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Abstract— Cognitive radio is a candidate technology for more spectrum sensing. In such a distributed approach, the spec-
efficient spectrum utilization systems based on opportunistic trum occupancy is determined by the joint work of cognitive
spectrum sharing. Because this new technology does not rerradios, as opposed to being determined individually by each

on traditional license-based spectrum allocation policies, it could iti dio. In thi ider diff t
disrupt existing systems if the spectrum utilization decision cognitive radio. In this paper, we consider different aspec

is based on unreliable spectral estimation. Distributed sensing Of the processing and fusion of spectrum sensing informatio
methods have the potential to increase the spectral estimation of cognitive radio systems. A new system architecture that

reliability and decrease the probability of interference of cognitive  combines cognitive radios anavailable resource mapss
radios to existing radio systems. In this paper, we consider also discussed. A major focus of this paper is on the use of

different aspects of the processing and fusion of spectrum seng - o . i
information of cognitive radio systems. The use of cyclic feature- cyclic feature-based methods for distributed signal ditec

based methods for distributed signal detection and classification and classification.

is discussed and recent results are presented.
Il. DISTRIBUTED SPECTRUMSENSING. OVERVIEW

|. INTRODUCTION In application scenarios involving geographically distited
o . o _radios, such as a wireless communication system, distdbut
Aiming at more efficient spectrum utilization, the FCC igpectrum sensing approaches are worth considering due to
currgntly revisiting trad|t_|onal I|censed—based. polgciand _the variability of the radio signal, as suggested in [5}-[7]
moving toward the adoption of “spectrum sharing” strategies,ch methods may significantly increase the reliabilityha t
such as ultra-wideband (UWB) and cognitive radio. Whilgpecrym estimation process, at the expense of compushtion

UWB systems achieve a more efficient spectrum utilization iy, mpjexity and power/bandwidth usage for the transmission
overlaying existing narrowband systems, cognitive radips spectrum sensing information.

portunistically find and use empty frequency bands. Cogiti |, this paper, we model the cognitive radio system with a

radios rely on the fact that a significant portion of the SRt giandard parallel fusion network commonly used in decentra
allocated to licensed services show little usage over tine.,oq detection problems, shown in Fig. 1. In this model, each
recent spectrum occupancy measurement project shows E@nitive radio (CR node) obtains some relevant infornmatio
the average spectrum occupancy taken over multiple Immtl%, i = 1,...,N, on the spectrum occupancy. Each CR
is 5.2%, with a maximum occupancy of 13.1% [1]. node processes this information and then sends a summary
Originally introduced by Mitola [2]-[3], cognitive radios of its own observations to a fusion center, in the form of a
are capable of sensing their environment, learning abO(HEssagmi, i=1,...,N, taking values in a finite alphabet.
their radio resources and user/application requirememd, The fusion center then generates a global spectrum usage
adapting behavior by optimizing their own performance ifecisionw, based on the messages it has received [8]. The
response to user requests [4]. Cognitive radios are therefgpiactive in this Bayesian hypothesis testing problem is to
a powerful tool for solving the spectrum usage problemytain the set of decision rules that minimize the average
Such radios are capable of sensing spectrum occupancy, &t of making a decision of the overall system. Taking a
in conformity with the rules of the FCC, opportunisticalIyperson_by_person optimization methodology [9], and assgm
adapting transmission to utilize empty frequency band&-witinat the observations at the local detectors are condiona

out disrupting other systems. However, this departure frOFfﬁbIependent and that the local decisions are binary, thal loc
traditional license-based spectrum allocation policiesild  gecision rules reduce to threshold tests given by

disrupt existing systems if the spectrum utilization diecis

is based on unreliable spectral estimation. P (yelH) “’gl P (HO)%, 1)
One possible approach to increase the spectral estimation P (Yx|Ho) we=0 P (H1)

reliability and decrease the probability of interferenéeag- where

nitive radios to existing radio systems is by usiigtributed S {P (o = 1]uk1) = P (ug = 1juko) } IV, ., P (usl Ho)

This work was supported in part by a gift from Texas Instruradnt. Tk = Suk {P (uo = 1|uk1) — P (ug = 1|uko)} Hé\f:L#k P (u;|Hy)'
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Fig. 1. Block diagram of a parallel fusion network.
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(ul.’ oo Uk—1, Uk =, Uk, - - JUN)T, . 0, L. € Fig. 2. Distributed detection of a known signal in AWGN usiriggée-cycle
fusion rule is also a threshold test, and is given by detectors( E, /N, — 3 dB).
Z (uz log (_M> + (1 —u;)log (M)> techniques are an alternative approach for the unknowrakign
P Pr, 1 — P, detection problem that have many advantages, includingsig
ug=1 P (Hy) classification capabilities and reduced sensitivity tonovn
20 <P(H1)) . (@ and changing background noise. Such techniques exploit tim
upg=

o . ~ing or phase properties of digitally modulated signals, laank
Thus, the person-by-person optimization solution to ey peen receiving a great deal of attention by the IEEE 802.22
decentralized Bayesian hypothesis testing problem isxgie \work group [13].

a system of nonlinear coupled equations. It is well-known assume, for example, a basic cyclic-feature detector known

that the computational effort required to solve a system g§ 3 single-cycle detector. The test statistic of such actiete
nonlinear coupled equations increases rapidly with the-num given by [14]

ber of detectors. Tsitsiklis and Athans show in their classi
paper [10] that even the simplest problems of decentralized
decision making are hard from an algorithmic viewpoint, and
that it becomes an NP-complete problem if the measurements ) . ) )
at each sensor are not independent. where S (.t,f)'|s the cyc.I|c periodogram of the received
As the testing functions at both the local detectors af@ycloergodic) signak (¢), given by
at the data fusion center have the form of a likelihood ] T
ratio, the decision thresholds are the only free parameters Se (t,f) == (/ a:(u)e‘ﬂ”(f*;)“du)
Therefore, the distributed detection problem reduces & th T\Ji-z
search of the optimal threshold. One possible way to find </t+§
X
t

0o H,
\ | s enseo) df‘ £, @

these optimal thresholds is by using iterative computation
algorithms. For example, a nonlinear Gauss-Seidel iterati

algorithm derived in [11] allows for the solution of reasbha and S (f) is the ideal spectral correlation function.

large-sized p_roblems, at the_ expense of requiring messagesy e performance of a single-cycle detector in a distributed
to be. trapsmn'ted among fusion center anq CR nodes. Oﬂ&%hitecture, using the Gauss-Seidel algorithm for dagéofy
possible iterative algorithms can be found in [9]. is shown in Fig. 2. It is seen that when signal detection is
1. DISTRIBUTED SIGNAL DETECTIONUSING performed using 10 sensors instead of using a single sensor,
SINGLE-CYCLE DETECTORS the probability of detection increases from approxima8&%o
9h60%, for a probability of false alarm equal to 10%.
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Cognitive radios must be able to detect spectrum usage vvt|
no a priori knowledge Of. modulat!on format and charagterqv SIGNAL CLASSIFICATION USING CYCLOSTATIONARITY
tics, such as the bandwidth, carrier frequency, and chi-ra
of primary systems. The most conventional approach for theln addition to frequency occupancy estimation, cognitive
detection of an unknown deterministic signal in AWGN isadio systems may also need to classify the primary system
the radiometer, which is simply a measure of received enerthyat occupies a given frequency band. For example, the
in time and frequency. However, it is well-known that sucprotection (in terms of allowable interference level) tlaat
a method is highly susceptible to unknown and changirapgnitive radio system may provide to a primary user may
noise levels and interference [12]. Cyclic-feature dévect be dependent on the primary system. By taking advantage of
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Fig. 3. Spectral coherence function of a BPSK signal. Fig. 5. Cycle frequency domain profile of a BPSK signal.
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Fig. 4. Spectral coherence function of a BFSK signal. Fig. 6. Cycle frequency domain profile of a BFSK signal.

the inherent cyclostationarity existent in digital sighalyclic- signal classification. It can be shown that most digital aign
feature algorithms have the potential to provide reliaigeal and some analog signals have distinctive spectral coherenc
classification even at low signal-to-noise ratio scenarios  functions.

Cyclic-feature algorithms for signal classification tygdig It is shown in [16] that in order to ease the design of the
use thespectral coherence functioof the received signal, signal classification algorithm, it is convenient to defihe t
defined as [15] following cycle frequency domaiprofile function

a A a
co(f) 2 Sz (/) (5) I(a) = max|CZ(f)]- 8)

[SA(f +a/2)SA(f — a/2)]/%
This function is of particular interest as it gives a normati 1€ profile functions of BPSK and BFSK signals are shown

measure of the cross-correlation between signal compenéftF9s- 5 and 6, respectively. As described in [16], an effici
at frequenciesf — «/2 and f + a/2. The magnitude of the signal classification algorithm is obtained by matching the
spectral coherence function ranges from 0 to 1, and is iawtri profile function I(«) of the received signal with a database
to linear transformations to the incoming signal. of profile functions of possible digital and analog modwati

In (5), the spectral correlation functicf:(f) is defined as schemes. The probability of correct classification for sanh
algorithm is shown in Fig. 7, assuming a low signal-to-noise

Sy (f) = Aljigo A So(t, f)ar, (6) ratio environment and a collection of five modulation scheme
It is observed that except for the QPSK modulation (QPSK
where has only cyclic feature for the symbol rate, and the strength
N A 1 [ITAf2 N of cyclic feature accounting for the symbol rate is less than
Ser(t, flay = Af PN S (£, v)dv, (") the one due to carrier frequency), all other schemes haye ver

good probability of correct classification [16].
and the cyclic periodograrfiy (¢, f) is given by (4).
The spectral coherence functions of BPSK and BFSK sig-Y: COGNITIVE RADIO SYSTEMS BASED ON AVAILABLE
nals are shown in Figs. 3 and 4, respectively. It is seen hieat t RESOURCEMAPS
spectral coherence function corresponding to these miolula  An unlicensed wireless WAN based on the combination
techniques have distinct features that ultimately allow f@f cognitive radio andavailable resource map6ARM) was



Signal Classification Rate for Signals of SNR= -3dB
o ¥ &

recently proposed in [17], [18]. ARM-based cognitive radic
systems are based on the same operational principles

conventional cellular networks, but with the following fun ——ssB-sC AM
damental peculiarities: o i
o Spectrum is shared and a database (ARM) provide —A— MSK 1
—8— QPSK i

spectrum availability,

« A public radio control channel (RCC) is used for sessiot
setup, and

« Base transceiver stations (BTSs) report their spectru
usage to the ARM through a wired control channel.

In this architecture, the system infrastructure provides t
fra.mework for un“?ensed Sp.eCtrum access and spectrum t}f:llé'- 7. Probability of correct classification using a cydéature algorithm
tering. The ARM is a real-time map of all spectrum usaggscribed in [16].

updated and maintained by user equipment (UE) and BT s.t h method ide reliable detection/classificai
Local frequency allocation is managed exclusively by a at such methods provide reliable detection/classi ven

ARM-based base station. ARM-based cognitive radio ne"i‘z low signal-to-noise ratio scenarios.
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