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Abstract— In this paper we give an overview of recent results
on the rate maximization game in the Gaussian frequency-
selective interference channel. We focus on the competitive
maximization of information rates, subject to global power and
spectral mask constraints.

To achieve the so-called Nash equilibrium points of the game
Yu, Ginis and Cioffi proposed thesequentialIterative Waterfilling
Algorithm (IWFA), where, at each iteration, the users choose, one
after the other, their power allocation to maximize their own in-
formation rate, treating the interference generated by the others
as additive colored Gaussian noise. To overcome the potential
slow convergence of the sequential update, specially when the
number of users is large, thesimultaneousIWFA was proposed
by the authors, where, at each iteration, all the users update
their power allocations simultaneously, rather than sequentially.
Recently, the authors showed that both the sequential and the
simultaneous IWFAs are just special cases of a more general
unified framework, given by the totally asynchronous IWFA.
In this more general algorithm, the users update their power
spectral density in a completely distributed and asynchronous
way. Furthermore, the asynchronous setup includes another form
of lack of synchronism where the transmission by the different
users contains time and frequency synchronization offsets. A
unified set of convergence conditions were provided for the whole
class of algorithms obtained from the asynchronous IWFA.

Interestingly, there is a key result used in the proof of
convergence of the algorithms: an alternative interpretation of
the waterfilling operator as a projector

I. I NTRODUCTION

In this paper we focus on the frequency selective interfer-
ence channel with Gaussian noise. The capacity region of the
interference channel is still unknown, even for the simplest
Gaussian two-user case [1]. Only some bounds are available
(see, e.g., [2] for a summary of the known results about the
Gaussian interference channel). A pragmatic approach that
leads to an achievable region or inner bound of the capacity
region is to restrict the system to operate as a set of indepen-
dent units, i.e., not allowing multiuser encoding/decoding or
the use of interference cancelation techniques. This achievable
region is very relevant in practical systems with limitations on
the decoder complexity and simplicity of the system. With
this assumption, the multiuser interference is treated as noise
and the transmission strategy for each user is simply its
power allocation. The system design reduces then to finding
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the optimum Power Spectral Density (PSD) for the users
according to some performance measure.

The results existing in the current literature [3]-[17] have
dealt with the maximization of the information rates of all
the links, subject to individual transmit power and (possibly)
spectral mask constraints. The latter constraint is motivated by
current regulations that impose strict restrictions on the usage
of certain frequency bands, in order to limit the amount of
interference that each transmitter can generate. In [3]-[5] a cen-
tralized approach based on duality theory [18] was proposed
to compute, under technical conditions, the largest achievable
rate region of the system (i.e., the Pareto-optimal set of the
achievable rates). Our interest is focused on distributed algo-
rithms with no centralized control; therefore, we formulate the
system design under the convenient framework of game theory.
In particular, we formulate the rate maximization problem as
a strategic non-cooperative game, where every link is a player
that competes against the others by choosing the signaling
that maximizes his own information rate. An equilibrium for
the whole system is reached when every player is unilaterally
optimum, i.e., when, given the current strategies of the others,
any change in his own strategy would result in a rate loss.
This equilibrium constitutes the celebrated notion of Nash
Equilibrium (NE) in game theory [19].

All the NEs of the rate maximization game can be reached
using Gaussian signaling and a proper PSD from each user
[9], [13], [14]. To obtain the optimal PSD of the users, Yu,
Ginis, and Cioffi proposed thesequentialIterative WaterFilling
Algorithm (IWFA) [6] in the context of DSL systems, modeled
as a Gaussian frequency-selective interference channel. The
algorithm is an instance of the Gauss-Seidel scheme [20]:
the users maximize their own information ratessequentially
(one after the other), according to a fixed updating order.
Each user performs the single-user waterfilling solution given
the interference generated by the others as additive (colored)
noise. The most appealing features of the sequential IWFA
are its low-complexity and its distributed nature. In fact, to
compute the waterfilling solution, each user only needs to
measure the noise-plus-interference PSD, without requiring
specific knowledge of the power allocations and the channel
transfer functions of all other users.

The convergence of the sequential IWFA has been studied
in a number of works [7]-[13], each time obtaining milder



conditions that guarantee convergence. However, despite its
appealing properties, the sequential IWFA may suffer from
slow convergence if the number of users in the network is
large because of the sequential updating strategy. In addition,
the algorithm requires some form of central scheduling to
determine the order in which users are updated.

To overcome the drawback of slow speed of convergence,
the simultaneousIWFA was proposed in [9], [13], [14]. The
simultaneous IWFA is an instance of the Jacobi scheme
[20]: at each iteration, the users update their own strategies
simultaneously, still according to the waterfilling solution, but
using the interference generated by the others in theprevious
iteration. The simultaneous IWFA was shown to converge to
the unique NE of the rate maximization game faster than
the sequential IWFA and under weaker conditions on the
multiuser interference than those given in [6], [7], [11], [12],
[15] for the sequential IWFA. Furthermore, differently from
[6], [7], [11], [15], the algorithm takes explicitly into account
spectral masks constraints. However, the simultaneous IWFA
still requires some form of synchronism as all the users need
to be simultaneously updated. In a real network with many
users, the form of synchronism requirements of the sequential
and simultaneous IWFAs may not be feasible.

Recently, in [16], [17], the authors showed that both the
sequential and the simultaneous IWFAs are just special cases
of a more general unified framework, given by thetotally
asynchronousIWFA. In this more general algorithm, all
users still update their power allocations according to the
waterfilling solution, but the updates can be performed in a
totally asynchronousway (in the sense of [20]). This means
that some users may update their PSDsmore frequentlythan
others and they may even use anoutdatedmeasurement of
the interference caused from the others. These features make
the asynchronous IWFA appealing for all practical scenarios,
either wired or wireless, where strong constraints on syn-
chronization cannot be met. Furthermore, the asynchronous
setup considered in [16], [17] includes also another form of
lack of synchronism where the transmission by uncoordinated
users contains time and frequency synchronization offsets, due
to mismatch between the oscillators of different transmitters,
propagation delays, Doppler effects, etc.. A unified set of
convergence conditions were provided for the whole class of
algorithms obtained from the asynchronous IWFA, as special
cases. These convergence conditions enlarge those given in
[6], [7], [11], [12], [15] for the sequential IWFA.

Interestingly, in [13], [16], [17], there is a common thread
relating the algorithms and the derivation of their convergence
conditions: the interpretation of the waterfilling operator as
the Euclidean projector of a vector onto a convex set. In
the single-user case, this provides an alternative perspective
of the well-known waterfilling solution, that dates back to
Shannon in 1949 [21]. Interestingly, in the multiuser case, this
interpretation plays a key role in proving the convergence of
the proposed algorithms.

The paper is organized as follows. Sec. II gives the system
model and Sec. III formulates the optimization problem as

a strategic non-cooperative game. Sec. IV provides the in-
terpretation of the waterfilling operator as a projector. Sec.
V contains the state of the art of distributed algorithms able
to reach the NE of the game, along with their convergence
properties. Sec. VI shows how to modify the original game
theoretic formulation to take explicitly into account the effect
of time and/or frequency synchronization errors in the system.
Finally, Sec. VII draws the conclusions.

II. SYSTEM MODEL

We consider a Gaussian frequency-selective interference
channel composed by multiple links. Aiming at finding dis-
tributed algorithms, we focus on transmission techniques
where no interference cancelation is performed and multiuser
interference is treated as additive colored noise from each
receiver. To deal easily with the frequency-selectivity of the
channel, we adopt a multicarrier approach without loss of op-
timality (since it is a capacity-lossless structure for sufficiently
large block length [22], [23]). Given the above system model,
we make the following assumptions:
A.1 Each channel changes sufficiently slowly and thus can be
considered fixed during the whole transmission, so that the
information theoretic results are meaningful;
A.2 The channel from each source to its own destination is
known to the intended receiver, but not to the other terminals,
and each receiver is assumed to measure with no errors the
PSD of the noise plus the interference due to the other links.
Based on this information, each destination computes the
optimal signaling for its own link and transmits it back to
its transmitter through a low bit rate (error-free) feedback
channel.1

A.3 All the users are block-synchronized with an uncertainty
at most equal to the cyclic prefix length. We will relax these
assumption in Sec. VI, where we will explicitly take into
account the effect of time and/or frequency offsets.

We consider the following power constraints, required by
different systems. For each transmitterq:
Co.1 Maximum overall transmit power:

N−1∑

k=0

p̄q(k) ≤ NPq, (1)

wherep̄q(k) denotes the power allocated by userq over carrier
k, andPq is power in units of energy per transmitted symbol.
Co.2 Spectral mask constraints:

p̄q(k) ≤ p̄max
q (k), k = 0, . . . , N − 1, (2)

wherep̄max
q (k) represents the maximum power that is allowed

to be allocated on thek-th frequency bin from theq-th user.
Constraints like in (2) are imposed by current regulations and
attempts to limit the amounts of interference generated by each
transmitter at the other systems’ receivers.

1In practice, both measurement and feedback are inevitably affected by
errors. This scenario can be studied by extending our formulation to games
with partial information [24], [25], but this goes beyond the scope of the
present paper.



III. PROBLEM FORMULATION AS A GAME

We formulate thejoint maximization of mutual information
on each link as a strategic non-cooperative game [24], [25],
in which the players are the links and the payoff functions
are the information rates on the links: Each player competes
rationally2 against the others by choosing the signaling (i.e.
its strategy) that maximizes its own rate, given constraints on
the transmit power and spectral masks. A NE of the game
is reached when each user, given the strategy profile of the
others, does not get any rate increase by changing its own
strategy.

Under the signal model described in Sec. II, the achievable
rate for each playerq is computed as the maximum informa-
tion rate on theq-th link, assumingthe other received signals
as additive noise. It is straightforward to see that a (pure or
mixed strategy) NE is obtained if each user transmits using
Gaussian signaling, with a proper PSD [9], [14], [13]. Hence,
the maximum achievable rate for theq-th user is given by [22]

Rq =
1
N

N−1∑

k=0

log (1 + sinrq(k)) , (3)

with sinrq(k) denoting the Signal-to-Interference plus Noise
Ratio (SINR) on thek-th carrier for theq-th link:

sinrq(k) , |Hqq(k)|2 pq(k)
σ2

wq
(k) +

∑
r 6=q |Hrq(k)|2 pr(k)

, (4)

where Hrq(k) = H̄rq(k)
√

Pq/dγ
rq, with H̄rq(k) denoting

the normalized frequency-response of the channel between
source r and destinationq; drq is the distance between
sourcer and destinationq, andγ is the path loss exponent;
pq(k) = p̄q(k)/Pq is the normalized power allocated by the
q-th user over thek-th subcarrier, subject to the spectral mask
constraintspq(k) ≤ pmax

q (k) with pmax
q (k) = p̄max

q (k)/Pq,
and the power constraint(1/N)

∑N−1
k=0 pq(k)≤1.

Observe that in the case of practical coding schemes, where
only finite order constellations can be used, we can use the
gap approximation analysis [26], [27] and write the number of
bits transmitted over theN substreams from theq-th source
still as in (3) (for a given family of constellations and a
given error probability), simply replacing|Hqq(k)|2 in (4) with
|Hqq(k)|2 /Γq, whereΓq ≥ 1 is the gap.

In summary, we have the following structure for the game:

G = {Ω, {Pq}q∈Ω, {Rq}q∈Ω} , (5)

where Ω , {1, 2, . . . , Q} denotes the set of the active links,
Pq is the set of admissible (normalized) power allocation
strategies, across theN available carriers, for theq-th player,

2The rationality assumption means that each user will never chose a
strictly dominated strategy. A strategy profilexq is strictly dominated by
zq if Φq (xq ,y−q) < Φq (zq ,y−q) , for a given admissibley−q ,�
y1, . . . ,yq−1,yq+1, . . . ,yQ

�
, whereΦq denotes the payoff function of

playerq.

defined as3

Pq ,
{

pq∈ RN
+ :

1
N

N−1∑

k=0

pq(k) = 1, pq(k) ≤ pmax
q (k), ∀k

}
,

(6)
and Rq is the payoff function of theq-th player, defined in
(3).

The optimal strategy for theq-th player, given the power
allocation of the others, is then the solution to the following
maximization problem

maximize
pq

1
N

N−1∑

k=0

log (1 + sinrq(k))

subject to pq ∈ Pq

, ∀q ∈ Ω

(7)
wheresinrq(k) andPq are given in (4) and (6), respectively.
Note that, for eachq, the maximum in (7) is taken overpq,
for a fixedp−q , (p1, . . . ,pq−1,pq+1, . . . ,pQ) .

The solutions of (7) are the well-known Nash Equilibria,
which are formally defined as follows [19], [24], [25].

Definition 1: A (pure) strategy profilep? = (p∗1, . . . ,
p∗Q

) ∈ P1× . . .×PQ is a Nash Equilibrium of the gameG
in (5) if Rq(p?

q ,p
?
−q) ≥ Rq(pq,p?

−q), ∀pq ∈ Pq, ∀q ∈ Ω.
The definition of NE as given in Definition 1 can be

generalized to contain mixed strategies [24], i.e. the possibility
of choosing a randomization over a set of pure strategies (the
randomizations of different players are independent). However,
it is straightforward to see that one can indeed limit himself
to adopt pure strategies w.l.o.g., since all the NEs of the game
G in (5) are reached using pure strategies [9], [10], [13]. This
follows directly from the strict concavity of each rate function
Rq(pq,p−q) in pq and the structure of the joint admissible
strategy set of the players, i.e.,P = P1×, · · · ,×PQ.

According to (7), all the (pure) NEs of the game, if they
exist, must satisfy the waterfilling solutionfor eachuser, i.e.
the following system ofnonlinear equations:

p?
q = WFq

(
p?

1, . . . ,p
?
q−1,p

?
q+1, . . . ,p

?
Q

)
, ∀q ∈ Ω, (8)

with the waterfilling operatorWFq (·) defined as

[WFq]k , [µq − insrq(k)]
pmax

q (k)

0 , k = 0, . . . , N − 1, (9)

where the symbol[·]ba, with b ≥ a denotes the Euclidean
projection on the interval[a, b] , and insrq(k) is defined as

insrq(k) ,
σ2

wq
(k) +

∑
r 6=q |Hrq(k)|2 pr(k)

|Hqq(k)|2 . (10)

The water-levelµq in (9) is chosen to satisfy the power
constraint(1/N)

∑N−1
k=0 p?

q(k) = 1.
Observe that in the absence of spectral mask constraints

(i.e. whenpmax
q (k) = +∞, ∀q, ∀k), the NEs of the game

G in (5) are given by the classical simultaneous waterfilling

3In order to avoid the trivial solutionp?(k) = pmax(k) for all k,PN−1
k=0 pmax(k) > N is assumed. Furthermore, in the feasible strategy set of

each player, we can replace, w.l.o.g., the originalinequalitypower constraint
in (1) with equality, since, at the optimum, this constraint must be satisfied
with equality.



solutions [6], [7], whereWFq (·) in (8) is still obtained from
(9) simply settingpmax

q (k) = +∞, ∀q, ∀k. In this special
case, the gameG in (5) is usually referred to in the literature
as the Gaussian Interference Game [6], [7], and alternative
(sufficient) conditions for the existence and uniqueness of a
NE are given in [6], [7], [9], [11], [12].

In the presence of spectral mask constraints, the derivations
in [6], [7], [11] cannot be applied and thus a solution for the
system of nonlinear equations (8) can not be guaranteed for
any set of channels and spectral masks. However, the following
Proposition, whose proof comes directly from standard results
of game theory [24], [25], provides a positive answer on the
existence of a NE for the gameG in (5).

Proposition 1 ([9], [13]): The gameG in (5) always ad-
mits at least one NE in pure-strategies, for any set of channel
realizations, power and spectral mask constraints.

Once proved that a NE always exists, the problem of how
to reach such an equilibrium arises. We address this issue in
the forthcoming sections. By direct product of our derivations,
we also provide sufficient conditions for the uniqueness of
the equilibrium. We refer the reader to [13] for more general
conditions for the uniqueness of the NE.

IV. WATERFILLING SOLUTION AS A PROJECTION

In this section we provide an interpretation of the waterfill-
ing operator as a proper Euclidean projector. This interpreta-
tion is the key result to prove the convergence properties of
the distributed algorithms described in the subsequent sections
[13], [16], [17].

A. A New Look at the Single-user Waterfilling Solution

Consider a parallel additive colored Gaussian noise channel
composed ofN subchannels with coefficients{H(k)}, subject
to some spectral mask constraints{pmax(k)} and to a global
average transmit power constraint across the subchannels. It
is well-known that the capacity-achieving solution for this
channel is obtained using independent Gaussian signaling
across the subchannels with the following waterfilling power
allocation [17]

p?(k) =
[
µ− σ2

k

|H(k)|2
]pmax(k)

0

, k = 0, . . . , N − 1, (11)

where σ2
k denotes the variance of the noise on thek-th

subchannel,p?(k) is the optimal power allocation over the
k-th subchannel. The water-levelµ in (11) is chosen in order
to satisfy the power constraint(1/N)

∑N−1
k=0 p?(k) = 1.

In [13] we showed that, interestingly, the solution in (11)
can be interpreted as the Euclidean projection of the vector
−insr, defined as

insr ,
[
σ2

0/|H(0)|2, . . . , σ2
N−1/|H(N − 1)|2]T

(12)

onto the simplex

S ,
{

x ∈ RN :
1
N

N−1∑

k=0

xk = 1, 0 ≤ xk≤pmax(k), ∀k,

}
.

(13)

Lemma 1 ([13]): The Euclidean projection of theN -
dimensional real nonpositive vector−x0 , −[x0,0, . . . ,
x0,N−1]T onto the simplexS defined in (13), denoted by
[−x0]S , is by definition the solution to the following convex
optimization problem:

minimize
x

‖x− (−x0)‖22
subject to 0 ≤ xk≤pmax(k), k = 0, 1, . . . , N − 1,

1
N

N−1∑

k=0

xk = 1.

(14)
whose optimal solution is

x?
k = [µ− x0,k]p

max(k)
0 , k = 0, 1, . . . , N − 1, (15)

where µ > 0 is chosen to satisfy the constraint(1/N)∑N−1
k=0 x?

k = 1.
Corollary 1: The waterfilling solutionp? = [p?(0), . . . ,

p?(N − 1)]T in (11) can be expressed as the projection of
−insr given in (12) onto the simplexS in (13):

p? = [−insr]S . (16)
Corollary 2: The waterfilling solution in the form

p?(k) =
[

µ

wk
− σ2

k

|H(k)|2
]pmax(k)

0

, k = 0, . . . , N−1, (17)

where w = [w0, . . . , wN−1]
T is any positive vector, can

be expressed as the projection with respect to the weighted
Euclidean norm4 with weightsw0, . . . , wN−1, of −insr given
in (12) onto the simplexS in (13):

p? = [−insr]wS . (18)
The graphical interpretation of the waterfilling solution as

a Euclidean projector, for the single-user two-carriers case, is
given in Fig. 1: for anyinsr ≡ (insr1, insr2) corresponding
to a point in the interior of the gray region (e.g., pointA), the
waterfilling solution allocates power over both the channels.
If, instead, the vectorinsr is outside the gray region (e.g.,
point B), all the power is allocated only over one channel, the
one with the highest normalized gain.

B. Simultaneous Multiuser Waterfilling

In the multiuser scenario described in the gameG defined
in (5), the optimal power allocation of each user also depends
on the power allocation of the other users through the received
interference, according to the simultaneous multiuser waterfill-
ing solution in (8). As in the single-user case, invoking Lemma
1, we obtain the following.

Corollary 3: The waterfilling operatorWFq (p−q) in (9)
can be expressed as the projection of−insrq(p−q) onto the
simplexPq defined in (6):

WFq (p−q) = [−insrq(p−q)]Pq
, (19)

with insrq(p−q) defined in (10).

4The weighted Euclidean norm‖x‖2,w is defined as‖x‖2,w ,
(
P

i wi |xi|2)1/2 [20].



Fig. 1. Graphical interpretation of waterfilling solution (11) as a projection
onto the two-dimensional simplex.

Comparing (8) with (19), it is straightforward to see that all
the NEs of the gameG in (5) can be alternatively obtained
as the fixed-points of the mapping defined in (19), whose
existence is guaranteed by Proposition 1:

p?
q =

[−insrq(p?
−q)

]
Pq

, ∀q ∈ Ω. (20)

In [13], [16], [17], the authors provided the key properties of
the mapping in (19), that are instrumental to obtain sufficient
conditions for the convergence of the distributed iterative
algorithms, described in the next section.

V. D ISTRIBUTED ALGORITHMS

In this section we review the state of the art of the distributed
algorithms able to reach the NEs of the gameG in (5), along
with their convergence properties.

A. Sequential Iterative Waterfilling Revisited

The sequential IWFA is an instance of the Gauss-Seidel
scheme by which each user is sequentially updated [20]
based on the waterfilling mapping (9). In fact, in sequential
IWFA each player, sequentially and according to a fixed
order, maximizes its own rate (3), performing the single-user
waterfilling solution in (9), given the others as interference.
The sequential IWFA can be written in compact form as in
Algorithm 1 [13], [14].

Algorithm 1: Sequential Iterative Waterfilling

Setp(0)
q = any feasible power allocation;

for n = 0 : Number of iterations,

p(n+1)
q =

{
WFq

(
p(n)
−q

)
, if (n + 1) modQ = q,

p(n)
q , otherwise,

∀q ∈ Ω;

(21)

end

Observe that Algorithm 1 generalizes the well-known se-
quential iterative waterfilling algorithm proposed by Yu et al.
in [6] to the case where the spectral mask constraints are
explicitly taken into account. In fact, the algorithm in [6] can
be obtained as a special case of Algorithm 1, by removing the

spectral mask constraints in each setPq in (6), (i.e. setting
pmax

q (k) = +∞, ∀k, q), so that the waterfilling operator in (9)
becomes the classical waterfilling solution [22]:

WFq (p−q) = (µq1N − insrq)
+ , (22)

where (x)+ = max(0, x) and insrq , [insrq(0), . . . ,
insrq(N − 1)]T , with insrq(k) given in (10).

The following sufficient conditions for the convergence of
the sequential IWFA of [6] to the NE were derived in [6] (for
Q = 2) and in [7], [15] (forQ > 2):

max
k=0,...,N−1

{ |H̄rq(k)|2
|H̄qq(k)|2

}
dγ

qq

dγ
rq

Pr

Pq
<

1
Q− 1

, ∀ r, q 6= r ∈ Ω.

(C1)
Conditions (C1) are also sufficient for the (existence [6] and)
uniqueness of the equilibrium [6], [7].

However, in the presence of spectral mask constraints, the
results of [6], [7], [11], [15] cannot be used anymore to
guarantee the convergence of sequential IWFA as given in
Algorithm 1.

Recently, new sufficient conditions for the convergence of
sequential IWFA, larger than those given in [6], [7], [11] were
independently provided in [12] and [13], [14]. Specifically, in
[12], the sequential IWFA as given in Algorithm 1 was proved
to converge to the unique NE of the gameG in (5) if

ρ (Υ) < 1, (C2)

whereρ (Υ) denotes the spectral radius of the matrixΥ ,(
I−Hlow

)−1
H

upp
, with Hlow andH

upp
denoting the strictly

lower and strictly upper triangular part of the matrixH,
respectively, andH is defined, in our notation, as

[H]qr ,





max
k=0,··· ,N−1

{ |H̄rq(k)|2
|H̄qq(k)|2

}
dγ

qq

dγ
rq

Pr

Pq
, if q 6= r

1, otherwise.
(23)

In [13], [14], the authors obtained the following conditions
for the convergence of sequential IWFA.

Theorem 1 ([13], [14]): The sequential IWFA, described
in Algorithm 1, convergesgeometricallyto the unique NE of
the gameG in (5), if one of the two following set of conditions
is satisfied

1
wq

∑

r=1,r 6=q

max
k∈Dr∩Dq

{ |H̄rq(k)|2
|H̄qq(k)|2

}
dγ

qq

dγ
rq

Pr

Pq
wr < 1, ∀q ∈ Ω,

(C3)1
wr

∑

q=1,q 6=r

max
k∈Dr∩Dq

{ |H̄rq(k)|2
|H̄qq(k)|2

}
dγ

qq

dγ
rq

Pr

Pq
wq < 1, ∀r ∈ Ω,

(C4)
wherew , [w1, . . . , wQ]T is any positive vector, andDq is
defined asDq , {k ∈ {0, . . . , N − 1} : ∃ p−q ∈ P−q such
that [WFq (p−q)]k 6= 0

}
with WFq (·) given in (9).

Remark 1. The setDq defined in Theorem 1 represents the set
{0, . . . , N − 1} (possibly) deprived of the carrier indices that
userq would never use as the best response set to any strategies
used by the other users, for the given set of transmit power



and propagation channels. Observe that one can always choose
Dq = {0, . . . , N − 1}. However, less stringent conditions
are obtained by removing unnecessary subcarriers, which are
never used. A simple algorithm to estimate the setDq was
given in [13].

The optimal vectorw in (C3)-(C4) can be obtained as a
solution of a geometric programming [13].
Remark 2. If finite order constellations are used, Theorem 1
is still valid using the gap-approximation method [26], [27] as
pointed out in Sec. III. It is sufficient to replace each|Hqq(k)|2
in above conditions with|Hqq(k)|2 /Γq.

Remark 3. As expected, the convergence of the sequential
IWFA and the uniqueness of NE are ensured if the links are
sufficiently far apart from each other. In fact, from (C1), (C3)-
(C4) one infers that there exists a minimum distance beyond
which the convergence of the algorithm (and the uniqueness
of NE) is guaranteed, corresponding to the maximum level of
interference that may be tolerated by each receiver. But, the
most interesting result coming from (C3)-(C4) is that, contrary
to what one could infer from (C1) and (C2), the convergence
of the sequential IWFA is robust against the worst normal-
ized channels|Hrq(k)|2/ |Hqq(k)|2; in fact, the subchannels
corresponding to the highest ratios|Hrq(k)|2/|Hqq(k)|2 (and,
in particular, the subchannels where|Hqq(k)|2 is vanishing)
do not necessarily affect the convergence of the algorithm, as
their carrier indices may not belong to the setDq.

This property strongly enlarges the conditions for the con-
vergence, as shown in Fig. 2, where we compare the range
of validity of our convergence conditions (C3)-(C4) with (C1)
and (C2).
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In the figure, we plot the probability that conditions (C1),
(C2) and (C3)-(C4) are satisfied versus the ratiodrq/dqq

(which measures how far apart the links are from each other),
in a system withQ = 15 active users. For the sake of
simplicity, we assumeddrq = dqr, Pq = Pr ∀r, q, andw = 1.
We tested our conditions considering the setDq, obtained
using the algorithm given in [13].

We can see, from Fig. 2, that the probability of guaranteeing
convergence increases as the links become more and more
separated of each other (i.e. the ratiodrq/dqq increases).
More interestingly, the probability that (C3)-(C4) are satisfied,
differently from (C1) and (C2) exhibits a neat threshold be-
havior since it transits very rapidly from the non-convergence
guarantee to the almost certain convergence, as the inter-user
distance ratiodrq/dqq increases by a small percentage. This
shows that the convergence conditions depend, fundamentally,
on the inter-link distance, rather than on the channel realiza-
tions. Finally, it is worthwhile noticing that our conditions
have a broader validity than (C1) and (C2). As an example,
for a system with probability of guaranteeing convergence
of 0.99, conditions (C3)-(C4) only requiredrq/dqq ' 4.3,
whereas conditions (C1) and (C2) requiredrq/dqq > 45 and
drq/dqq ' 20, respectively. Furthermore, one can see that this
difference increases as the numberQ of links increases.
Remark 4. It is useful in practice to have a simple criterion to
stop the iterative algorithm, when the desired accuracy (defined
in terms of some distance’s measure from the NE) is reached.
The following result provides as error estimate (to be exact,
an upper bound of the error) obtained by the sequential IWFA
in each iteration.

Proposition 2 ([17]): Under condition (C3) of Theorem
1, the sequence of power vectors

{
p(n)

}
generated by the

sequential IWFA converges to the unique NEp? of the game
G in (5), satisfying the following error estimate:

‖p(n) − p?‖w2,b ≤
εw

1− εw
‖p(n) − p(n−1)‖w2,b, n = 1, 2, . . . ,

(24)
where ‖·‖w2,b denotes the weighted block maximum norm5,
and

εw, max
q∈Ω

1
wq

∑

r 6=q

max
k∈Dr∩Dq

{ |H̄rq(k)|2
|H̄qq(k)|2

}
dγ

qq

dγ
rq

Pr

Pq
wr < 1,

(25)
with w = [w1, . . . , wQ]T > 0 given by (C3), andDq defined
as in Theorem 1.
Remark 5. The sequential IWFA can be implemented in a
distributed way, since each user, to maximize its own rate,
needs only to measure the PSD of the thermal noise plus
the received multiuser interference (see (10)). However, the
inner loop in IWFA represents a bottleneck that slows down
the whole algorithm when the number of users increases. We
manage this issue in the next section.

B. Simultaneous Iterative Waterfilling

The simultaneous IWFA proposed in [9], [13], [14] is an
instance of the Jacobi scheme [20]: the users update their own
PSD simultaneouslyat each iteration, performing the single
user waterfilling solution (9), given the interference generated

5Given x, partitionated asx =
�
x1, . . . ,xQ

�
, with eachxq ∈ RN , and

a positive vectorw = [w1, . . . , wQ]T , the weighted block maximum norm,

denoted by‖x‖w2,b , is defined as‖x‖w2,b = maxq
‖xq‖2

wq
, where‖·‖2 is

the Euclidean norm.



by the other users in theprevious iteration. The sequential
IWFA is described in Algorithm 2 [9], [13], [14].

Algorithm 2: Simultaneous Iterative Waterfilling

Setp(0)
q = any feasible power allocation;

for n = 0 : Number of iterations,

p(n+1)
q = WFq

(
p(n)
−q

)
, ∀q ∈ Ω; (26)

end

Sufficient conditions for the convergence of the sequential
IWFA are given in the following.

Theorem 2 ([13], [14]): SIWFA, given in Algorithm 2,
convergesgeometricallyto the unique NE of the gameG in
(5) if

ρ
(
HT (k)H(k)

)
< 1, ∀k = 0, . . . , N − 1, (C4)

where ρ
(
HT (k)H(k)

)
denotes the spectral radius of the

matrix HT (k)H(k) [20], andH(k) is defined as

[H(k)]qr ,





|H̄rq(k)|2
|H̄qq(k)|2

dγ
qq

dγ
rq

Pr

Pq
, if k ∈ Dq ∩ Dr, q 6= r

0, otherwise.
(27)

To give additional insight into the physical interpretation
of sufficient conditions for the convergence of SIWFA, we
provide the following.

Corollary 4 ([13], [14]): SIWFA, given in Algorithm 2,
convergesgeometricallyto the unique NE of the gameG in
(5) if conditions of Theorem 1 are satisfied.
Remark 1. The simultaneous IWFA keeps the most appealing
features of the IWFA, namely its low-complexity and dis-
tributed nature. In addition, thanks to the Jacobi-based update,
the simultaneous IWFA is expected to be faster than the
sequential IWFA, especially if the number of active users in
the network is large.

To measure the rate of convergence of the these two
algorithms, in [17] the authors provided an upper bound of
the the asymptotic convergence exponent for the worst-case
convergence rate, defined as

d = − sup
p(0) 6=p?

lim
n→∞

1
n

ln

(∥∥p(n) − p?
∥∥

∥∥p(0) − p?
∥∥

)
, (28)

wherep? andp(n) denote the NE of the gameG in (5) and
the power allocation vector obtained by the algorithm at the
n-th iteration, respectively. The factordasym as defined in (28)
gives the (asymptotic) number of iterations for the error to
decrease by the factor1/e.

Since the waterfilling operator is not a monotone mapping,
only (upper) bounds for the asymptotic convergence exponent
can be obtained [28], as given in the following.

Proposition 3 ([17]): Let dupp
seq anddupp

sim be the upper bound
of d in (28) obtained using sequential IWFA in Algorithm 1
and simultaneous IWFA in Algorithm 2, respectively. Under

condition (C3) of Corollary Theorem 1, we have

dupp
sim = − log


max

q

1
wq

∑

r 6=q

max
k∈Dr∩Dq

{ |H̄rq(k)|2
|H̄qq(k)|2

}
dγ

qq

dγ
rq

Pr

Pq
wr


 ,

(29)

dupp
seq = dupp

seq/Q. (30)
Expression (29) shows that the convergence speed of the

algorithms depends, as expected, on the level of interference:
the convergence speed increases as the interference level
decreases.

Since dupp
sim and dupp

seq are only bounds of the asymptotic
convergence exponent, a comparison between the sequential
IWFA and the simultaneous IWFA bydupp

sim and dupp
seq might

not be fair. These bound becomes meaningful ifdupp
sim anddupp

seq

approximate with equalitydsim anddseq, respectively, for some
initial conditions (cf. [28]).
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In Fig. 3 we compare the performance of the sequential
and simultaneous IWFA, in terms of convergence speed. We
consider a network composed of 50 links and we show the rate
evolution of three of the links corresponding to the sequential
IWFA and simultaneous IWFA as a function of the iteration
indexn as defined in Algorithms 1 and 2. To make the figure
not excessively overcrowded, we report only the curves of3
out of 50 links. As expected, the sequential IWFA is slower
than the simultaneous IWFA, especially if the number of active
links Q is large, since each user is forced to wait for all the
other users scheduled before updating its power allocation.
Remark 2. As for the sequential IWFA, also for the simul-
taneous IWFA one can obtain an upper bound of the error
estimates generated by the algorithm, similarly to the results
given in Proposition 2 [17].

C. Asynchronous Iterative Waterfilling

We show now that the sequential and simultaneous IWFAs
described in the previous sections are just special cases of a
more general unified framework, based on the asynchronous
IWFA [16], [17]. The asynchronous IWFA is an instance of the



totally asynchronous scheme of [20]: all the users maximize
their own rate in atotally asynchronousway via the single
user waterfilling solution. According to this asynchronous
procedure, some users are allowed to update their strategy
more frequently than the others, and they might perform these
updates usingoutdated information on the interference caused
from the others. We show in the following that, whatever the
asynchronous mechanism is, such a procedure converges to a
stable NE of the gameG in (5), under mild conditions on the
multiuser interference.

In order to provide a formal description of the asynchronous
IWFA, we need some preliminary definitions, as we introduce
next. We assume, without loss of generality, that the set of
times at which one or more users update their strategies is
the discrete setT = N+ = {0, 1, 2, . . .} . Let p(n)

q denote the
power allocation of userq at then-th iteration, and letTq ⊆ T

denote the set of timesn at whichp(n)
q is updated (thus, at time

n /∈ Tq, p(n)
q is left unchanged). Letτ q

r (n) denote the most
recent time at which the interference from userr is perceived
by userq at the n-th iteration (observe thatτ q

r (n) satisfies
0 ≤ τ q

r (n) ≤ n). Hence, if userq updates its power allocation
at the n-th iteration, then it waterfills, according to (9), the
interference level caused by

p(τq(n))
−q ,

(
p(τq

1 (n))
1 , . . . ,p

(τq
q−1(n))

q−1 ,p
(τq

q+1(n))

q+1 , . . . ,p
(τq

Q(n))

Q

)
.

(31)
The overall system is said to be totally asynchronous if the

following weak assumptions are satisfied for eachq [20]: A1)
0 ≤ τ q

r (n) ≤ n; A2) limk→∞ τ q
r (nk) = +∞; A3) |Tq| = ∞,

where {nk} is a sequence of elements inTq that tends to
infinity. Assumption A1)-A3) are standard in asynchronous
convergence theory [20], and they are fulfilled in any practical
implementation.

Using the above notation, the asynchronous IWFA is de-
scribed in Algorithm 3 [14], [17].

Algorithm 3: Asynchronous Iterative Waterfilling

Setp(0)
q = any feasible power allocation;

for n = 0 : Number of iterations,

p(n+1)
q =

{
WFq

(
p(τq(n))
−q

)
, if n ∈ Tq,

p(n)
q , otherwise;

∀q ∈ Ω

(32)

end

Remark 1. Since the asynchronous IWFA is based on the
waterfilling solution (8), it can be implemented in a distributed
way, where each user, to maximize its own rate, only needs
to locally measure the PSD of the interference-plus-noise
(see (4)) and waterfill over this level. More interestingly,
according to the asynchronous scheme, the users may update
their strategies using a potentially outdated version of the PSD
of the interference and, furthermore, some users are allowed to
update their power allocation more often than others, without
affecting the convergence of the algorithm. These features

strongly relax the constraints required on the synchronization
of the updates of the users for the sequential IWFA [6], [7]
and simultaneous IWFA [13], [14].
Any particular choice of the sets{Tq} and the values of
the variables{τ q

r (n)} will provide a different scheduling of
the users in the updates of the PSDs. The interesting result
is that this choice does not affect the convergence of the
algorithm (provided that A1)-A3) are satisfied), as proved in
the following.

Theorem 3 ([14], [17]): The asynchronous IWFA, de-
scribed in Algorithm 3, converges to the unique NE of the
gameG in (5), if the following condition is satisfied

ρ (Hmax) < 1, (C5)
where ρ (Hmax) denotes the spectral radius of the matrix
Hmax [20], defined as

[Hmax]qr =





max
k∈Dr∩Dq

{ |H̄rq(k)|2
|H̄qq(k)|2

}
dγ

qq

dγ
rq

Pr

Pq
, if r 6= q,

0, otherwise,
(33)

andDq is defined as in Theorem 1.
Sufficient conditions for (C5) are given in the following.
Corollary 5 ([14], [17]): The asynchronous IWFA, de-

scribed in Algorithm 3, converges to the unique NE of the
gameG in (5), if conditions of Theorem 1 are satisfied.
Remark 2. The asynchronous IWFA introduced in the previ-
ous section represents a general framework to solve the rate
maximization gameG in (5), as it contains as special cases
a plethora of algorithms, each one obtained by a possible
choice of the scheduling of the users in the updating procedure
(i.e. the parameters{τ q

r (n)} and{Tq}). The important result
here is that all the algorithms resulting as special cases of the
asynchronous IWFA are guaranteed to reach the unique NE
of the game, under the same set of convergence conditions
(Theorem 3). For example the sequential and simultaneous
IWFAs introduced in the previous sections are special cases
of the asynchronous IWFA described in Algorithm 3, using
the following parametersTq = {kQ+q, k ∈ N+}, τ q

r (n) = n
andTq = N+, τ q

r (n) = n, ∀r, q, respectively.
By direct product of this generalized framework, one infer

that the convergence for these two algorithms is robust to
situations where some users may fail to follow the sequential
or simultaneous scheduling of updates. What is affected in
this case is only the convergence time. Moreover, Theorem 3
provides alternative conditions for the convergence of both the
sequential and simultaneous IWFAs.

VI. A SYNCHRONOUSITERATIVE WATERFILLING IN THE

PRESENCE OFTIME AND FREQUENCYOFFSETS

In large scale distributed systems, where no cooperation
among different users is allowed, the assumption of perfect
synchronization in time and/or frequency among the transmis-
sions of all the links, as made in A.3 of Sec. II, may not be
satisfied, because of large propagation delays, timing errors,
and/or transmit-receive oscillators’ mismatch. Whenever this
happens, multiuser Inter-Carrier Interference (ICI) arises, since



the signal transmitted by each source over one carrier interferes
with the other links not only at the same carrier, but also at
neighboring frequencies.

As every link results in a different (unknown)
time/frequency shift from the others, the loss of the
orthogonality among the carriers cannot be recovered by
trying to compensate time/frequency offsets with a proper
tuning of each local oscillator, as in single-user systems.
The correction made with respect to one user would in
fact misalign other already aligned users. Moreover, as our
interest is in totally distributed algorithms, we do not consider
multiuser ICI cancelation, and ICI is treated as additive
noise at the receivers, which leads to carrier-coupling in the
(information) rate of each link.

In the presence of ICI, the game theoretic approach pro-
posed in Sec. III is not adequate anymore, since it ignores the
presence of carrier-coupling in the expression of the rates, and
thus the resulting NEs can lead to poor performance. The main
scope of this section is then to reformulate the competitive
optimization proposed in Section III, taking explicitly into
account the presence of multiuser ICI, due to time and/or
frequency offsets, and show how to modify the asynchronous
IWFA proposed in Algorithm 3 so that it still converges to the
unique NE of the new game [17], [29].

A. Game Theoretic Formulation in the Presence of ICI

Given the multiuser ICI as additive noise, an unified expres-
sion for the SINRsinrq(k) on thek-th carrier for theq-th link
in both the cases of time and frequency offsets is obtained in
[17], [29]:

sinrq(k) =
|Hqq(k)|2 pq(k)

σ2
wq

(k) +
∑

r 6=q

∑
ḱ ηrq(k − ḱ) |Hrq(ḱ)|2 pr(ḱ)

,

(34)

whereηrq(k) is the ICI function defined as

ηrq(k) ,





2
N2

sin2
(

π
N kνrq

)

sin2
(

π
N k

) , if k 6= 0

ν2
rq + (N − νrq)2

N2
, otherwise,

(35)

in the case of time synchronization errors, and as

ηrq(k) , 1
N2

sin2 (π (k −N∆frq))
sin2

(
π
N (k −N∆frq)

) . (36)

in the case of frequency synchronization offsets [30]. In (35),
νrq denotes the (unknown) time offset at receiverq between
the block transmitted from userq and the block transmitted
from userr; whereas in (36)∆frq is the carrier frequency
offset between transmitterr and receiverq.

Taking ICI into account, the structure of the rate maximiza-
tion game in both cases of time and frequency offsets becomes

G̃ =
{

Ω, {Pq}q∈Ω, {R̃q}q∈Ω

}
, (37)

whereΩ andPq are defined as in the original gameG in (7),
R̃q is defined in (3), withsinrq(k) given in (34), and the ICI

functionηrq(k) is defined in (35) for time offsets, and in (36)
for frequency offsets6.

All the NEs of the modified gamẽG in (37) are reached
using, for each transmitter, Gaussian signaling and a power
allocation satisfying the simultaneous waterfilling solution as
in (8), where the waterfilling operatorWFq (·) is replaced with
the following

[WFq (p−q)]k , [µq − insrq,k(p−q)]
pmax

q (k)

0 , k = 0, . . . , N−1,
(38)

with

insrq,k(p−q) ,
σ2

wq
(k) +

∑
r 6=q

∑
ḱ ηrq(k − ḱ) |Hrq(ḱ)|2 pr(ḱ)

|Hqq(k)|2 .

(39)
The water-levelµq in (38) is chosen to satisfy the power
constraint(1/N)

∑N−1
k=0 p?

q(k) = 1.

The existence of at least one NE for the gameG̃ in (37) is
guaranteed by the following.

Proposition 4 ([17]): The gameG̃ in (37) always admits at
least one NE in pure-strategies, for any set of time/frequency
offsets, channel realizations, power and spectral mask con-
straints.

The (unique) NE of the gamẽG can be reached in atotally
asynchronousway (in the sense described in Sec. V-C), still
using the asynchronous IWFA given in Algorithm 3, provided
that the waterfilling operatorWFq (·) in (32) be replaced by
the modified expression given in (38).
Remark 1. Also in the presence of ICI, the asynchronous
IWFA can be implemented in a totally distributed way
since it just needs a local measure of the multiuser ICI and
interference. More importantly, it does not require knowledge
of the unknowntime/frequency offsets by each link.
Remark 2. The convergence of the asynchronous IWFA in the
presence of ICI is guaranteed under the following sufficient
conditions.

Theorem 4 ([17]): The asynchronous IWFA in the presence
of ICI converges to the unique NE of the gamẽG in (37), if
the following condition is satisfied

ρ(H̃max) < 1, (C6)

whereρ(H̃max) denotes the spectral radius of the matrixH̃
[20], defined as

[H̃max]qr =
{
‖Υ̃rqH̃rq‖2, if r 6= q,
0, otherwise,

(40)

with

[Υ̃rq]kḱ =
{

ηrq(k − ḱ), if k ∈ D̃q and ḱ ∈ D̃r,
0, otherwise,

(41)

6In the presence of both time and frequency offsets, an additional term of
ICI has to be considered in writing the SINR. Since this term is similar to
the one already written in (34), for the sake of notation we will not consider
it in the following.



andH̃rq is a diagonal matrix, whose diagonal entries are:

[H̃rq]kk =





|H̄rq(k)|2
|H̄qq(k)|2

dγ
qq

dγ
rq

Pr

Pq
, if k ∈ D̃r,

0, otherwise.
(42)

The setD̃q is defined as in Theorem 1, withWFq (·) given in
(38).

Corollary 6 ([17]): A sufficient condition for (C6) is given
by one of the following

1
wq

∑

r=1,r 6=q

∥∥∥Υ̃rq

∥∥∥
2

max
k∈ eDr

{ |H̄rq(k)|2
|H̄qq(k)|2

}
dγ

qq

dγ
rq

Pr

Pq
wr < 1, ∀q ∈ Ω,

(C7)1
wr

∑

q=1,q 6=r

∥∥∥Υ̃rq

∥∥∥
2

max
k∈ eDr

{ |H̄rq(k)|2
|H̄qq(k)|2

}
dγ

qq

dγ
rq

Pr

Pq
wq < 1, ∀r ∈ Ω,

(C8)
whereΥ̃rq is defined in (41) andw , [w1, . . . , wQ]T is any
positive vector.
Remark 3. As expected, in the presence of ICI, the conver-
gence of the asynchronous IWFA is affected by both the MUI
and the coupling due to the ICI. Observe that in the absence
of ICI condition (C6) coincides with (C5).

VII. C ONCLUSION

In this paper, we have provided an overview of the current
results on the competitive rate maximization problem in Gaus-
sian frequency-selective interference channels. We have shown
that the totally asynchronous IWFA proposed in [14], [17]
represents a unified framework that collects, as special cases,
all the previous results in the literature. In fact, we showed that
the well-known sequential IWFA and the recently proposed si-
multaneous IWFA, are an instance of the asynchronous IWFA.
The main advantage of the asynchronous IWFA is that no rigid
scheduling in the updates of the users is required, since the
users are allowed to update their own strategies in a totally
asynchronous way. This indeed relaxes the synchronization
requirements among the users needed in the sequential and
simultaneous IWFAs. We then have provided a unified set
of sufficient conditions ensuring the convergence of all the
algorithms that can be obtained from the asynchronous IWFA
as special cases. In addition, we have provided results on
the convergence speed and on the error estimation at each
iteration. Finally, we have considered the extension of the
asynchronous IWFA to the case where there are time and/or
frequency offsets among the links
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