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Abstract— Motivated by video coding applications, we study
the problem of sequential coding of correlated sources with
(noncausal) encoding and/or decoding frame-delays. The funda-
mental tradeoffs between individual frame rates, individual frame
distortions, and encoding/decoding frame-delays are derived in
terms of a single-letter information-theoretic characterization
of the rate-distortion region for general inter-frame source
correlations and certain types of (potentially frame-specific and
coupled) single-letter fidelity criteria. For video sources which are
spatially stationary memoryless and temporally Gauss–Markov,
MSE frame distortions, and a sum-rate constraint, our results
expose the optimality of differential predictive coding among all
causal sequential coders. Somewhat surprisingly, causal sequen-
tial encoding with one-step delayed noncausal sequential decoding
can exactly match the sum-rate-MSE performance of joint coding
for all nontrivial MSE-tuples satisfying certain positive semi-
definiteness conditions. Thus, even a single frame delay holds
potential for yielding huge performance improvements. A rate-
distortion performance equivalence of, causal sequential encoding
with delayed noncausal sequential decoding, and, delayed non-
causal sequential encoding with causal sequential decoding, is
also established.

I. I

Differential predictive coded modulation (DPCM) is a pop-
ular and well-established sequential predictive source com-
pression method with a long history of development (see
[1]–[5] and the references therein). DPCM has had wide
impact on the evolution of compression standards for speech,
image, audio, and video coding. The classical DPCM system
consists of a causal sequential predictive encoder and a causal
sequential decoder. This is aligned with applications having
low delay tolerance at both encoder and decoder. However,
there are many interesting scenarios where these constraints
can be relaxed. There are three additional sequential source
coding systems possible when limited delays are allowed at
the encoder and/or the decoder: (i) causal (C) encoder and
noncausal (NC) decoder; (ii) NC-encoder and C-decoder; and
(iii) NC-encoder and NC-decoder. Application examples of
these include, respectively, non-real-time display of live video
for C–NC, zero-delay display of non-real-time encoded video
for NC–C, and non-real-time display of non-real-time video
for NC–NC (see Figs. 1, 2, and 3). Of special interest, for
performance comparison, is joint coding (JC) which may be
interpreted as an extreme special case of the C–NC, NC–C,
and the NC–NC systems where all frames are jointly processed
and jointly reconstructed (Fig. 3(c)).

The goal of this work is to provide a computable
(single-letter) characterization of the fundamental information-

theoretic rate-distortion performance limits for the different
scenarios and to quantify and compare the potential value of
systems with limited encoding and decoding delays in different
rate-distortion regimes. The primary motivational application
of our study is video coding (see Section II-B) with encoding
and decoding frame delays.1 However, this work also has
implications for certain sensor-network applications in which
the communication constraints impose a sequential order for
coding the blocks of observations at different sensors.

To characterize the fundamental tradeoffs between individ-
ual frame-rates, individual expected frame-distortions, encod-
ing and decoding frame-delays, and source inter-frame cor-
relation, we build upon the information-theoretic framework
of sequential coding of correlated sources. This mathematical
framework was first introduced in [6] (and independently
studied in [7], [8] under a nonasymptotic stochastic control
framework involving dynamic programming) within the con-
text of the purely C–C2 sequential source coding system.
As noted in [6], the results for the well-known successive-
refinement source coding problem can be derived from those
for the C–C sequential source coding problem by setting all
sources to be identically equal to the same source. The com-
plete (single-letter) rate region for two sources (with a remark
regarding generalization to multiple sources) and certain types
of perceptually motivated coupled (and uncoupled) single-
letter distortion criteria was derived in [6]. Our results cover
not only the C–C problem studied [6] but also the C–NC,
the NC–C, and the JC cases3 for arbitrary number of sources
and for coupled single-letter distortion criteria similar to those
in [6]. We have also been able to simplify some of the key
derivations in [6] (the C–C case).

The benefits of decoding delay on the rate versus
MSE performance was investigated in [4] for a, spatially
independent-vector-Gaussian, temporally Gaussian first-order-
autoregressive model for video, with a DPCM structure im-
posed on both the encoder and the decoder. In contrast to
conventional rate-distortion studies of scalar DPCM systems
based on scalar quantization and high-rate asymptotics (see
[1]–[3] and references therein), [4] studied DPCM systems
with vector-valued sources and large spatial (as opposed to
high rate) asymptotics similar in spirit to [6]–[8] but with
decoding frame-delays. The main findings of [4] were that (i)

1Accordingly, terms like frame-delay and “causal” and “noncausal” encod-
ing and/or decoding should be interpreted within this application context.

2The terminology is ours.
3The general NC–NC case is currently under investigation.



NC-decoders offer a significant relative improvement in the
MSE at medium to low rates for video sources with strong
temporal correlation, (ii) most of this improvement can be
attained with a modest decoding frame-delay, and (iii) the
gains vanish at very high and very low rates.

In contrast to the insistence on DPCM encoders and de-
coders in [4], here we consider arbitrary rate-constrained cod-
ing structures as in conventional rate-distortion studies. When
specialized to spatially stationary memoryless, temporally
Gauss–Markov video sources, with MSE as the fidelity metric
and a sum-rate constraint, our results reveal the information-
theoretic optimality of DPCM encoders and decoders for the
C–C sequential coding system (Corollary 1.3). A second,
somewhat surprising, finding is that for the just mentioned
Gauss–Markov video sources with a sum-rate constraint, a
C-encoder with a one-step-delayed NC-decoder (Fig. 3(a))
can exactly match the sum-rate-MSE performance of the
joint coding system (Fig. 3(c)) which can wait to collect all
frames of the video segment before jointly processing and
jointly reconstructing them4 (Corollary 3.2). Interestingly, this
performance equivalence does not hold for all MSE-tuples.
It holds for a non-trivial subset which satisfies certain posi-
tive semi-definiteness conditions. The performance-matching
region expands with increasing frame-delays allowed at the
decoder until it completely coincides with the set of all
reachable tuples of the JC system. In simple words, the benefit
of even a single frame-delay can be huge. These two specific
architectural results constitute the main high-level take-away
messages of this work.

For clarity of exposition, our discussion in this paper is
limited to the exemplary case of three discrete, memoryless,
(spatially) stationary (DMS) correlated sources taking values
in finite alphabets and standard uncoupled single-letter fidelity
criteria. The results presented in this work in fact hold for an
arbitrary number of correlated sources and for more general
coupled fidelity criteria which are similar to those considered
in [6] and will be reported elsewhere. Analogous results
can be established for continuous alphabets (e.g., Gaussian
sources) and unbounded distortion criteria (e.g., MSE) using
the techniques in [9] but are not discussed here. To keep the
exposition clutter-free, all proof-sketches involving technical
derivations are presented in the Appendices. Detailed technical
proofs of all results will be provided in a technical report under
preparation.5

The rest of this paper is organized as follows. Four delayed
sequential coding systems and their associated operational
rate-distortion regions are formulated in Section II. All the
technical findings with discussions of the underlying intuition
and implications for the C–C, JC, C–NC, and NC–C systems
are presented in Sections III, IV, V, and VI respectively. We
conclude in Section VII with remarks on ongoing work.

Notation: The nonnegative cone of real numbers is de-

4This is similar to the coding of correlated parallel vector Gaussian sources
but with an individual MSE constraint on each source component.

5This will be posted on <arXiv.org> and submitted to the IEEE Trans-
actions on Information Theory.

noted by R+ and ‘iid’ denotes independent and identically
distributed. Vectors are denoted in boldface (e.g., x, X). With
the exception of T denoting the size of a group of pictures
(GOP) in a video segment, random quantities are denoted in
upper case (e.g., X, X), and their specific instantiations in
lower case (e.g., X = x, X = x). An denotes the ordered tuple
(A1, . . . , An) and An

m denotes (Am, . . . , An).

II. P 

A. Statistical model for T = 3 correlated sources

Three correlated DMSs taking values in finite alphabets
are defined by (X1(i), X2(i), X3(i))n

i=1 ∈ (X1 × X2 × X3)n with
(X1(i), X2(i), X3(i)) ∼ iid pX1X2X3 (x1, x2, x3). Potentially, the
(spatially) iid assumption can be relaxed to spatially stationary
ergodic sources by a general AEP argument, but is not treated
in this paper for simplicity. Motivated by the video coding
application, these sources have the following temporal struc-
ture. Instead of being available simultaneously for encoding,
initially, only {X1(i)}ni=1 is available. Then, {X2(i)}ni=1 “appears”
and finally, {X3(i)}ni=1 “arrives”. In the following video coding
application, this assumption captures the temporal order of
frames shown in Fig. 1.

B. Motivating application contexts

(i) Video coding: Here (Fig. 1), X j = {X j(i)}ni=1, j = 1, . . . , T
represent T = 3 video frames with i = discrete index of
the spatial location of a picture element (pixel) relative to a
certain spatial scan order (e.g., zig-zag or raster scan), and
X j(i) = discrete pixel intensity level at spatial location i in
frame number j (Fig. 1). The statistical structure implies
that the sources are spatially independent but temporally
dependent.
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Fig. 1. Illustrating motion-compensated video coding for T = 3
frames.

While this is rarely an accurate statistical model for the
unprocessed frames of a stationary video segment (usually
corresponding to the GOP in video coding standards), it is
a reasonable approximation for the evolution of the video
innovations process along optical-flow motion trajectories for
groups of adjacent pixels (see [4] and references therein).
This model assumes arbitrary temporal correlation but iid
spatial correlation. The statistical law pX1X2X3 is assumed



to be known here. In practice, this may be learnt from
pre-operational training using clips from video databases
used by video-codec standardization groups such as H.26x
and MPEG-x quite similar in spirit to the offline optimization
of quantizer tables in commercial video codecs. Single-letter
information-theoretic coding results need asymptotics along
some problem dimension to exploit some version of the law
of large numbers. Here, the asymptotics are in the spatial
dimension and is appropriate for video coding applications
where it is quite typical to have frames of size n = 352 × 288
pixels at 30 frames per second (full CIF6). It is also fairly
common to code video in groups of T = 15 pictures.

(ii) Sensor networks: Here, X j = {X j(i)}ni=1, j = 1, . . . , T
represent T = 3 statistically correlated sources observed at
spatially separated sensor locations with i = discrete time
index (corresponding to the temporal sampling frequency of
the sensors) and j = discrete spatial index (sensor location). In
this application, the asymptotics are in time corresponding to
a large block of samples gathered over a certain time duration.
The sensor observations can have arbitrary spatial correlation
which is assumed to be known. In practice, the statistics can
be ascertained from the physical laws governing the spatio-
temporal phenomenon being sensed. See [10]–[12] for related
sensor network problems having sequential coding constraints.

The primary application focus of this work is video coding.
Accordingly, terms such as (frame) delay “causal” and “non-
causal” encoding and/or decoding should be interpreted within
this application context.

C. Delayed sequential coding systems

• C–C systems: Causal (zero-delay) sequential encoding with
(zero-delay) causal sequential decoding is illustrated in Fig. 2.
Implicitly, the encoders and decoders have enough memory to
store all previous frames and messages.
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Fig. 2. C–C: Causal (zero-delay) sequential encoding with causal
sequential decoding. Sum-rate = RC−C

sum = R1 + R2 + R3.

• C–NC systems: Causal sequential encoding with one-step de-
layed noncausal sequential decoding is illustrated in Fig. 3(a).
• NC–C systems: One-step delayed noncausal sequential

6Progressively scanned HDTV is typically n = 1280 × 720 ≈ one million
pixels at 60 frames per second.

encoding with causal sequential decoding is illustrated in
Fig. 3(b).
• The JC system: Of special interest is joint (noncausal)
encoding and decoding illustrated in Fig. 3(c). Note that here
the encoding frame delay is (T − 1).

The C–C blocklength-n encoders and decoders are formally
defined by the maps

(Enc. j) f j : Xn
1 × . . . × Xn

j → {1, . . . , M j},
(Dec. j) g j : {1, . . . , M1} × . . . × {1, . . . , M j} → X̂n

j

for j = 1, . . . , T , where (log2 M j)/n is the j-th frame coding
rate in bits per pixel (bpp) and X̂ j is the j-th (finite cardinality)
reproduction alphabet.

The formal definitions of C–NC encoders are identical to
that for the C–C encoders. However, the C–NC decoders with
one-step frame delay are formally defined by the maps

(Dec. j) g j : {1, . . . , M1} × . . . × {1, . . . , Mmin{ j+1,T }} → X̂n
j ,

for j = 1, . . . , T . Similarly, the NC–C decoder definitions are
identical to those for the C–C decoders and the NC–C encoders
are formally defined by the maps

(Enc. j) f j : Xn
1 × . . . × Xn

min{ j+1,T } → {1, . . . , M j},
for j = 1, . . . , T . Finally the JC encoder and decoder are
defined by the maps

(Enc.) f : Xn
1 × . . . × Xn

T → {1, . . . , M},
(Dec.) g : {1, . . . , M} → X̂n

1 × . . . × X̂n
T .

Note that for T = 2, a one-step delayed sequential coding
system (C–NC or NC–C) is operationally equivalent to a JC
system. The first nontrivial delayed sequential coding problem
arises for T = 3. Therefore we consider T = 3 frames in this
paper. As will become clear, it is straightforward to generalize
all results of this paper to more than three frames (see [13]).

For a frame-delay k, there are boundary effects associated
with the decoders (resp. encoders) of the last (k+1) frames for
the C–NC (resp. NC–C) systems. For example, the last two
decoders in Fig. 3(a) are operationally equivalent to a single
decoder since both use the same set of encoded messages.
Similarly, the last two encoders in Fig. 3(b) are operationally
equivalent to a single encoder since both use the same set
of source frames. However, it should be noted that whereas
combining the last two decoders in Fig. 3(a) into a single
decoder does not change the rate-distortion region, combining
the last two encoders in Fig. 3(b) into a single encoder reduces
the dimension of the rate-tuples by one. Hence, although
redundant, we will retain the distinction of the boundary
encoders/decoders for clarity and to aid comparison.

D. Operational rate-distortion regions

For each j = 1, . . . , T , the pixel reproduction quality is
measured by a single-letter distortion (fidelity) criterion d j :
X j × X̂ j → R+. The frame reproduction quality is in terms of
the average pixel distortion d j(xn

j , x̂
n
j ) =

∑n
i=1 d j(x j(i), x̂ j(i))/n.

Of interest are the expected frame distortions E[d j(X j, X̂ j)]. It
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Fig. 3. (a) C–NC: Causal sequential encoding with one-step delayed noncausal sequential decoding; (b) NC–C: one-step delayed noncausal
sequential encoding with causal sequential decoding; (c) JC: (T − 1)-step delayed joint (noncausal) encoding with joint (noncausal) decoding.

is important to notice that these are frame-specific distortions
as opposed to an average distortion across all frames. This
makes the JC problem distinctly different from a standard
parallel vector source coding problem. The results presented
here also apply to certain perceptually-motivated coupled
fidelity criteria reflecting dependencies on previous frame
reproductions as in [6] (e.g., d2 : X2 × X̂2 × X̂1 → R+) but are
not entered into here for clarity.

For a distortion-tuple D = (D1, . . . ,DT ), a rate-tuple R =

(R1, . . . ,RT ) is said to be D-admissible for a given delayed
sequential coding system if, for every ε > 0, and all sufficiently
large n, there exist block encoders and decoders satisfying

1
n

log M j ≤ R j + ε,

E[d j(X j, X̂ j)] ≤ D j + ε,

simultaneously for all j = 1, . . . , T . For system A ∈
{C–C, C–NC, NC–C, JC} and a distortion tuple D, the oper-
ational rate region RA

op(D) is the set of all D-admissible rate
tuples. and the sum-rate region RA

sum(D) is the set of all the
D-admissible sum-rates

∑T
j=1 R j.

III. R  C–C 

The C–C rate region can be formulated as a single-letter
mutual information optimization problem subject to distortion
constraints and natural Markov chains involving auxiliary and
reproduction random variables and deterministic functions.

Theorem 1 (C–C rate-distortion region) The single-letter rate-
distortion region for a T = 3 frame C–C system is given by

RC−C(D) = {R | ∃ U2, X̂3, g1(·), g2(·, ·), s.t.
R1 ≥ I(X1; U1),
R2 ≥ I(X2; U2|U1),
R3 ≥ I(X3; X̂3|U2),
E[d j(X j, X̂ j)] ≤ D j, j = 1, 2, 3,

X̂1 = g1(U1), X̂2 = g2(U1,U2),
U1 − X1 − X3

2 , U2 − (X2,U1) − X3}

where {U1,U2, X̂1, X̂2, X̂3} are auxiliary and reconstruction
random variables and {g1(·), g2(·, ·)} are deterministic
functions. Cardinality bounds on the alphabets of auxiliary
random variables can be derived using the Carathéodory
theorem and the support lemma as in [6] but are omitted.

Note that this C–C rate region, as described here, differs
from the direct extension of the result in [6]: the formulation
in Theorem 1 has different rate inequalities and fewer Markov
chain conditions than in [6]. However, as discussed below,
this form of the rate region offers a somewhat easier natural
interpretation and therefore an easier generalization to the case
of multiple frames.

The proof of achievability follows standard random coding
and random binning arguments. This region has the following
natural interpretation. First, X1 is quantized into U1 using
a random codebook-1 for encoder-1 without access to X3

2.
Decoder-1 recovers U1 and reproduces X1 as X̂1 = gn

1(U1).
Next, the tuple {X2,U1} is (jointly) quantized into U2 without
access to X3 using a random codebook-2 for encoder-2. The
codewords are further randomly distributed into bins and the
bin index of U2 is sent to the decoder. Decoder-2 identifies U2
from the bin with the help of U1 as side-information (available
from decoder-1) and reproduces X2 as X̂2 = gn

2(U1,U2).
Finally, encoder-3 (jointly) quantizes {X3,U2} into X̂3 using
encoder-3’s random codebook, bins the codewords and sends
the bin index of X̂3 such that decoder-3 can identify X̂3 with
the help of U2 as side-information available from decoders
1 and 2. The constraints on the rates and Markov chains
ensure that with high probability (for all large enough n)
both encoding (quantization) and decoding (recovery) succeed
and the recovered words are jointly strongly typical with the
source words to meet the target distortions. Notice that the
conditioning random variables that appear in the conditional
mutual information expressions at each stage correspond to
quantities that are known to both the encoding and decoding
sides at that stage due to the previous stages. By formal-
izing this observation one can write down an achievable
rate-distortion region for general delayed sequential coding



systems by inspection. Of course, the converses will have to
be established to claim these regions to be the entire rate-
distortion region. As discussed later in this paper, it turns out
that the converses can indeed be established.

The (weak) converse part of Theorem 1, is proved following
[6] using standard information inequalities by defining
auxiliary random variables U j(i) = {S j, X

(i−1)
j }, j = 1, 2, where

S j denotes the message sent by the j-th encoder satisfying all
Markov-chain and distortion constraints, and a convexification
(timesharing) argument as in [14, p.397]. The important steps
in the derivation are sketched in Appendix B.

Corollary 1.1 (C–C Sum-rate region) The sum-rate region
for the C–C system is RC−C

sum (D) = [RC−C
sum (D),∞) where the

minimum sum-rate is

RC−C
sum (D) = min

E[d j(X j,X̂ j)]≤D j, j=1,2,3,
X̂1−X1−X3

2

X̂2−(X2,X̂1)−X3

I(X3; X̂3). (3.1)

The proof is sketched in Appendix B. The proof follows
from the rate region of Theorem 1 and the Markov chain
constraints. The main simplification is the absence of the
auxiliary random variables U2.

As will become clear in the sequel, the minimum sum-rate
for any type of delayed sequential coding system is given
by the minimization of the mutual information between the
source random variables XT

1 and the reproduction random
variables X̂T

1 subject to several expected distortion and
Markov-chain constraints involving these random variables
of a form similar to 3.1. In the case of Gaussian sources
and MSE distortion criteria, using the following lemma it
will then follow that the minimum sum-rate of any delayed
sequential coding system can be achieved by reproduction
random variables which are jointly Gaussian with the source
random variables.

Lemma If (X1, . . . , XT ) are jointly Gaussian, the minimizer of
the optimization problem

min
E[(X j−X̂ j)2]≤D j, j=1,...,T

I(XT
1 ; X̂T

1 )

with some additional Markov chain constraints involving
XT

1 and X̂T
1 is achieved by reproduction random variables

(X̂1, . . . , X̂T ) which are jointly Gaussian with (X1, . . . , XT ).

The proof which is based on the Shannon lower bound is
sketched in Appendix C. Since Gaussian vectors are character-
ized by covariance matrices, the minimum sum-rate computa-
tion reduces to a determinant optimization problem involving
second-order and Markov matrix constraints.

For Gauss–Markov sources, pX1X2X3 = N(0,ΣX)(x1, x2, x3)
where the covariance matrix

ΣX =


σ2

1 ρ1σ1σ2 ρ1ρ2σ1σ3
ρ1σ1σ2 σ2

2 ρ2σ2σ3
ρ1ρ2σ1σ3 ρ2σ2σ3 σ2

3



has a structure which is consistent with the Markov chain X1−
X2−X3 associated with the Gauss–Markov assumption. Define
a distortion region DC−C = {D | D1 ≤ σ2

1,D2 ≤ σ2
e2
,D3 ≤ σ2

e3
}

where

σ2
e j

= ρ2
j−1

σ2
j

σ2
j−1

D j−1 + (1 − ρ2
j−1)σ2

j , j = 2, 3 (3.2)

whose significance will be discussed below. The C–C
minimum sum-rate evaluated for any MSE tuple D in this
region is given by the following corollary.

Corollary 1.2 (C–C minimum sum-rate for Gauss–Markov
sources and MSE) In the distortion region DC−C , the C–C
minimum sum-rate for Gauss–Markov sources and MSE is

RCCGM
sum (D) =

1
2

log

σ2

1

D1

 +
1
2

log

σ2

e2

D2

 +
1
2

log

σ2

e3

D3

 . (3.3)

The proof of the converse part of Corollary 1.2 is sketched
in Appendix D. The form of (3.3) suggests the following
(achievable) coding scheme (see Fig. 4). Encoder-1 initially
quantizes X1 into X̂1 to meet the target MSE D1 using
an ideal Gaussian rate-distortion quantizer and decoder-1
recovers X̂1. For notational convenience let e1 = X1 and
ê1 = X̂1. Next, encoder-2 makes the causal minimum mean
squared error (MMSE) prediction of X2 based on X̂1 and
quantizes the prediction error e2 into ê2 using an ideal
Gaussian rate-distortion quantizer so that decoder-2 can
form X̂2 to meet the target MSE D2 with help from ê1. The
asymptotic per-component variance of e2 is consistent with
(3.2). Specifically, decoder-2 recovers ê2 and creates the
reproduction X̂2 as the causal MMSE estimate of X2 based
on ê2. Finally encoder-3 makes the causal MMSE prediction
of X3 based on ê2

1 and quantizes the prediction error e3
into ê3 using an ideal Gaussian rate-distortion quantizer so
that decoder-3 can form X̂3 to meet the target MSE D3
with help from ê3

1. Decoder-3 recovers ê3 and makes the
reproduction X̂3 as the MMSE estimate of X3 based on ê3.
The C–C coding scheme just described is called DPCM
(see [1]–[5] and references therein). This coding procedure
when formalized using random coding arguments leads to the
following corollary.
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Fig. 4. Illustrating DPCM.



Corollary 1.3 (C–C Optimality of DPCM for Gauss–Markov
sources and MSE) The C–C minimum sum-rate-MSE
performance for Gauss–Markov sources is achieved by
DPCM for all distortion tuples D in the distortion region
DC−C .

The distortion region DC−C may be interpreted as the set
of distortion levels for which the DPCM encoder uses a
positive rate for each frame. It can be shown that DC−C has a
non-zero volume for nonsingular sources (see Section V, third
para after Corollary 3.2). Hence, the assertion that DPCM is
optimal for C–C systems is a nontrivial statement.

IV. R   JC 

Theorem 2 (JC rate-distortion function, [15, Problem 14,
p.134]) The single-letter rate-distortion function for the joint
coding system is given by

RJC(D) = min
E[d j(X j,X̂ j)]≤D j

j=1,2,3.

I(X3; X̂3). (4.4)

Compared to RC−C
sum (D) given by (3.1), the JC rate-distortion

function RJC(D) given by (4.4) having no Markov chain
constraints is a lower bound on RC−C

sum (D). While this follows
from a direct comparison of the single-letter rate-distortion
functions, from the operational structure of C–C, C–NC, NC–
C, and JC systems it is clear that the JC rate-distortion function
is in fact a lower bound on the sum-rates for all delayed
sequential coding systems.

Similar to Corollary 1.2 for C–C systems for Gaussian
sources and MSE distortion criteria, for JC systems we have
the following corollary.

Corollary 2.1 (JC rate-MSE function for Gauss–Markov
sources)
(i) For the distortion region DJC def

= {D | (ΣX − diag(D)) ≥ 0},
the JC rate-MSE function for jointly Gaussian sources is given
by

RJCGM(D) =
1
2

log
( |ΣX |

D1D2D3

)
. (4.5)

(ii) For the distortion region DJC , the JC rate-MSE function
for Gauss–Markov sources is given by

RJCGM(D) =
1
2

log

σ2

1

D1

 +
1
2

log

σ2

2(1 − ρ2
1)

D2

 +

+
1
2

log

σ2

3(1 − ρ2
2)

D3

 . (4.6)

Formula (4.5) is the Shannon lower bound [2], [3] of the
JC rate-distortion function. It can be achieved in the distortion
region DJC by the test channel

X̂ + Z = X (4.7)

where Z = (Z1,Z2,Z3) and X̂ = (X̂1, X̂2, X̂3) are independent
Gaussian vectors with covariance matrices

ΣZ = diag(D), ΣX̂ = ΣX − diag(D),

and X = (X1, X2, X3). The existence of this channel is
guaranteed by the definition of DJC .

Comparing (3.3) and (4.6) for D ∈ DJC ∩ DC−C which
generally has a nonempty interior, we find that in general the
C–C sum-rate RCCGM

sum (D) is strictly greater than the JC rate
RJCGM(D). However, as D → 0, the two rates are asymptot-
ically equal. This high-rate asymptotic phenomenon is con-
sistent with the Slepian-Wolf theorem in that the “Slepian-
Wolf encoders” can compress the sources individually (without
cooperation) with a sum-rate equal to the total (joint) entropy
of all sources [14]. However, note that in the classical Slepian-
Wolf problem formulation we have spatially correlated sources
and temporal asymptotics, whereas in the problem formulation
here we have temporally correlated sources and spatial asymp-
totics. The roles of time and space are exchanged.

V. R  C–NC 

Similar to C–C systems, we can derive the rate-distortion
and sum-rate regions for C-NC systems as follows.

Theorem 3 (C–NC rate-distortion region) The single-letter
rate-distortion region for a C–NC system with one-step de-
coding frame delay is given by

RC−NC(D) = {R | ∃ U2, X̂3, g1(·, ·), s.t.
R1 ≥ I(X1; U1),
R2 ≥ I(X2; U2|U1),
R3 ≥ I(X3; X̂3

2 |U2),

E[d j(X j, X̂ j)] ≤ D j, j = 1, 2, 3,

X̂1 = g1(U1,U2),
U1 − X1 − X3

2 , U2 − (X2,U1) − X3}
where {U2, X̂3} are auxiliary random variables and g1(·, ·) is
a deterministic function.

The proof of both the achievability and the converse parts
of Theorem 3 are similar to that of Theorem 1. Note that
RC−C ⊆ RC−NC because the encoders and decoders of a C–C
system are also permitted in a C–NC system.

Corollary 3.1 (C–NC sum-rate region) The sum-rate re-
gion for the one-step delayed C–NC system is RC−NC

sum (D) =

[RC−NC
sum (D),∞) where the minimum sum-rate is

RC−NC
sum (D) = min

E[d j(X j,X̂ j)]≤D j, j=1,2,3,
X̂1−X2−X3

I(X3; X̂3).

The proof is similar to that of Corollary 1.1. As noted
earlier, the JC rate-distortion function (4.4) having no Markov



chain constraints is a lower bound on RC−NC
sum (D). Remarkably,

for Gauss–Markov sources and certain nontrivial MSE tuples
D discussed below, RC−NC

sum (D) coincides with the JC rate
RJC(D).

Corollary 3.2 (JC-optimality of one-step delayed C–NC sys-
tems for Gauss–Markov sources and MSE) For all distortion
tuples D belonging to the distortion region DJC defined in
Section IV, Corollary 2.1(i), we have

RCNCGM
sum (D) = RJCGM(D).

The proof is sketched in Appendix E.
Corollary 3.2 implies that the JC rate-distortion performance

is achievable in terms of sum-rate by only a single frame
decoding delay for Gauss–Markov sources and the MSE region
DJC . The benefit of one frame delay is so significant that it
is equivalent to arbitrary frame delay in this specific situation.
The first-order Markov assumption on sources X1 − X2 − X3
is essential for this optimality. An interpretation is that X2
supplies all the help from X3 to generate the optimum X̂1.
More generally (for T > 3), C–NC encoders need access to
only the present and past frames together with one future frame
to match the rate-distortion function of the JC system in which
all future frames are simultaneously available for encoding.
Thus, the neighboring future frame supplies all the help from
the entire future through the Markovian property of sources.

It is of interest to compare Corollary 3.2 with the real-time
source coding problem in [16]. In [16] it is shown that for
Markov sources the C–C encoder may ignore the previous
sources and only use the current source and decoder’s mem-
ory without loss of performance. This is a purely structural
result (no spatial asymptotics and computable single-letter
information-theoretic characterizations) exclusively focused on
C–C systems. In contrast, Corollary 3.2 is about achieving the
JC-system performance with a C–NC system. Additionally,
[16] deals with a frame-averaged expected distortion criterion
as opposed to frame-specific individual distortion constraints
treated here.

The JC-optimality of one-step delayed C–NC systems holds
within the distortion region DJC defined as the set of all
distortion tuples D satisfying the positive semidefiniteness
condition (ΣX − diag(D)) ≥ 0. For nonsingular sources ΣX >
0⇒ λmin(ΣX) > 0 where λmin(ΣX) is the smallest eigenvalue of
the positive definite symmetric (covariance) matrix ΣX which
is strictly positive. Thus DJC contains the closed hypercube
[0, λmin(ΣX)]T which has a strictly positive volume in RT ⇒
DJC has a non-zero volume. Hence, the JC-optimality of a
C-NC system with one-step decoding delay discussed here
is a nontrivial assertion. DJC includes all distortion tuples
with components below certain thresholds corresponding to
“sufficiently good” reconstruction qualities. However, it should
be noted that this is not a high-rate (zero-distortion) asymptotic
(a la Slepian-Wolf).

On the contrary, the JC-optimality of a C–NC system with
one-step decoding frame delay does not hold for all distortion
tuples:

Counter example: Consider Gauss–Markov sources X3 where
X1 = X2 and MSE tuple D where D1 = D2 = D. The JC
problem reduces to a two-stage JC problem where the encoder
jointly quantizes (X1,X3) into (X̂1, X̂3) and the decoder simply
sets X̂2 = X̂1. However, the C–NC problem reduces to a two-
stage C–C problem with sources (X1,X3) because the first
two C–NC encoders are operationally equivalent to the first
C–C encoder observing X1 and the last C–NC encoder is
operationally equivalent to the second C–C encoder observing
all sources. As mentioned in Section IV, generally speaking,
a two-stage C–C system does not match (in sum-rate) the
JC-system rate-distortion performance. Therefore the three-
stage C–NC system also does not match the JC performance
for these specific sources and certain distortion tuples D.
Note that these sources are actually singular (ΣX has a zero
eigenvalue) and DJC only contains trivial points (either D = 0
or D3 = 0). So for the nontrivial distortion tuples D described
above (which do not belong to DJC), the JC-optimality of a
C–NC system with a one-step decoding delay fails to hold.

To construct a counter example with nonsingular sources,
one can slightly perturb ΣX such that it becomes positive
definite. However, the JC rate and C–NC sum-rate only change
by limited amounts due to continuity properties of the sum-
rate-distortion function with respect to the source distributions
(similar to [15, Lemma 2.2, p.124]). Therefore we can find a
small enough perturbation such that the rates do not match.

For general C–NC systems with increasing system frame-
delays7, the expressions of the minimum sum-rates contain the
same objective function I(XT

1 ; X̂T
1 ) and distortion constraints

E[d j(X j, X̂ j)] ≤ D j, j = 1, . . . , T but with a decreasing number
of Markov chain constraints. In the limit of maximum possible
system frame-delay, we arrive at the JC system with purely
distortion (no Markov chain) constraints. For Gauss–Markov
sources and MSE, the distortion region for which a C–NC
system matches (in sum-rate) the rate-distortion performance
of the JC-system, expands with increasing delays until it
completely coincides with the set of all reachable tuples of
the JC system.

VI. R  NC–C 

We can derive the rate-distortion region for NC–C systems
by mimicking the derivations for C–NC systems discussed
till this point. However, due to the operational structural
relationship between C–NC and NC–C systems, it is not
necessary to re-derive the results for the NC–C system at
certain operating points, in particular, for the sum-rate region:
Theorem 4 (“Equivalence” between C–NC and NC–C rate-
distortion regions)
(i) The rate-distortion region for the one-step delayed NC–C

7The general result is presented and discussed in [13].



system is given by

RNC−C(D) = {R | ∃ U2, X̂3, g1(·), g2(·, ·), s.t.
R1 ≥ I(X2; U1),
R2 ≥ I(X3; U2|U1),
R3 ≥ I(X3; X̂3|U2),
E[d j(X j, X̂ j)] ≤ D j, j = 1, 2, 3,

X̂1 = g1(U1), X̂2 = g2(U1,U2),
U1 − X2 − X3}.

(ii) For an arbitrary distortion tuple D, the rate regions
RNC−C(D) and RC−NC(D) are related in the following manner:

(R1,R2,R3) ∈ RC−NC(D) ⇒ (R1 + R2,R3, 0) ∈ RNC−C(D),
(R1,R2,R3) ∈ RNC−C(D) ⇒ (0,R1,R2 + R3) ∈ RC−NC(D).

(iii) For an arbitrary distortion tuple D, the minimum sum-rates
of one-step delayed C–NC and NC–C systems are equal:

RC−NC
sum (D) = RNC−C

sum (D).

The proof of part (i) is similar to that of Theorem 1. Part
(ii) can be proved by either using the definitions of RC−NC(D)
and RNC−C(D) or more directly from the system structure:
the first NC–C encoder is operationally replaceable with the
combination of the first two C–NC encoders, and the last C–
NC encoder is operationally replaceable with the combination
of the last two NC–C encoders (see Figs 3(a) and (b)). Part
(iii) follows from part (ii).

In conclusion, the two rate regions are equivalent modulo
boundary effects with exact equivalence for sum-rates. The
(sum-rate) JC-optimality property of a C–NC system with one-
step decoding frame delay given by Corollary 3.2 automat-
ically holds for the NC–C systems with one-step encoding
frame delay. This relationship allows one to focus on the
performance of only C–NC systems instead of both C–NC
and NC–C systems without loss of generality.

This structural principle holds for the general multi-frame
problem with multi-step frame delay. Whenever two delayed
sequential coding systems have the same sum of the encoding
plus decoding frame delay, they share the same sum-rate-
distortion performance.

VII. C 

The main message of this study is that even a single
frame delay holds potential for yielding huge performance
improvements in sequential coding problems, sometimes even
matching the joint coding performance. As remarked earlier,
the results of this paper hold for an arbitrary number of
sources and certain types of coupled fidelity criteria. Our
ongoing work includes extensions of Corollaries 1.3 and 3.2
to more general k-th order Gauss–Markov sources and general
quadratic criteria [13]. We also expect similar results for
other “matched” pairs of source distributions and distortion
criteria, example: symmetrically correlated binary sources with
Hamming distortion. Finally, it would be of interest to explore
the effects of nonergodic “packet erasures”, as in the multiple-
descriptions coding problem, in future work.
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A A
S  T 1  

Denote the messages sent by the three (T = 3) encoders
respectively by S 1, S 2, and S 3, and define the auxiliary random
variables by U j(i) = {S j, X

(i−1)
j }, j = 1, 2. For any operationally

admissible scheme and ∀ε > 0 we have

E[d j(X j, X̂ j)] ≤ D j + ε, j = 1, . . . , T.

For the first coding rate, we have

n(R1 + ε) ≥ H(S 1) = I(S 1; Xn
1) =

n∑

i=1

I(X1(i); U1(i))

In the next stage,

n(R2 + ε) ≥ I(S 2; Xn
1 , X

n
2 |S 1) =

n∑

i=1

I(X1(i), X2(i); U2(i)|U1(i)).

where the last equality is because of the Markov chain
(X1(i), X2(i)) − U1(i) − X(i−1)

2 .
In the final stage,

n(R3 + ε) ≥ I(S 3; Xn
1 , X

n
2 , X

n
3 |S 2)

(a)
=

n∑

i=1

I(X3(i); S 3, X−3 (i)|U2(i))

≥
n∑

i=1

I(X3(i); X̂3(i)|U2(i))

where step (a) is because of the Markov chain X3(i)−U2(i)−
X(i−1)

3 .
The proof can be completed using a timesharing argument

as in [14, p.397]. In addition, the cardinality bounds of
auxiliary alphabets can be derived using Carathéodory theorem
and support lemma [15] as in [6].

A B
C 1.1 -

The C–C minimum sum-rate directly deduced from the rate
region RC−C(D) is

RC−C
sum (D) = min I(X1; U1) + I(X2; U2|U1) + I(X3; X̂3|U2)

= min I(X3; U2, X̂3)

with the auxiliary random variables and functions satisfying
the distortion and Markov chain constraints in the definition
of RC−C(D). It simplifies to the expression in the corollary
because

(i) {X̂1, X̂2} are determined by {U1,U2};
(ii) {U1 = X̂1,U2 = X̂2} is a possible choice of {U1,U2}.



A C
L -

Given any reproduction random vector X̂ = (X̂1, . . . , X̂T )
satisfying the MSE and Markov chain constraints, we can
construct a new random vector X̃ = (X̃1, . . . , X̃T ) which is
jointly Gaussian with X = (X1, . . . , XT ) with the same second-
order statistics. Specifically, cov(X̂) = cov(X̃) and cov(X, X̂) =

cov(X, X̃). Since MSEs are fully determined from second-
order statistics, X̃ automatically satisfies the MSE constraints.
The Markov chain relations of X̂ imply corresponding con-
ditional uncorrelatedness relations, which also hold for X̃.
Moreover, because X̃ is jointly Gaussian, conditional uncorre-
latedness is equivalent to conditional independence. Therefore
X̃ also satisfies the corresponding Markov chain constraints.

Let the linear MMSE estimate of X based on X̂ be given
by AX̂ where A is a matrix. Note that by the orthogonality
principle and the joint Gaussianity of X and X̃ we have (X −
AX̂) ⊥ X̂, and further (X − AX̃) y X̃. Therefore,

I(X; X̂) = h(X) − h(X − AX̂|X̂)
≥ h(X) − h(X − AX̂)
(b)≥ h(X) − h(X − AX̃)
(c)
= h(X) − h(X − AX̃|X̃)
= I(X; X̃).

Step (b) is because (X − AX̃) has the same second-order
statistics as (X − AX̂) and it is a jointly Gaussian random
vector. Step (c) is because (X − AX̃) is independent of X̃.

In conclusion, given an arbitrary reproduction vector, we
can construct a Gaussian random vector X̃ satisfying the MSE
and Markov chain constraints and I(X; X̂) ≥ I(X; X̃). Hence
the minimum of the optimization problem can be achieved by
a reproduction random vector which is jointly Gaussian with
X.

A D
S  C 1.2  

For any choice of reproduction random variables, we have

RCCGM
sum (D) ≥ 1

2
log

σ2
1

D3
+ min

{
h(X2|X̂1) − h(X1|X̂1)

}

+ min{h(X3|X̂2) − h(X2|X̂2)}
where the minimization is subject to the distortion and Markov
chain constraints in the definition of RC−C

sum (D). Using [6,
Lemma 5], we have the inequality

min
{
h(X2|X̂1) − h(X1|X̂1)

}
≥ 1

2
log


σ2

e1

D1

 .

One can also similarly establish the inequality

min
{
h(X3|X̂2) − h(X2|X̂2)

}
≥ 1

2
log


σ2

e2

D2

 .

The proof follows from these inequalities.

A E
C 3.2 -

The JC rate-distortion function is achieved by the test
channel (4.7) for the distortion region DJC . We need to verify
that the Markov chain X̂1−X2−X3 holds for this test channel.

Note that because all the variables are jointly Gaussian, they
have the property that A y B and A y C implies A y {B,C}
for any Gaussian vector (A, B,C).

By the Markov chain X1 − X2 − X3, the MMSE estimate of
X3 based on X1 and X2 is

X3 = ρ2
σ3

σ2
X2 + N (E.1)

where N is Gaussian and independent of {X1, X2}.
By the structure of the test channel, Z1 y {Z2,Z3, X̂2, X̂3}

implies Z1 y {X2, X3}, which further implies Z1 y N.
Moreover, because N y {X1,Z1}, we have N y X̂1. Therefore
N y {X1, X2, X̂1}. So the best estimate of X3 based on
{X1, X2, X̂1} is still formula (E.1). It follows that the Markov
chain X3 − X2 − (X1, X̂1) holds implying X̂1 − X2 − X3 and
completing the proof.
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