20

Inter-search mode 16×16,16×8,8×16 16×16,16×8,8×16
Motion precision quarter-pel quarter-pel

Statistics Left bitstream Right bitstream
I-frame 95,112 bits 94,448 bits

Overhead 16,994 bits 16,822 bits
Motion vectors 39,494 bits 38,970 bits

Coefficients 139,160 bits 136,108 bits
Total 287,248 bits 286,584 bits

Bit rate 436.40 kbps 429.88 kbps
Average SNR 31.11 dB 31.18 dB

Original disparity map

Decoded disparity map

Original motion field

Decoded motion field

Fig. 5. Generated disparity maps (top two) and motion fields (bottom two).

Fig. 5 shows the disparity maps and motion fields generated
by the modified stereo matching algorithm described in Sec-



tions III and IV. The parameter values in (2) - (7) are consistent
with those in [15]:ed = 0.01, σd = 8, ep = 0.05, σp = 0.6.
We also incorporate segmentation results produced by the
mean-shift algorithm [19].

Since the sum rate is low (866.28 kbps at a frame rate of
30 frames/sec), we can see that the disparity map and the
motion field generated by the decoded frames are not very
reliable compared to those from the originals. Hence only the
motion vectors for the inter-coded blocks are Slepian-Wolf
coded based on the side information generated at the decoder.
Using a multilevel Slepian-Wolf code implemented by LDPC
codes, we are able to save 3,747 bits from the 38,970 motion
vector bits in the right bitstream. All the other components are
directly transmitted to the decoder. Figs. 6 and 7 compare the
rate-distortion performance for separate encoding, MT coding,
and joint encoding of “tunnel” stereo video sequences, where
in the joint encoding case we interleave the left and right
stereo video sequences and use H.264 to code the interleaved
sequence with two reference frames in motion estimation, to
generate a benchmark for MT video coding.
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Fig. 6. Comparison between separate H.264 encoding, MT coding, and joint
encoding (with same PSNR = 31.14 dB).

VIII. C ONCLUSION

In this paper, we addressed MT video coding that tar-
gets at saving the sum rate over separate monocular video
compressions with H.264. The main idea is to explore the
binocular redundancy by using disparity maps generated by
stereo matching to form side informations in WZC. Prelimi-
nary results on rate savings for motion vectors in the low-rate
regime are given.
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