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Abstract— In a network which does not differentiate among
users, the equilibrium rate for any user is primarily decided by
the congestion control being used. By changing their congestion
control schemes, “uncooperative” users can gain more than their
fair share of bandwidth, at the cost of cooperative users. We
present a control-theoretic algorithm to counteract uncooperative
users by adjusting the prices fed back to them. This algorithm is
implemented at the edge of the network (e.g. by ISPs), and can
be used with any congestion notification policy deployed by the
network. Our design achieves a separation of time-scales between
the network congestion feedback loop and the price-adjustment
loop, thus recovering the fair allocation of bandwidth upon a fast
transient phase.

I. INTRODUCTION

Existing Internet protocols rely on cooperative behavior of
end users, and the equilibrium rate for any user is primarily
decided by the congestion control being used [1]. With new
software advancements, “uncooperative” users can change
their congestion control schemes to gain more than their fair
share of bandwidth at the cost of cooperative users, such as
TCP unfriendliness to cooperative users, congestion collapse
[3], [4], and a traffic-based denial-of-service [5], [6]. Detecting
uncooperative users, and correcting their flow rates to comply
with cooperative rates, and thus, improving quality of service
for individual flows becomes an important emerging problem
in network management.

In the literature, the majority of correction mechanisms
proposed are “router-based” that is, they modify the router
algorithm to detect and limit uncooperative flows, e.g. Active
Queue Management (AQM) schemes or scheduling disci-
plines. In [3] and [4], the authors study AQM schemes,
and investigate the effect of uncooperative flows on network
throughput and loss rates. Flow Random Early Drop (FRED),
a modified RED scheme, is proposed in [7] to detect unco-
operative users, and to limit their rates by increasing their
packet drop probabilities. In [8], the authors combine the
BLUE queue management algorithm with a Bloom filter to
detect and rate-limit uncooperative flows. Several other rate-
based schemes are surveyed in [9]. Scheduling schemes, such

as ack-spacing, have been suggested to manage uncooperative
flows in [10].

The main drawback of “router-based” rectification mech-
anisms, however, is that they require the upgrades of core
network, which is typically costly and hard to be deployed syn-
chronically. Thus, edge-based price-adjustment mechanisms
have been proposed in [11] and [12] recently, which manage
uncooperative flows only at edge routers. A significant advan-
tage of this approach is that it avoids per flow management at
routers and can be implemented gradually by ISPs. By esti-
mating each flow’s incoming rate and using it to label flow’s
packet, the Core-Stateless Fair Queueing (CSFQ) algorithm in
[11] computes the forwarding probability from link fair rate
estimation. In [12], the authors manage uncooperative flows
by mapping their utility function to a specified target network
behavior at the edge. These two studies, however, either only
applying to Fair Queueing or requiring to estimate a specific
form of utility functions (corresponding to a specific form of
TCP), are thus restricted to a specific network to achieve the
edge-based price adjustment.

In this paper, rather than address a specific protocol (or net-
work), we develop our design within the optimization frame-
work of Kelly [1], [2], [13], [14], [15], which encompasses
numerous protocols such as TCP Reno, TCP Vegas, FAST
[16], [17] etc. We use tools from control theory and develop
an edge-based price-adjustment algorithm, which recovers
the cooperative share of bandwidth prescribed in Kelly’s
framework. With a new feedback loop implemented at the
edge router, and, hence, referred to as the “edge supervisor”,
our algorithm detects uncooperative users by comparing their
sending rates with “audit” rates calculated according to an
ideal, cooperative, model, and increases their price feedback.
Our algorithm is independent of congestion notification policy
deployed by the network, and thus, can be used with any
Active Queue Management scheme, as well as Drop Tail
queueing.

We design the price adjustment loop to evolve in a faster
time-scale than the existing price feedback loop from the
links. This two-time-scale design guarantees that uncooper-



ative flows are rectified during a fast transient phase without
interfering stability and convergence properties of the desired
cooperative network model, the stability of which can be
recovered afterwards. Indeed, using tools from singular per-
turbations theory [18], [19, Chapter 11], we prove that the fast
and slow feedback loops, when combined, ensure convergence
of the sending rates to their cooperative values. The established
“semi-global” convergence [19] implies that any desired region
of attraction can be achieved by increasing the feedback gain
of the price-adjustment loop.

Section 2 overviews Kelly’s primal and dual flow control
algorithms. Section 3 studies the primal algorithm and presents
our price adjustment design for uncooperative users. Section
4 extends this design to the dual algorithm. In Section 5, we
implement our price adjustment algorithms in NS-2 and eval-
uate their performance for various single and multi-bottleneck
topologies, for both marking and dropping congestion noti-
fication policies, and with and without AQM schemes. In
particular, we show that given a standard network behavior like
TCP-Friendliness, our algorithm forces uncooperative users to
comply with their fair-share of the bandwidth. Conclusions are
given in Section 6. In the paper, some proofs are omitted due
to space limitations.

II. KELLY’S NETWORK FLOW MODELS

Network flows are modeled as the interconnection of users
and communication links in Kelly’s framework [1], as shown
in Figure 1. Packets from each users (with sending rate xi)
are routed through the links with the aggregate link rate

y = Rf x (1)

where Rf is the forward routing matrix. Each link j has a
fixed capacity cj , and based on its congestion and queue size,
a link price, pj is computed:

pj = hj (yj) , j = 1, · · · , L. (2)

The link price information is then sent back to each source
with the aggregate source price,

q = Rbp. (3)

where Rb = RT
f , since the links only feed back price

information to the users that utilize them.

Kelly formulated the flow control task as a static op-
timization, and dynamic stabilization, problem. The static
optimization problem computes the desired equilibrium by
maximizing the sum of the source utility functions Ui (xi),
while complying with capacity constraints in the links:

max
x≥0

N∑

i=1

Ui (xi) subject to Rx
︸︷︷︸

y

≤ c. (4)

The dynamic problem is to design the source rate update
law based on the aggregate price, and the link price update
law based on the aggregate rate, to guarantee stability of the

Fig. 1. Network flow control model.

equilibrium. For this problem, Kelly introduced two dynamic
algorithms: The Primal Algorithm consists of a first order
source update law, and a static penalty function for the link
to keep the aggregate rate below its capacity:

ẋi = κi (U ′
i (xi) − qi) , pj = hj (yj) . (5)

The penalty functions hl (yl) are designed to enforce the link
capacity constraints yl ≤ cl, l = 1, · · · , L, i.e., to keep the
aggregate rate yl below its capacity cl.

The Dual Algorithm consists of a static source update and
a first order dynamic price update:

xi = U ′−1

i (qi) , ṗj = γj (yj − cj)
+

pj
(6)

where the positive projection (·)+ for a general function f (·)
is defined as

(f (x))+x :=

{
f (x) if x > 0, or x = 0 and f (x) ≥ 0

0 if x = 0 and f (x) < 0.

From (6), the unique equilibrium for the dual control law is
obtained from the equations

q∗i = U ′
i (x∗

i ) , i = 1, · · · , N (7)

p∗l

{
= 0 if y∗

l ≤ cl

≥ 0 if y∗
l = cl

l = 1, · · · , L, (8)

which as shown in [1], correspond to the solution of the
optimization problem (4), in which pl’s play the role of
Lagrange multipliers for the capacity constraints. For the
primal control law (5), the equilibrium obtained from

q∗i = U ′
i (x∗

i ) , i = 1, · · · , N (9)

p∗l = hl (y
∗
l ) l = 1, · · · , L, (10)

approximates the optimality condition (7)-(8) with the help
of the penalty functions hl (yl). The stability of these two
algorithms and their extensions has been established in [2],
[13], [20], [21], [22], [14], [15], [17], [24].



III. DETECTING AND RECTIFYING UNCOOPERATIVE
USERS IN KELLY’S PRIMAL ALGORITHM

For Kelly’s primal network flow model, we assume that
some users, which we call “uncooperative”, use more aggres-
sive utility functions to increase their share of bandwidth; that
is, instead of Ui (xi) in (5), they implement Ũi (xi):

ẋi = κi

(

Ũ ′
i (xi) − q̃i

)

. (11)

To rectify these uncooperative users, we propose that the
supervisor at the edge of the network (e.g., internet service
providers) adjusts the price feedback from its nominal value
qi to q̃i. An ideal design of q̃i would be

q̃i = qi + Ũ ′
i (xi) − U ′

i (xi) , (12)

which replaces Ũ ′
i (xi) in (11) with the cooperative U ′

i (xi).
However, this design is not implementable because Ũi (xi) is
not known to the supervisor. Instead, in our design, we obtain
an estimate of Ũi (x) with the help of the cooperative reference
model:

˙̂xi = κi (U ′
i (xi) − qi) , x̂i (0) = xi (0) . (13)

The x̂i thus calculated differs from xi by ei := x̂i−xi, which,
from (11)-(13), is governed by

ėi = κi

(

q̃i − qi − Ũ ′
i (xi) + U ′

i (xi)
)

. (14)

This means that, if we design the price adjustment to be

q̃i = qi − ρiei, (15)

with a sufficiently high gain ρi > 0, then the variable
ei evolves in a faster time scale than xi, and reaches the
quasi-steady state ρiei ≈ −Ũ ′

i (xi) + U ′
i (xi). Thus, after a

fast transient, our design (13), (15) approximates the non-
implementable scheme (12). For cooperative users, where
Ũi (xi) = Ui (xi), (13) and (15) yield q̃i = qi, which means
that no price adjustment is applied.

Fig. 2. Price adjustment for uncooperative users in Kelly’s primal algorithm.

The algorithm (13), (15) is depicted with a block diagram
in Figure 2. In implementation, Ui in (13) is not necessarily
the same for each user. This means that the supervisor can
intentionally set up different utility functions, and use this
flexibility to only adjust high bandwidth flows while leaving
low bandwidth flows without rectification. The edge router
performs the price adjustment (15) every round trip time. The
phrase ”fast time scale” is used to indicate that when ρ is large
in (15), the supervisor subsystem approaches its quasi steady-
state faster than the dynamics of the network. In Theorem 1
below, we use tools from singular-perturbations theory [18],
[19] to prove that (13), (15) achieves asymptotic stability of
the cooperative value x∗ in (9)-(10):

Theorem 1: Consider the network (1)-(3), where some users
implement the uncooperative algorithm (11), rather than (5).
Suppose Ui (xi) : R+ → R are increasing and sufficiently
smooth functions, Ui

′′ (xi) < 0 ∀xi ∈ R+, and Ui (xi) →
−∞ and Ũi (xi) → −∞ as xi → 0 for i = 1, · · · , N . Then,
the price adjustment algorithm (13), (15) ensures that, for any
compact set Ω ⊂ RN

+ of initial conditions x (0), there exists
ρ∗i > 0 such that, if ρi > ρ∗i , then x (t) and x̂ (t) remain
bounded, and x (t) converges to the cooperative value x∗ in
(9)-(10).

The assumptions of Theorem 1 on the utility functions
Ui (xi) are standard in the literature [1], [14], [25]. In par-
ticular, the assumption Ui (xi) → −∞ as xi → 0 ensures
that RN

+ is positively-invariant, i.e., if x is initially in RN
+ , it

will remain in RN
+ for all t ≥ 0. It is satisfied by commonly

used utility functions such as Ui (xi) = − ai

xi
(variant of

TCP Reno) and Ui (xi) = ai log xi (TCP Vegas) [14]. For
others, such as Ui (xi) =

√
2

τi
tan−1

(
τixi√

2

)

(TCP Reno), we
can modify Theorem 1 and prove stability by using positive
projection functions as in [15]. It is reasonable to make the
same assumptions for Ũ ′

i (·) as for U ′
i (·), because cheating

users would typically change the parameters of the nominal
utility functions, such as ai in TCP Vegas above. However,
this assumption excludes some traditional unresponsive flows
referred to as UDP or CBR, in which, users send data at a
constant rate without acknowledging any feedback from the
network.

In Theorem 1, although we require that the edge supervisor
set x̂ (0) equal to x (0), it is not difficult to show that the
proof holds true for small errors between x̂ (0) and x (0). Time
delays in the network are not considered in Theorem 1. We
wish to emphasize, however, that the high-gain component of
our feedback design is limited to the local price adjustment
loop, and not the price feedback loop, which is subject to
the network delays. Thus, our correction algorithm can be
combined with congestion control algorithms that are robust
to time delays, such those in [23]–[25]. 2

Proof: To represent the algorithm (11), (13) and (15) in the
standard singularly perturbed form [18], [19], we let

ωi := ρiei (16)

εi =
1

ρi

(17)



and obtain:
ẋi = κi

(

Ũ ′
i (xi) − qi + ωi

)

. (18)

εiω̇i = −κi

(

ωi + Ũ ′
i (xi) − U ′

i (xi)
)

. (19)

An inspection of (18) and (19) shows that the equilibrium
for xi is same as the cooperative x∗

i in (9)-(10), and the
equilibrium for ωi is

ω∗
i = −Ũ ′

i (x∗
i ) + U ′

i (x∗
i ) . (20)

To shift this equilibrium to 0, we define

$i := ωi + Ũ ′
i (xi) − U ′

i (xi) (21)

and rewrite (18)- (19) as

ẋ = K
(
U ′ (x) − RT h (Rx) + $

)

ε$̇=−K



$− ε
∂
(

Ũ ′ (x)−U ′ (x)
)

∂x

(
U ′ (x)−RT h (Rx)+$

)





(22)
where we use the vector notation x =
[

x1 x2 · · · xN

]T , $ =
[

$1 $2 · · · $N

]T .
K = diag {κi} and ε = diag {εi} are diagonal matrixes of
the source controller gains κi > 0 and εi > 0, i = 1, · · · , N ,
and U ′ (x) ∈ RN is a vector whose ith component is the
derivative U ′

i (xi) of the utility function Ui (xi). Likewise,
h (y) ∈ RL and Ũ ′ (x) ∈ RN consist of the penalty functions
hl (yl) and uncooperative utility functions Ũ ′

i (xi).
To prove asymptotic stability of (x, $) = (x∗, 0) we use

the Lyapunov function

V =
N∑

i=1

(− (Ui (xi) − Ui (x∗
i )) + q∗i (xi − x∗

i ))

+
L∑

l=1

(
∫ yl

y∗
l

(hl (σ) − hl (y
∗
l )) dσ

)

+
1

2
$T K−1$

(23)

in which, the first and the second terms, are identical to the
Lyapunov function used in [1], [15] for the proof of the
stability of Kelly’s Primal algorithm, while the third term
is a quadratic Lyapunov function for the dynamics of $
subsystem. This Lyapunov function is positive definite and
radially unbounded in RN

+ , and yields the derivative

V̇ ≤− f1 (x)T Kf1 (x) − $T ε−1$

+ $T
∂
(

Ũ ′ (x) − U ′ (x)
)

∂x
$ + $T f2 (x) ,

(24)

where
f1 (x) := U ′ (x) − RT h (Rx) , (25)

f2 (x) :=
∂
(

Ũ ′ (x) − U ′ (x)
)

∂x
((
U ′ (x)−RT h (Rx)

)
+K

(
−U ′ (x)+RT h (Rx)

))
.

(26)

We show in Lemma 1 below that, on any compact set of
(x, $) that includes (x∗, 0), we can choose ε small enough

to ensure V̇ is negative definite. The conclusion of Theorem
1 follows from this lemma because, from x̂ (0) = x (0), we
have ω (0) = 0 and, thus $ (0) = −Ũ ′ (x (0)) + U ′ (x (0)),
which means that for any set Ω as in the statement of the
theorem, we can find a corresponding region of attraction
in (x, $) coordinates, which does not depend on ε. Since
V is also independent of ε, we can select a level set of V
that encompasses this region of attraction, and design ε from
Lemma 1 to render V̇ negative definite in this level set. 2

Lemma 1: Let the assumptions of Theorem 1 hold, and let
f1 (x) and f2 (x) be defined as in (25)-(26). Then, for any
compact set Λ of (x, $) that includes (x∗, 0), there exists
ε∗ > 0 such that if εi ∈ (0, ε∗] for all i = 1, · · · , N , then
V̇ (x) given in (24) is negative definite on Λ.

In implementation, it may be necessary to know how large
the gain ρi must be selected. While, in principle, such a
value can be obtained from the calculation of ρ∗

i in the proof,
this value may be conservative, and depends on the class of
utility functions Ũi (·) employed by uncooperative users. A
more practical value can be obtained by monitoring whether
the uncooperative rates persists and by increasing the gain ρi

accordingly. A further discussion on the choice of this gain is
given in Section VI.C.

IV. PRICE ADJUSTMENT FOR KELLY’S DUAL ALGORITHM

We next study Kelly’s dual algorithm where uncooperative
users implement, instead of (6),

xi = Ũ ′−1

i (q̃i) . (27)

We assume Ũ ′−1

i (s) ≥ U ′−1

i (s), ∀s ≥ 0, which means that
the uncooperative sending rate is larger than the cooperative
rate. To counteract such uncooperative users, the supervisor
must replace the nominal price feedback qi with

q̃i = Ũ ′
i ◦ U ′−1

i (qi) , (28)

which, when substituted in (27), results in the cooperative
rate (6). Because a direct solution of (28) would require the
knowledge of Ũ ′

i (·), which is not available to the supervisor,
we propose the dynamic algorithm

q̃i = qi + ωi, (29)

ω̇i = ρi

(
xi − U ′−1

i (qi)
)
, ωi (0) = 0, ρi > 0, (30)

depicted in Figure 3. The equilibrium of (30) is achieved when

xi = U ′−1

i (qi) , (31)

which indeed coincides with the cooperative rate (6). We
achieve asymptotic stability of this equilibrium, again, by
designing the adaptation gain ρi to be sufficiently high:

Theorem 2: Consider the network (1)-(3), (6) and (27),
where Ui (xi) and Ũi (xi) are as in Theorem 1, and
Ũ ′−1

i (s) ≥ U ′−1

i (s), ∀s ∈ R+. Then, the price adjustment
algorithm (27), (30), ensures that, for any compact set Ω ⊂
RN

+ of initial conditions p (0), there exists ρ∗
i > 0 such that,



Fig. 3. Price adjustment for uncooperative users in Kelly’s dual algorithm.

if ρi > ρ∗i , then p (t), x (t) and q̃ (t) remain bounded, and
x (t) and p (t) converge to the cooperative values x∗ and p∗

in (7)-(8).

Proof: To represent the algorithm (27), (30) in the standard
singular perturbed form, we let

εi =
1

ρi

(32)

and obtain:

εω̇i = Ũ ′−1

i (qi + ωi) − U ′−1

i (qi) . (33)

This means that the equilibrium for ωi satisfies

Ũ ′−1

i (q∗i + ω∗
i ) = U ′−1

i (q∗i ) (34)

which implies, from (27), that

x∗
i = Ũ ′−1

i (q∗i + ω∗
i ) = U ′−1

i (q∗i ) . (35)

We thus conclude from (8) that the equilibria for xi, qi and
pj are the same as the cooperative x∗

i , q∗i and p∗j . To shift the
equilibrium ω∗

i in (34) to 0, we define

$i = ωi − Φi (qi) (36)

where
Φi (qi) = Ũ ′

i ◦ U ′−1

i (qi) − qi, (37)

and represent the system (11)-(15) and (33) as

ṗ = Γ
(

RU ′−1
(
RT p

)
+ ∆ (p, $) − c

)+

p

ε$̇ =Ũ ′−1 (q + $ + Φ (q)) − U ′−1
(q)

−ε
∂Φ (q)

∂q
RT Γ

(

RU ′−1 (
RT p

)
+∆ (p, $)−c

)+

p
.

(38)

where p =
[

p1 p2 · · · pL

]T , $ =
[

$1 $2 · · · $N

]T . Γ = diag {γj} is a diagonal
matrix of the source controller gains γj > 0, j = 1, · · · , L,

U ′−1
(x) ∈ RN , Ũ ′−1

(x) ∈ RN and Φ (q) ∈ RN are vector
functions as in Theorem 1, and

∆ (p, $) :=RŨ ′−1
(
RT p + $ + Φ

(
RT p

))

− RU ′−1 (
RT p

)

=RŨ ′−1
(
RT p + $ + Φ

(
RT p

))

− RŨ ′−1
(
RT p + Φ

(
RT p

))
.

(39)

To prove asymptotic stability of (p, $) = (p∗, 0), we use the
Lyapunov function

V =
L∑

i=1

1

2
γ−1

l (pl − p∗l )
2 +

1

2
$T $ (40)

which is positive definite and radially unbounded in RN+L
+ ,

and yields the derivative

V̇ ≤ (p − p∗)T R
(

U ′−1 (
RT p

)
+ ∆ (p, $) − c

)+

p

− $T ε−1

(

U−1 (q) − Ũ ′−1

(

(q + $ + Φ (q))+
))

+ $T ∂Φ

∂q
RT Γ

(

RU ′−1 (
RT p

)
+ ∆ (p, $) − c

)+

p

≤ (p − p∗)T R
(

U ′−1 (
RT p

)
− U ′−1 (

RT p∗
))

− $T ε−1
(

U−1 (q) − Ũ ′−1
(

(q + $ + Φ (q))
+
))

+ (p − p∗)
T

R∆ (p, $)

+ $T ∂Φ

∂q
RT Γ

(

RU ′−1(
RT p

)
+∆ (p, $)−c

)+

p
.

(41)
where the second inequality follows from the arguments in [24,
Proof of Theorem 2]. When Rx∗ = c, we show in Lemma 2
below that, on any compact set of (p, $) that includes (p∗, 0),
we can choose ε small enough to ensure V̇ is negative definite.
Then, the conclusion follows as in the proof of Theorem 1.
If Rx∗ = c does not hold, we can still establish asymptotic
stability following the arguments of [24, Proof of Theorem 5].

2

Lemma 2: Let the assumptions of Theorem 2 hold, and
suppose Rx∗ = c, that is all links are bottlenecked. Then,
for any compact set Λ of (p, $) that includes (p∗, 0), there
exists ε∗ > 0 such that if εi ∈ (0, ε∗] for all i = 1, · · · , N ,
then V̇ (x) given in (41) is negative definite on Λ. 2

The proof of Lemma 2 is omitted due to space limitations.

V. IMPLEMENTATION AND SIMULATIONS

We have implemented the uncooperative framework pre-
sented in this paper in the Network Simulator (NS-2). While
we have studied both dynamic (Section III) and static (Section
IV) users, in simulations we implement the method of Section
III because of the prevalence of TCP, which is dynamic and
can be modeled as in (11) (see [1]). We added an edge-
based supervisor, which adjusts the price feedback to the
uncooperative users with the following algorithms

1) Let xi be the rate of uncooperative user i as in (11).
2) Define an “audit” rate, x̂i, which represents the cooper-

ative rate computed as in (13).



3) Calculate the marking or dropping probability at the
edge as pe

i = ρi(xi − x̂i)
+ , where s+ = max(s, 0),

and ρi is the gain in (15).
4) For each incoming packet mark/drop a packet with a

probability pe
i .

The implementation of this feedback adjustment depends
upon the congestion notification policy deployed in the net-
work. In our simulations we present the results with scenarios
where marking (ECN) and dropping are used as congestion
notification policies. The framework presented in this paper is
independent of the buffer management policy deployed in the
network; that is, it works with any Active Queue Management
scheme as well as with simple Drop Tail queueing.

We note that, unlike the static link assumption in Section
III, AQM and Drop-Tail in simulations make use of queue
length and, hence, are dynamic algorithms. An extension of
the proof of dynamic-source dynamic-link algorithms would
be possible, but lengthy. The stability properties observed in
simulations in the next section are indeed consistent with those
predicted by Theorem 1.

We present simulation results for both single and multi-
bottleneck topologies, depicted in Figure 4 a) and b), with
various degree of flow multiplexing. We also test its robustness
in the presence of mice like web traffic and reverse path
congestion. All the access links are configured to have a
capacity equal to four times that of bottleneck links. The
bottleneck links capacity and delay is fixed at 0.8Mbps and
20ms respectively unless specifically stated. For all simulations
reported in this paper, the simulation time is 150 seconds,
and rate (or throughput) measurements are taken every 0.5
seconds. Each router has a buffer equal to one bandwidth delay
product. In setups where the bottleneck routers have Random
Early Drop (RED) buffer management policy deployed, the
corresponding maximum and minimum threshold are set at
0.8 × B and 0.3 × B where B is the total buffer length; the
queue weight was set to 0.002 and the maximum dropping
probability to 0.1.

The multi-bottleneck topology in Figure 4 b) shows one flow
between source S1 and destination D1. This flow traverses
both the bottleneck links and henceforth in this paper we
will call this a long flow. The two flows between the source
destination pairs [S2-D2] and [S3-D3] go over only one
bottleneck link and, therefore, in the rest of paper we refer
to them as short flows.

We refer to flows, which under same operating conditions,
get more rate than TCP as selfish flows. This definition is
also often commonly referred to as TCP-Friendliness. Since
almost 90% of the traffic carried on the Internet uses TCP, we
chose TCP-Friendliness as our definition of conformant flows.
In this paper all transport protocols are rate based. Thus, all
TCP-Friendly schemes use equation based rate control scheme
(TCP Friendly Rate Control - TFRC) presented in [27] and all
selfish schemes are variants of TFRC which have conservative
decrease algorithms, i.e. upon congestion they decrease more
slowly than TCP. We would like to refer the reader to [12]
for ways to generate selfish flows. In this paper we have also

assumed that all the flows are persistent flows, i.e. they have
infinite data to transfer. However, we will also present the
results for the scenarios where we have both persistent and
short web traffic competing for bandwidth.

A. AQM Based Network

In this section we assume that Active Queue Management
(AQM) policies are deployed on the bottleneck routers, and
all routers have RED queues installed on them. Figure 5
shows the results where two flows compete for bandwidth in
a single bottleneck scenario. The first flow is TCP-Friendly
with U(x) = −1/x, while the other is uncooperative with
the utility function U(x) = −1/

√
x. If both competing flows

were TCP-Friendly, they would have shared the bandwidth
equitably. However, Figure 5 a) shows that the uncooperative
flow grabs a larger share of the bandwidth. With our edge-
based algorithm, in Figure 5 b) the two flows share the
bottleneck bandwidth equitably. Simulations with other un-
cooperative utility functions in the single-bottleneck scenario,
not presented here, yield similar results. The multi-bottleneck
topology is shown in Figure 4 b) and has two bottleneck
links. The TCP-Friendly long-flow, going over both bottleneck
links, competes for bandwidth against the two uncooperative
short-flows, going over only one bottleneck link. Figure 6 a)
shows the result where both the long and short flows use TCP-
Friendly rate control scheme. Figure 6 b) shows the result
for the setup where we replace the TCP-Friendly short flows
with uncooperative rate control schemes with utility function
U(x) = −1/

√
x. We see that, the uncooperative flows get an

unfair bandwidth share and almost force a traffic volume based
denial of service. When we employ our edge-based supervisor,
with ρ = 2.5× 10−5, we recover the ideal bandwidth sharing
of bottleneck links, as shown in Figure 6 a).

1) Background Traffic: For multi-bottleneck topology,
where we let one long TCP-Friendly flow compete for band-
width against one short uncooperative flow on each bottleneck,
we now add HTTP sources to these persistent flows. Each http
page sends a single packet request to the destination, which
then replies with a file of size exponentially distributed with
12 1Kb packets. After a source completes this transfer it waits
for a random time, which is exponentially distributed with a
mean of 1 second and then repeats the process.

Our results in Figure 7 show that these web traffic or mice
flows take some fraction of the bottleneck bandwidth while
the persistent TCP and uncooperative flows compete for the
remaining bandwidth. Figure 7 a) shows the results where,
in the presence of mice traffic, all the persistent flows used
a TCP-Friendly rate control scheme. This corresponds to the
ideal bandwidth-sharing scenario. The results shown in Figure
7 b) corresponds to the setup where the persistent short flows,
i.e. flows which go over only one bottleneck, use a selfish rate
control scheme. We see that the selfish flows take an unfair
share of the bottleneck bandwidth. Thereupon, we introduce
our edge-based supervisor, with ρ = 10−4, to rectify the
misbehaving persistent short selfish flows, and recover the
equitable rates as in Figure 7 c).
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2) Cross Traffic: To create reverse path congestion, we
still used the multi-bottleneck topology with one persistent
TCP-Friendly flow traversing two bottleneck links competing

against two forward selfish flows going over just one bottle-
neck. However, we added short TCP-Friendly flows on the
reverse paths. Figure 8 a) shows the results corresponding to
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Fig. 8. Reverse Path Congestion : (a) ideal bandwidth sharing scenario (b) aggravated unfair sharing in the presence of uncooperative flows and (c) rectification
of uncooperative flows with our edge-based supervisor.

the ideal case (all the flows used TCP-Friendly rate control
schemes) while Figure 8 b) shows the results when the short
flows on the forward path used an uncooperative rate control
scheme. We then added our edge based rectification agent
and showed the corresponding results in Figure 8 c) (with
ρ = 4 × 10−5). In the presence of edge-based supervisor, the
selfish flows are effectively managed.

3) Higher Flow Multiplexing with Background Traffic and
Reverse Path Congestion: To present the efficiency and the
robustness of our scheme, in this section we increased the
number of competing flows. We let the TFRC flows competed
for bandwidth against selfish flows on a multi-bottleneck
topology (shown in Figure 4 b)). However, we increase the
capacity of the bottleneck links to 8Mbps and that of access
links to 80Mbps. The links delays and queue management
scheme (RED) were not changed and the bottleneck buffer
was set to one bandwidth delay product. For the edge-based
rectification agent we set the ρ as 2.5 × 10−5.

Figure 9 shows the results for the scenario where 5 TFRC
flows compete for bandwidth against 5 selfish short flows
on each bottleneck. To these persistent flows, we also added
short web transfers which occupied 10% of the bottleneck
bandwidth. On each bottleneck in the reverse path there
were also 5 flows competing for bandwidth and thus creating
congestion on the reverse path. For the results presented in this
section we plot the throughput of one flow from each group:
TFRC Long flows or flows which go over two bottleneck links,
selfish short flows from Group 1 or flows which go over the
first bottleneck only; and, finally, the selfish short flows from
Group 2 or flows which go over the last bottleneck only.

Figure 9 a) shows the ideal sharing of the bottleneck when
the short flows are also TCP-Friendly. Figure 9 b) shows that
in the absence of any policing the uncooperative flows get
more share of the bandwidth at the expense of TFRC flows.
With our rectification algorithm the fair share of the TFRC
flows is restored; see Figure 9 c).

4) ECN Enabled Network: We conclude this section with
the results from a multi-bottleneck case where RED is config-
ured to mark the packets. We used a setup where one persistent
TCP-Friendly flow competed for bandwidth against one short
uncooperative flow. Figure 10 a) shows the ideal bandwidth

sharing while Figure 10 b) shows that in the presence of
uncooperative flows the resulting bandwidth sharing is unfair.
When we introduced the edge-based supervisor, with ρ =
10−4, the bandwidth is shared fairly.

B. Drop-tail Queues

In this section, we assume that the network operates with
Drop-Tail queues only. We extensively tested with various
topologies and with different kind of uncooperative schemes.
Figure 11 a) shows the results with a single bottleneck
topology where one uncooperative and TCP-Friendly flows
compete for bandwidth. As the figure shows, the uncooperative
flows gain an unfair share of the bottleneck bandwidth, which
are then corrected with our design. For this simulation the ρ
was set to 3 × 10−5.

Figure 12 shows the results with a multi-bottleneck setup
where one long TCP-Friendly flow is sharing bandwidth with
short uncooperative flows. Figure 12 a) shows the ideal band-
width sharing and Figure 12 b) shows the unfair sharing of
the bottleneck in the presence of uncooperative flows. Finally,
in Figure 12 c) we present results with our rectification agent
when ρ = 1.5 × 10−5.

C. Effect of Gain ρ on Rectification of Selfish Users

The performance of our edge-based rectification algorithm
depends on the gain ρ in equation (15). As detailed below,
simulation studies indicate that too small or too large values
of this ρ may deteriorate the performance. Indeed, Theorem
1 disallows small values of ρ because, otherwise, the desired
two-time-scale behavior is not achieved. Although Theorem 1
allows arbitrarily large values for ρ, in practice, such high-
gain leads to saturation of dropping or marking schemes,
which violate the ”small marking probability” approximation
in Equation (3). We see in the following simulations that
large ρ might result in “over-penalization”, which means that
uncooperative flows receive even less than their fair share.

Consider the multi-bottleneck setup shown in Figure 4 b)
with one long TFRC flow and one short uncooperative flow
on each bottleneck. In Figure 6 we presented simulations with
ρ = 2.5 × 10−5. In Figure 13 we compare this result with
ρ = 10−5 (Figure 13 a)) and with ρ = 10−4 (Figure 13 c)).
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Fig. 9. Higher flow multiplexing with background traffic and reverse path congestion in a multi-bottleneck setup.
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Fig. 11. Drop tail queues and single bottleneck topology: rectification of uncooperative flows.
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Fig. 12. Drop Tail Queues: (a) ideal bandwidth sharing scenario (b) aggravated unfair sharing in the presence of uncooperative flows and (c) rectification of
uncooperative flows with our edge supervisor.
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Fig. 13. Effect of gain ρ on the steady rates of uncooperative and TFRC flows.

We note that a high value of ρ may result in over-
penalization, and on the other hand, with a very small value
of ρ the selfish users are not sufficiently penalized and
they continue to get more share of the bottleneck link(s) at
the expense of cooperative users. However, for intermediate
values, such as ρ = 2.5×10−5 in Figure 13 b), we recover the
ideal shares for the uncooperative and the cooperative users.

For all the results reported in this paper we have found that
the ideal range of ρ lies between the interval 10−4 to 10−5. We
also extensively evaluated the edge-based rectification model
for different value of selfishness, i.e. users chose different
values of U(x), and found observation on ρ consistent with
those reported above. A judicious choice of this gain, however,
deserves further investigation.

VI. CONCLUSIONS

We have presented a price adjustment algorithm for both
Kelly’s primal and dual network flow control models, and
tested it on NS2. This algorithm is to be implemented at the
edge of the network and, thus, does not require costly hardware
upgrades in the entire network. It is independent of congestion
notification policy deployed by the network, and thus, can be
used with any Active Queue Management scheme, as well as
Drop Tail queueing, which make the algorithm not only of
theoretical interest but also practical importance. Although a
suitable range for the gain ρ in our algorithm was determined
by simulations, a judicious choice of this gain deserves further
investigation. An on-line adaptation for ρ may be possible, and
is currently being pursued by the authors.

REFERENCES

[1] F. Kelly, A. Maulloo, and D. Tan. Rate control in communication
networks: shadow prices, proportional fairness and stability, Journal of
the Operational Research Society, vol. 49, pp. 237–252, 1998.

[2] S. Low and D. Lapsley, Optimization flow control - I: basic algorithm
and convergence, IEEE/ACM Transaction on Networking, vol. 7, no. 6,
pp. 861-874, 1999.

[3] A. Akella, S. Seshan, R. Karp, S. Shenker and C. Papadimitriou. Selfish
Behavior and stability of the Internet: A Game Theoretic Analysis of
TCP. Proceedings of ACM Sigcomm, Aug 2002.

[4] S. Floyd and K. Fall. Promoting the Use of End-to-end Congestion Con-
trol in the Internet. IEEE/ACM Transactions on Networking, 7(4):458-
472, 1999.

[5] A. Kuzmanovic and E. Knightly. Low-Rate TCP-Targeted Denial of
Service Attacks (The Shrew vs. the Mice and Elephants). Proceedings
of ACM SIGCOMM, Aug 2003.

[6] S. Gorinsky, S. Jain, H. Vin and Y. Zhang. Robustness to Inflated
Subscription in Multicast Congestion Control. Proceedings of ACM
SIGCOMM, Aug 2003.

[7] D. Lin and R. Morris. Dynamics of Random Early Detection, Proceed-
ings of ACM SIGCOMM, Augutst, 1997.

[8] W. Feng et. al. Stochastic Fair Blue: A Queue Management Algorithm
for Enforcing Fairness. Proceedings of INFOCOM, April 2001.

[9] R. Mahajan and S. Floyd. Controlling High-Bandwidth Flows at the
Congested Routers. In ICNP 2001.

[10] Packeteer Inc. http://www.packeteer.com .
[11] I. Stoica, S. Shenker and Hui Zhang.Core-Stateless Fair Queueing: A

Scalable Architecture to Approximate Fair Bandwidth Allocations in
High Speed Networks. SIGCOMM’98.

[12] K. Chandrayana and S. Kalyanaraman. Uncooperative Congestion Con-
trol. Proceddings of ACM SIGMETRICS 2004.

[13] S. Kunniyur and R. Srikant. End-to-end congestion control: Utility
functions, random losses and ecn marks, Proceedings of INFOCOM
2000, Tel-Aviv, Israel, Mar. 2000.

[14] S.H. Low, F. Paganini and J.C. Doyle. Internet congestion control. IEEE
Control Systems Magazine, 22(1):28-43, 2002

[15] J. Wen and M. Arcak, A unifying passivity framework for network flow
control, IEEE Transactions on Automatic Control, vol. 49, no. 2, pp.
162–174, 2004.

[16] L. Brakmo, S. O’Malley, and L. Peterson. TCP Vegas: New techniques
for congestion detection and avoidance. Proceedings of the SIGCOMM
1994.

[17] C. Jin, D. X. Wei and S. Low. FAST TCP: motivation, architecture,
algorithms, performance. Proceedings of IEEE INFOCOM 2004.
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