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Abstract— A codebook-level duality between Slepian-Wolf cod-
ing and channel coding is established. Specifically, it is shown that
using linear codes overZM (the ring of integers mod M ), each
Slepian-Wolf coding problem is equivalent to a channel coding
problem for a semi-symmetric additive channel under optimal
decoding, belief propagation decoding, and minimum entropy
decoding. Various notions of symmetric channels are discussed
and their connections with semi-symmetric additive channels are
clarified.

I. I NTRODUCTION

Consider the problem (see Fig. 1) of encoding{Xi}
∞
i=1 with

side information{Yi}
∞
i=1 at the decoder. Here{(Xi, Yi)}

∞
i=1 is

a memoryless process with joint probability distributionPXY

onX ×Y. Throughout this paper,X andY are assumed to be
finite with X = ZM andY = ZN unless specified otherwise;
for any positive integerK, +K and −K denote modulo-K
addition and subtraction, respectively, whilea =K b means
a −K b = 0.

Slepian and Wolf [1] proved a surprising result1 that the
minimum rate for reconstructing{Xi}

∞
i=1 at the decoder with

asymptotically zero error probability isH(X|Y ), which is
the same as the case where the side information{Yi}

∞
i=1 is

available at the decoder.
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Fig. 1. Slepian-Wolf coding

Shortly after Slepian and Wolf’s seminal work, Wyner [3]
pointed out the possibility of using linear codes for Slepian-
Wolf coding. The scheme works as follows: given the source
sequencesXn, the encoder sendsXn

H to the decoder, where
H is the parity check matrix of a linear codeC; the decoder
then tries to recoverXn from Xn

H given the side information
Y n. Wyner also noticed an intriguing connection between

1The original problem considered by Slepian and Wolf is more general.
But it can be shown that the general problem can be reduced to this special
case via time-sharing or source-splitting [2].

Slepian-Wolf coding and channel coding in a simple example.
Suppose that bothX and Y are binary, and the correlation
betweenX and Y can be modelled by a binary-symmetric
channel with parameterp ∈ [0, 0.5) (BSC(p)), i.e., Xi =
Yi +2 Zi for all i ≥ 1, whereZi denotes a binary random
variable (independent ofYi) that takes value 1 with probability
p. Let H be an × k parity check matrix of a binary linear
channel codeC for which there exists a decoding functiong(·)
such thatZn = (Z1, Z2, · · · , Zn) can be decoded from its
syndromeZn

H with error probabilityǫ. Now in the Slepian-
Wolf problem, upon receiving the syndromeSk = Xn

H, the
decoder calculates

Sk +2 Y n
H = (Xn +2 Y n)H = Zn

H

and then usesg(·) to recoverZn with error probability ǫ.
SinceXn = Y n +2 Zn, Xn can also be recovered with error
probability ǫ. It is well-known [4] that the capacity of binary
symmetric channel is achievable with linear codes, therefore,
we can let the raten−k

n of channel codeC be arbitrarily
close to the channel capacity1 − Hb(p) while maintaining
any prescribed error probabilityǫ > 0. Hence, the compression
rate k

n of Wyner’s coding scheme can be arbitrarily close to
H(X|Y ) = Hb(p), which is exactly the Slepian-Wolf limit.
Throughout this paper,Hb(·) stands for the binary entropy
function, i.e.,Hb(p) = −p log p− (1− p) log(1− p), and the
logarithm function is to base 2.

If we view g(·) as themaximum likelihood(ML) decoding
function for BSC(p), then it is not hard to verify that the
decoding in the aforementioned example is exactly themax-
imum a posteriori(MAP) decoding for Slepian-Wolf coding.
Therefore, Wyner’s simple example suggests that a general
linear codebook-level duality may exist between Slepian-
Wolf coding and channel coding under optimal decoding
and Slepian-Wolf code design might be reduced to chan-
nel code design. Unfortunately, designing practical capacity-
approaching channel codes was still a formidable task at that
time. As a result, Wyner’s observation had relatively little
impact on the design of practical Slepian-Wolf codes.

Inspired by the potential applications of distributed data
compression in various networks and multimedia systems,
Slepian-Wolf code design has received much attention in
recent years. Moveover, due to the revolutionary advance in
the development of capacity-approaching channel codes (e.g.,



Turbo codes and low-density parity-check (LDPC) codes)
and practical decoding algorithms (e.g., belief propagation
decoding and linear programming decoding), Wyner’s channel
coding approach to Slepian-Wolf coding suddenly becomes
feasible. Indeed, almost all the existing practical Slepian-Wolf
codes [5]–[13] are designed using linear channel codes.

However, although Wyner’s idea has been extremely influ-
ential, some of its subtleties have been largely neglected.From
the design point of view, the central problem is to construct
the parity check matrixH. If we view the linear codeC as
a channel code, then we have to know for which channel the
linear codeC should be designed. Therefore, the following
two steps are crucial for Slepian-Wolf code design: 1. Given
any distributionPXY in Slepian-Wolf coding, identify a dual
channelPV |U such that a good linear code for channelPV |U

can be used as a good Slepian-Wolf code for distribution
PXY ; 2. Design a good linear code for channelPV |U . It
can be argued that the first step is more important since the
second one has been extensively studied in channel coding
theory. Surprisingly, little attention has be paid to the first
step in the literature. This phenomenon might be explained by
the fact that the dual channelPV |U is often assumed (either
explicitly or implicitly) to be equal toPY |X , where PY |X

is the conditional distribution ofY given X induced by the
joint distribution PXY . This assumption is considered to be
natural since the role ofX in Slepian-Wolf coding is similar
to channel input in channel coding while the role ofY is
similar to channel output. Actually there is even a theoretical
justification for this assumption. For example, it was shownin
[14] that a good Slepian-Wolf code for distributionPXY can
be obtained by partitioning the typical sequences (with respect
to PX ) in Xn into roughly 2nH(X|Y ) channel codes (for
channelPY |X ), each of rate approximatelyI(X;Y ). However,
Slepian-Wolf codes constructed in this way are nonlinear, and
therefore, do not fit into Wyner’s linear coding approach.
Unfortunately, this result has been misinterpreted by many
practitioners in the area of Slepian-Wolf code design to justify
PY |X as the right dual channel. We will show that choosing
PY |X as the dual channel leads to a wrong design metric in
Wyner’s framework.

To give a simple explanation, we temporarily assumeX is
binary. In Wyner’s framework, the rate of Slepian-Wolf code
is equal to the rate of syndrome, so we have the following
equation

RSW = 1 − RCH

whereRSW is the rate of Slepian-Wolf code, andRCH is the
rate of linear channel codeC. It is clear that minimizingRSW

is equivalent to maximizingRCH . If the dual channel isPY |X ,
then the maximum achievableRCH is the capacity of channel
PY |X , which is denoted byC(PY |X). Now consider any
distribution PXY with the property thatPX is non-uniform,
and channelPY |X is output-symmetric in the sense of [15]. It
was shown [16] that in this case

H(X|Y ) < 1 − C(PY |X).

That is, even if we can design a linear channel code that
achieves the capacityC(PY |X), the resulting Slepian-Wolf
code rateRSW = 1 − C(PY |X) is still bounded away from
the fundamental limitH(X|Y ). This phenomenon was also
observed in [17] and led to the claim that in this case the
Slepian-Wolf limit is not achievable with linear channel codes.
Now consider another example. LetPXY be a joint distribution
satisfying the property thatPX is uniform, but the capacity-
achieving input distribution for channelPY |X is non-uniform.
In this case, we have

H(X|Y ) = H(X) − I(X;Y )

= 1 − I(X;Y )

> 1 − C(PY |X).

This implies that if one design a linear channel code with rate
close to the capacityC(PY |X), then the resulting Slepian-
Wolf code rate would beat the fundamental limitH(Y |X).
Obviously, this leads to a contradiction. But one can argue
that the maximum rate achievable with linear codes is not
C(PY |X), but the mutual information across the channelPY |X

with the uniform input, which is denoted byI(PY |X). Since
PX is uniform in the current example, we have

H(X|Y ) = H(X) − I(X;Y )

= 1 − I(PY |X),

which seemingly resolves the contradiction.
However, the above example can be slightly modified to

make the contradiction unresolvable. We fix a conditional
probability distributionPY |X and assume2 that H(X|Y ) is
maximized by a non-uniformPX . Let PXY be the joint
distribution induced byPY |X and the maximizerPX . For
the conditional entropyH(X|Y ) associated with this joint
distribution, we have

H(X|Y ) > H(X̃|Ỹ )

= H(X̃) − I(X̃; Ỹ )

= 1 − I(PY |X)

where X̃ is a binary random variable with the uniform
distribution and Ỹ is a random variable generated bỹX
through channelPY |X . This example shows that in Wyner’s
linear coding framework, adoptingPY |X as the dual channel
is fundamentally flawed.

It should be noted that in Wyner’s simple example, it is
PX|Y , rather thanPY |X , that is used as the dual channel.
Nevertheless, except for Wyner’s example, there is also no
justification for consideringPX|Y as a candidate for the dual
channel; especially when the size ofX andY are different,
linear channel codes designed forPX|Y can not be directly
used to encodeXn.

Intuitively, the dual channelPV |U should contain all the
essential information inPXY . In this sense, neitherPY |X nor

2Such a conditional probability distributionPY |X can be easily con-
structed. Consider the case whereX = Y = {0, 1}. Let PY |X(1|0) = 0.2,
andPY |X(0|1) = 0.3.



PX|Y preserves enough information aboutPXY , and therefore,
they cannot be the right dual channel in general.

Probably the first general result on this problem appeared
in [16] (see also [18]), whereX is assumed to be binary.
It is shown that using binary LDPC codes, each Slepian-
Wolf coding problem is a dual to a channel coding problem
for a binary-input output-symmetric channel. Different from
Wyner’s approach, belief propagation decoding, instead of
optimal decoding, is used, and the duality is established under
density evolution.

A result of the same nature [19] has been established under
optimal decoding for the case where|X | is a prime number
p. Specifically, a class of semi-symmetric additive channelsis
introduced in [19]; and it is shown that using linear codes over
GF(p), each slepian-wolf coding problem is equivalent to a
channel coding problem for a semi-symmetric additive channel
under optimal decoding. This result, when specialized to the
case whereX is binary, is consistent with the result in [16],
albeit they are derived under different decoding algorithms.

A surprising conclusion one can draw from [16] and [19]
is that no matter whether the joint distributionPXY possesses
any symmetric structure or not, the dual channelPV |U is
always symmetric. On the other hand, this result is very natural
in retrospect. It is well-known that the Slepian-Wolf limitis
achievable with linear codes [20]. But it is also known that
linear codes cannot be used directly to achieve the capacity
of asymmetric channel whose optimal input distribution is not
uniform. Therefore, it is not hard to imagine that if the dual
channel does exist, it must be a certain symmetric channel.

In this paper, we will generalize and strengthen the resultsin
[16] and [19]. Specifically, the duality between Slepian-Wolf
coding and channel is established in the general finite alphabet
case. To do so, we use linear codes overZM (i.e., the ring
of integers modM ) instead of linear codes over finite fields.
Since the duality in [16] was established for belief propagation
decoding under density evolution, it is an asymptotic result
(in codeword length) concerning an ensemble of codes. By
utilizing the property of semi-symmetric additive channel, we
will prove a much stronger result — the duality under belief
propagation decoding actually holds for every individual linear
code of arbitary length. In certain sense, our result can be
viewed as a completion of Wyner’s framework.

The rest of this paper is organized as follows. In Section II,
we review the definition of a semi-symmetric additive chan-
nel, and establish the linear codebook-level duality between
Slepian-Wolf coding for an arbitrarily correlated source-side
information pair and channel coding for a particular semi-
symmetric additive channel under optimal decoding, belief
propagation decoding as well as minimum entropy decoding.
In Section III, the relation between semi-symmetric additive
channels and other well-established notions of symmetric
channels in the literature is clarified, which sheds further
light on the duality between Slepian-Wolf coding and channel
coding. We conclude the paper in Section IV.

II. D UALITY

A. Dual Channel

We first review the definition of a semi-symmetric additive
channel.

Definition 1 ( [19]): A discrete memoryless channel
PV |U : U → V with input alphabetU = Z|U| and output
alphabetV = Z|V| is defined to be additive and semi-
symmetric if there exists a positive integerN such that
|V| = N |U|, and for any inputUi, the output is given by

Vi = NUi +|V| Wi, for all i ≥ 1 (1)

where{Wi}
∞
i=1 is an i.i.d. process (with marginal distribution

PW ) that is independent of the channel input and takes values
in V.

For any nonnegative integerk and positive integerj, let
Q(k, j) , ⌊k

j ⌋ and R(k, j) , k − jQ(k, j). It is easy to
verify that

Q(Vi, N) = Ui +|U| Q(Wi, N), (2)

R(Vi, N) = R(Wi, N). (3)

Since Vi can be uniquely recovered fromQ(Vi, N) and
R(Vi, N), we can view (2) and (3) as an alternative repre-
sentation of channel model (1).

Theorem 1:The capacity-achieving input distribution for
channel model (1) (also, (2) and (3)) is the uniform distribution
overU . Furthermore, the channel capacity is given by

C(PV |U ) = log |U| − H(Q(W,N)|R(W,N))

whereW is a generic random variable with probability distri-
bution PW .
Remark: This theorem was proved in [19]. See Section III for
a more general result.

It turns out that this class of channels is intrinsically
related to Slepian-Wolf coding. Given an i.i.d. random process
{(Xi, Yi)}

∞
i=1 with marginal distributionPXY on X × Y,

where X = ZM and Y = ZN , one can define a semi-
symmetric additve channelPV |U with U = X andV = ZMN

by specifying{Wi}
∞
i=1 with the following equations

Q(Wi, N) = Xi, R(Wi, N) = Yi, for all i ≥ 1. (4)

Through this construction, Slepian-Wolf coding and channel
coding are put in the same probability space, which enables
us to relate the error events of these two problems. The main
result of this section is to show that the constructed channel
PV |U is the right dual channel. The following empirical
evidences are immediate:

1) By Theorem 1 and Eqn. (4), we have

H(X|Y ) = log M − C(PV |U ). (5)

This is desirable in Wyner’s framework (at least when
M = 2) in view of Eqn. (1).

2) Using the alternative representation given in (2) and (3),
we can write the dual channelPV |U in the form

Q(Vi, N) = Ui +M Xi, (6)

R(Vi, N) = Yi. (7)



It can be seen from (7) that the decoder has access
to {Yi}

∞
i=1 just as in the Slepian-Wolf coding problem.

Furthermore, since{Ui +M Xi}
∞
i=1 is available at the

decoder, recovering{Ui}
∞
i=1 is equivalent to recover-

ing {Xi}
∞
i=1. This illustrates the intimate connection

between Slepian-Wolf coding and channel coding as
well as the intuition behind the construction of the dual
channel.

B. Linear Codes overZM

To have a precise formulation of the duality between
Slepian-Wolf coding and channel coding, we need to introduce
linear codes overZM (i.e., the ring of integers modM ). There
are several reasons for using linear codes overZM instead of
more standard linear codes over GF(q). Firstly, this allows us
to establish the duality result for general finite alphabet size
|X |. But more importantly, linear codes overZM match the
cyclic symmetry of the dual channelPV |U , while linear codes
over GF(q) do not (unlessq is a prime number, in which
case they coincide withZM codes). As it will be seen later, to
establish the duality between Slepian-Wolf coding and channel
coding using linear codes over GF(q), the definition of a semi-
symmetric additive channel has to be slightly modified.

Linear codes overZM have been well-studied, especially in
the context of coded modulation [21]–[23].

Definition 2 ( [22]): A linear block codeC of lengthn over
ZM is a subgroup ofZn

M (we write C <s Z
n
M ), whereZ

n
M is

the group ofn-tuples of elements ofZM with componentwise
addition.

The subgroupC partitions the groupZn
M into Mn

|C| disjoint
cosets, each of size|C|. We can label each coset with a single
element (a coset representative) drawn from that coset. A set of
representatives for the cosets ofC in Z

n
M (one representative

for each coset) is denoted[Zn
M/C].

We can see that only the group property is needed in order
to define the cosets ofC. This turns out to be sufficient for
the purpose of establishing the duality between Slepian-Wolf
coding and channel coding under optimal decoding. However,
for belief-propagation decoding, we have to define the parity
check matrix ofC. Fortunately, this is possible due to the ring
structure ofZM . Here we collect some basic facts aboutZM

codes from [23].
Theorem 2 ( [23]): Let C ⊂ Z

n
M . The following statements

are equivalent:
1) C is a subgroup ofZn

M , i.e., C <s Z
n
M .

2) There exist an integerr (0 ≤ r ≤ n), a set of linearly
independent vectors{xn

1 , xn
2 , · · · , xn

r } ⊂ Z
n
M , and a set

of nested ideals ofZM (not necessarily distinct)

{0} <s arZM <s · · · <s a2ZM <s a1ZM <s ZM

such thatC can be written as the direct sum

C =

r
⊕

i=1

aiZMxn
i . (8)

Moveover, the ideals andr are uniquely determined by
C andM .

3) There exists a unique latticeΛ, MZ
n <s Λ <s Z

n,
such thatC is isomorphic toΛ/MZ

n (we write C ≃
Λ/MZ

n). Given any set[Λ/MZ
n] of coset representa-

tives,C can be written as

C = [Λ/MZ
n] mod M.

Statement 2) allows us to define the generator matrix ofC.
SinceaiZM ≃ ZM/ai

, we have [23]

C =

r
⊕

i=1

aiZMxn
i ≃ ZM/a1

× ZM/a2
× · · · × ZM/ar

.

Define the information groupJ of C as

J = {zn = (z1, z2 · · · , zr, 0, · · · , 0) : zi ∈ ZM/ai
, i = 1, 2

· · · , r}.

Write C = JG, whereG is ann×n matrix representing the
isomorphism betweenJ and C (expressed in a given basis).
It follows from (8) thatG is given by

G =

























a1x
n
1

a2x
n
2

...
arx

n
r

0n

...
0n

























.

G is called the generator matrix ofC.
Let Λ be the lattice given in Statement 3). IfΛ∗ denotes

the dual lattice ofΛ, then MΛ∗ can be written asMΛ∗ =
MZ

n + C⊥, where

C⊥ = [MΛ∗/MZ
n] mod M

is the dual code ofC [23]. Similarly, we can use Statement 2)
to construct the generator matrixG⊥ of C⊥. The parity check
matrix of C is defined as

H = (G⊥)T .

It can be shown thatcn
H = 0n ⇐⇒ cn ∈ C.

Define the syndrome groupS = Im(H) using the surjective
homomorphismH : Z

n
M → S. It can be shown [23] that

Z
n
M/C ≃ S ≃ Za1

× Za2
× · · · × Zar

× Z
n−r
M .

Therefore, the syndrome groupS can be used to label the
cosets ofC. Specifically, a coset ofC is denoted byCsn (sn ∈
S) if cn

H = sn for all cn in this coset. For example, we have
C = C0n .

C. Optimal Decoding

Now we are ready to establish the duality between the
Slepian-Wolf coding problem for the source distributionPXY

and the channel coding problem for the dual channelPV |U

under optimal decoding. LetC be a linear block code over
ZM and{Csn}sn∈S be the sets of cosets ofC in Z

n
M .



In channel coding, each codewordcn ∈ C is transmitted
with probability 1

|C| . The channel code rate is

RCH =
1

n
log |C|.

In Slepian-Wolf coding, given the source sequencex̃n, the
encoder computes̃sn = x̃n

H and sends the syndromẽsn to
the decoder. The Slepian-Wolf code rate is given by

RSW =
1

n
log |S| =

1

n
log

Mn

|C|
.

Therefore, we have

RSW = log M − RCH . (9)

Let ỹn be the realization ofY n, and c̃n be the transmitted
codeword. Temporarily ignoring the tie-breaking issue, the
optimal channel decoding rule (ML decoding) can be written
as

ĉn = arg max
cn∈C

Pr(Un +M Xn = c̃n +M x̃n, Y n = ỹn

|Un = cn)

while the optimal Slepian-Wolf decoding rule (MAP decoding)
is given by

x̂n = arg max
xn∈Cs̃n

Pr(Xn = xn|Y n = ỹn). (10)

The optimal channel decoding rule can be rewritten as

ĉn = arg max
cn∈C

Pr(Y n = ỹn)Pr(Un +M Xn = c̃n +M x̃n

|Un = cn, Y n = ỹn)

= arg max
cn∈C

Pr(Un +M Xn = c̃n +M x̃n|Un = cn,

Y n = ỹn)

= arg max
cn∈C

Pr(Xn = c̃n −M cn +M x̃n|Y n = ỹn).

Since(c̃n −M cn +M x̃n)H = x̃n
H = s̃n for all cn ∈ C , it

follows that

ĉn = c̃n +M x̃n −M arg max
xn∈Cs̃n

Pr(Xn = xn|Y n = ỹn). (11)

It can be seen that the optimal decoding rule for the dual
channelPV |U can be converted to the optimal Slepian-Wolf
decoding rule for the source distributionPXY . Therefore, the
decoding error probabilities in these two problems must be
the same. We can also see that the channel decoding error is
independent of the transmitted codeword and only depends on
the realization ofXn and Y n. Moreover, any realization of
Xn andY n that leads to a channel decoding error also causes
a Slepian-Wolf decoding error, and vice versa. In this sense,
the duality exists not only at the level of average decoding
error probability, but also at the more fundamental individual
sequence level. This observation is crucial for analyzing the
duality under belief propagation decoding because it is hard
to analyze the average decoding error probability directlyin
that setting.

Now consider the case wherePr(Xn = xn|Y n = ỹn)
is maximized by more than onexn ∈ Cs̃n . It is clear that

even if different tie-breaking rules are adopted in Slepian-Wolf
coding and channel coding, the decoding error probabilities,
conditioned on any realization ofY n, are still the same.
However, to preserve the strong duality at the individual
sequence level, the tie-breaking rules used in Slepian-Wolf
coding and channel coding must be consistent. It can be seen
that every tie-breaking rule for (10) leads to a tie-breaking
rule for (11). Specifically, we can rewrite (10) and (11) in the
following form:

x̂n = f(θ, s̃n, ỹn)

ĉn = c̃n +M x̃n −M f(θ, s̃n, ỹn)

whereθ is the realization of a tie-breaking random variableΘ,
which, condtioned onXn

H andY n, is independent ofXn and
the transmitted codeword. It is obvious that any realization of
(Xn, Y n,Θ) that leads to a Slepian-Wolf decoding error also
causes a channel decoding error, and vice versa. More gener-
ally, we can use two different tie-breaking random variables
Θ1 and Θ2 in Slepian-Wolf decoding and channel decoding,
respectively. As long as the conditional probability distribution
PΘ1|XnH,Y n is identical with PΘ2|XnH,Y n , the decoding
error probabilities in Slepian-Wolf coding and channel coding,
conditioned on any realization ofXn and Y n, are still the
same. Moveover, all the results continue to hold even if we
replace the linear codeC by any of its cosets in the channel
coding part.

It can be shown by the standard arguments [24] that when
M is a prime number, linear codes overZM can achieve the
capacity of semi-symmetric additive channels under optimal
decoding, and hence, can achieve the Slepian-Wolf limit in
view of (5) and (9). Therefore, the duality between Slepian-
Wolf coding and channel coding not only provides a frame-
work for Slepian-Wolf code design, but also leads to a new
proof of the Slepian-Wolf theorem3.

More generally, for any process{Xi, Yi}
∞
i=1 with X = ZM

and Y = ZN , we can construct a dual channel using (6)
and (7). Here{Xi, Yi}

∞
i=1 does not need to be memoryless

or even stationary. It is easy to verify that, even in such a
general setting, the duality between Slepian-Wolf coding and
channel coding at the individual sequence level continues to
hold under optimal decoding. One can use this fact to prove
the Slepian-Wolf theorem for general sources using Verdú and
Han’s channel capacity formula [25].

D. Belief Propagation Decoding

The literature on the belief propagation (BP) algorithm and
its application to channel coding is vast (see, for example,[15],
[26], [27]). A detailed description of Slepian-Wolf decoding
using belief propagation algorithm can be found in [16].

It should be emphasized that although the cosets are
uniquely determined by the linear codeC, there can be many
different parity check matrices associated with the same linear

3RequiringM to be a prime number is not a real restriction for Slepian-
Wolf coding since we can always extendX by adding symbols with zero
probability.



code. Under optimal decoding, the performance is completely
determined by the linear codeC since different parity check
matrices just give different labelling of the cosets. However,
it is known that the performance under belief propagation
decoding depends not only on the linear codeC but also on the
code representation (i.e., the choice of the parity check matrix
H). It will be seen that the duality established under belief
propagation decoding is, in certain sense, weaker than that
established under optimal decoding because it requires that
not only the same linear code but also the same parity check
matrix should be used in Slepian-Wolf coding and channel
coding. In practice, due to the complexity constraint, belief
propagation algorithm is mostly used to decode LDPC codes.
However, since here we are only concerned with the duality
between Slepian-Wolf coding and channel coding, we do not
restrict the linear codeC to be an LDPC code (i.e,H does
not need to be a sparse matrix).

There is no change in the encoding procedure, therefore, we
shall only focus on the decoding part. It is well-known that the
parity check matrixH can be represented by a Tanner graph
[28]. Let Ci be the set of check nodes that are connected to
variable nodei. Let Vj be the set of variable nodes that are
connected to check nodej. Lethij , the(i, j) entry of the parity
check matrixH, be the label on the edge connecting variable
node i and check nodej. As in the case of optimal coding,
we let s̃n = x̃n

H, wherex̃n is the realization ofXn. Also,
let c̃n be the transmitted codeword, andỹn be the realization
of Y n.

In certain sense, the duality between Slepian-Wolf coding
for the source distributionPXY and channel coding for the
dual channelPV |U is barely surprising: since the channel
decoder has access to(c̃n+M x̃n)H = x̃n

H andỹn, it can first
do Slepian-Wolf decoding to recoverx̃n, which in turn can be
used to recover̃cn from c̃n + x̃n. Therefore, any Slepian-Wolf
decoder can be converted to a channel decoder in this way. We
have seen that the channel decoder converted from the optimal
Slepian-Wolf decoder (i.e., MAP decoder) is equivalent to the
optimal channel decoder (i.e., ML decoder). However, it is
less transparent whether the channel decoder converted from
the BP Slepian-Wolf decoder is equivalent to the BP channel
decoder. We will show that the answer is affirmative.

Now we proceed to establish the duality between Slepian-
Wolf coding and channel coding under belief propagation
decoding. In Slepian-Wolf coding, the initial message4 at
variable nodei is

M
(0)
v=i =

[

m
(0)
v=i(0),m

(0)
v=i(1), · · · ,m

(0)
v=i(M − 1)

]

where

m
(0)
v=i(k) = Pr(Xi = k, Yi = ỹi), k ∈ ZM .

In channel coding, the initial message at variable nodei is

M
(0)

v=i =
[

m
(0)
v=i(0),m

(0)
v=i(1), · · · ,m

(0)
v=i(M − 1)

]

4There are many different ways to represent a message, but they are all
equivalent. So here we just choose the most basic one.

wherem
(0)
v=i(k), k ∈ ZM , is given by

m
(0)
v=i(k) = Pr(Ui +M Xi = c̃i +M x̃i, Yi = ỹi|Ui = k).

Note that for anyk ∈ ZM , we have

m
(0)
v=i(k)

= Pr(Yi = ỹi)Pr(Ui +M Xi = c̃i +M x̃i|Ui = k, Yi = ỹi)

= Pr(Yi = ỹi)Pr(Xi = c̃i +M x̃i −M k|Yi = ỹi)

= Pr(Xi = c̃i +M x̃i −M k, Yi = ỹi)

= m
(0)
v=i(c̃i +M x̃i −M k).

Now consider the message from check nodej to variable
node i in the first iteration. In Slepian-Wolf coding, the
message is

M
(1)
c=j,v=i =

[

m
(1)
c=j,v=i(0), · · · ,m

(1)
c=j,v=i(M − 1)

]

wherem
(1)
c=j,v=i(k), k ∈ ZM , is given by

m
(1)
c=j,v=i(k) =

∑

Ak

∏

l∈Cj\{i}

m
(0)
v=l(xl)

and

Ak =







(xl)l∈Cj\{i} : hijk +
∑

l∈Cj\{i}

hljxl =M s̃j







.

In channel coding, the message is

M
(1)

c=j,v=i =
[

m
(1)
c=j,v=i(0), · · · ,m

(1)
c=j,v=i(M − 1)

]

wherem
(1)
c=j,v=i(k), k ∈ ZM , is given by

m
(1)
c=j,v=i(k) =

∑

Ak

∏

l∈Cj\{i}

m
(0)
v=l(ul)

and

Ak =







(ul)l∈Cj\{i} : hijk +
∑

l∈Cj\{i}

hljul =M 0







.

We have

m
(1)
c=j,v=i(k) =

∑

Ak

∏

l∈Cj\{i}

m
(0)
v=l(ul)

=
∑

Ak

∏

l∈Cj\{i}

m
(0)
v=l(c̃l +M x̃l −M ul)

=
∑

Ac̃i+M x̃i−M k

∏

l∈Cj\{i}

m
(0)
v=l(xl) (12)

= m
(1)
c=j,v=i(c̃i +M x̃i −M k), k ∈ ZM

where (12) follows from the fact that(ul)l∈Cj\{i} is in Ak if
and only if (c̃l +M x̃l −M ul)l∈Cj\{i} is in Ac̃i+M x̃i−M k.

Then consider the message from variable nodei to check
node j in the first iteration. In Slepian-Wolf coding, the
message is

M
(1)
v=i,c=j =

[

m
(1)
v=i,c=j(0), · · · ,m

(1)
v=i,c=j(M − 1)

]



wherem
(1)
v=i,c=j(k), k ∈ ZM , is given by

m
(1)
v=i,c=j(k) = m

(0)
v=i(k)

∏

l∈Vi\{j}

m
(1)
c=l,v=i(k).

In channel coding, this message is

M
(1)

v=i,c=j =
[

m
(1)
v=i,c=j(0), · · · ,m

(1)
v=i,c=j(M − 1)

]

wherem
(1)
v=i,c=j(k), k ∈ ZM , is given by

m
(1)
v=i,c=j(k) = m

(0)
v=i(k)

∏

l∈Vi\{j}

m
(1)
c=l,v=i(k).

Note that

m
(1)
v=i,c=j(k)

= m
(0)
v=i(c̃i + x̃i − k)

∏

l∈Vi\{j}

m
(1)
c=l,v=i(c̃i +M x̃i −M k)

= m
(1)
v=i,c=j(c̃i +M x̃i −M k), k ∈ ZM .

By induction, for any iteration numbert, any variable node
i and any check nodej, we have

m
(t)
v=i,c=j(k) = m

(t)
v=i,c=j(c̃i +M x̃i −M k),

m
(t)
c=j,v=i(k) = m

(t)
c=j,v=i(c̃i +M x̃i −M k).

When a decision is to be made at variable nodei at the
tth iteration, variable nodei will form a decision vector. In
Slepian-Wolf coding, the decision vector is

D
(t)
i = [d

(t)
i (0), d

(t)
i (1), · · · , d

(t)
i (M − 1)]

where

d
(t)
i (k) = m

(0)
v=i(k)

∏

l∈Vi

m
(t)
c=l,v=i(k), k ∈ ZM .

In channel coding, the decision vector is

D
(t)

i = [d
(t)

i (0), d
(t)

i (1), · · · , d
(t)

i (M − 1)]

where

d
(t)

i (k) = m
(0)
v=i(k)

∏

l∈Vi

m
(t)
c=l,v=i(k), k ∈ ZM .

Clearly, we have

d
(t)

i (k)

= m
(0)
v=i(c̃i +M x̃i −M k)

∏

l∈Vi

m
(t)
c=l,v=i(c̃i +M x̃i −M k)

= d
(t)
i (c̃i +M x̃i −M k), k ∈ ZM .

A few comments are ready:

1) d
(t)

i (k) is maximized atk = c̃i, thend
(t)
i (k′) is maxi-

mized atk′ = x̃i, and vice versa. Therefore, given any
realization of(Xn, Y n), a correct decision is made in
Slepian-Wolf decoding if and only if a correct decision
is made in channel decoding.

2) The decoding error is independent of the transmitted
codeword.

3) It can be verified that all the results still hold even if in
the channel coding part, we replace the linear codeC by
any of its cosets.

4) The tie-breaking issue is similar to the optimal decoding
case, and therefore, is omitted.

5) Similar to the optimal decoding case, the duality under
belief propagation decoding holds at the individual se-
quence level. Therefore, it is unnecessary to have the
assumption that the process{(Xi, Yi)}

∞
i=1 is memory-

less. However, it should be noted that the belief propa-
gation algorithm used here is developed for memoryless
processes. Its performance might not be good if used
directly for processes with memory.

E. Minimum Entropy Decoding

The duality between Slepian-Wolf coding and channel cod-
ing can also be established under universal decoding. We shall
focus on minimum entropy decoding although it will be clear
that any universal Slepian-Wolf decoding rule for the source
distribution PXY can be converted to a universal channel
decoding rule for the dual channelPV |U .

The encoding procedure is the same as before, and is omit-
ted. In Slepian-Wolf coding, the minimum entropy decoder
selects the reconstruction sequencex̂n in Cs̃n with the property
that the entropy of the joint empirical distribution ofx̂n and
ỹn is minimized. Csisźar [20] proved a surprising result that
the Slepian-Wolf limit is achievable universally using linear
codes in conjunction with minimum entropy decoding. For
the dual channelPV |U , we can first use the minimum entropy
Slepian-Wolf decoder to recover̃xn, which in turn can be
used to recover̃cn from c̃n + x̃n. This is clearly a universal
channel decoder. Therefore, Csiszar’s result directly implies a
universal channel coding theorem for semi-symmetric additive
channels. However, strictly speaking, the channel decoder
converted from the minimum entropy Slepian-Wolf decoder
is not equivalent to the standard minimum entropy channel
decoder. Nevertheless, we can view it as a variant of the
standard minimum entropy channel decoder.

The duality between Slepian-Wolf coding and channel cod-
ing also demystifies Csiszár’s surprising result. The universal
Slepian-Wolf coding theorem and the sufficiency of linear
codes can be viewed as manifestation of the compound chan-
nel coding theorem [29] and the fact that the uniform distri-
bution is capacity-achieving for all semi-symmetric additive
channels.

F. Linear Codes over GF(q)

So far we have focused on linear codes overZM . To
establish the duality between Slepian-Wolf coding and channel
coding using linear codes over GF(q), we can define the dual
channel in the formV = (U ⊕X,Y ), where⊕ is the addition
operation in GF(q). To guarantee that the dual channel is well-
defined, we need to assumeU = X = GF(q). The proof
of duality between Slepian-Wolf coding and channel coding
using linear codes over GF(q) follows almost verbatim from
that using linear codes overZM . The only change is that



modulo-M operations should be replaced by the corresponding
operations in GF(q).

It should be mentioned that Csiszar’s result [20] was derived
using linear codes over GF(q). However, since linear codes
overZM and linear codes over GF(q) coincide whenM = q =
p, wherep is a prime number, Csiszar’s result also holds for
linear codes overZp. Moreover, since we are only interested in
the duality between Slepian-Wolf coding and channel coding
while the optimality of codes is not our main concern, using
linear codes overZM provides us the freedom to treat arbitrary
finite alphabet size without adding zero-probability symbols.

III. SYMMETRY, EQUIVALENCE AND ORDERING

It should be clear from the analysis in the previous sec-
tion that the symmetry of the dual channelPV |U plays an
important role. Since there are many different definitions of
symmetric channels in the literature, it is instructive to clarify
the relations and differences among them. It will be seen that
such a comparison further illuminates the connection between
Slepian-Wolf coding and channel coding. For simplicity, we
shall focus on finite-input finite-output discrete memoryless
channels with input alphabetU = ZM and output alphabet
V although most of the results hold in a much more general
setting.

Definition 3 ( [30]): For any functionT : V → V, let T k

denote the correspondingk-times self-composition ofT . An
M -ary-input channelPV |U : ZM → V is cyclic-symmetric
if there exists a bijective transformT : V → V such that
TM (v) = v for all v ∈ V and

PV |U (v|0) = PV |U (Tu(v)|u)

for all u ∈ ZM , v ∈ V.
It can be verified that every semi-symmetric additive chan-

nel defined by (1) in Section II is a cyclic-symmetric channel
by choosing the bijective functionT to beT (v) = v +|V| N
for all v ∈ V.

Now let PV |U be a cyclic-symmetric channel with bi-
jective transformT . Under the action ofT , the channel
output alphabetV can be partitioned intoN equivalence class
V0,V1, · · · ,VN−1 for some positive integerN such that two
elementsv1 andv2 belong to the same classVj if and only if
v1 = Tu(v2) for someu ∈ ZM . Equivalence class is closed
under transformT , i.e., T (Vj) = Vj for all j ∈ ZN . This
implies that the conditional probabilityPV |U (Vj |u) does not
depend onu, and we have

Pr(V ∈ Vj) = PV |U (Vj |u) (13)

for all u ∈ ZM , j ∈ ZN . We can represent the channel
outputV in the vector form(V 1, V 2), whereV 1 denotes the
equivalence class in whichV resides whileV 2 specifies which
element in that equivalence class isV . It follows from (13) that
V 1 is independent of the channel input and we can view it as
the channel state information at the decoder. SinceTM (v) = v
for all v ∈ V, it follows that |Vj | must divide exactly intoM

for all j ∈ ZN . We can construct a joint distributionPXY

with X = ZM andY = ZN such that

PY (j) = Pr(V ∈ Vj),

PX|Y (k|j) =
|Vj |

M
PV |U (T k(vj)|0)

for all k ∈ ZM , j ∈ ZN , wherevj is an arbitrary representative
element ofVj . Let PṼ |Ũ be the dual semi-symmetric additive
channel ofPXY (see (6) and (7)). We can see thatY and
Ũ +M X play the roles ofV 1 and V 2, respectively. It is
easy to verify that actuallyPV |U andPṼ |Ũ are identical after
merging the indistinguishable output symbols5 and relabelling.
Therefore, in this sense, these two definitions of symmetric
channels are equivalent. Henceforth, only the name “cyclic-
symmetric channel”6 will be used.

It is well-known [30], [31] that every (asymmetric) channel
can be converted to a cyclic-symmetric channel through the
standard argument based on the coset code ensemble. But it
should be emphasized that in channel coding, such a sym-
metrization argument is introduced to simplify the analysis,
and is not information-lossless. However, in Slepian-Wolf
coding, the cosets are intrinsic since they play the role of bins
[32]. Therefore, in Slepian-Wolf coding, symmetrization is a
consequence of the nature of the problem itself. This explains
why we can convert every Slepian-Wolf coding problem (no
matter symmetric or not) to a channel coding problem for a
cyclic-symmetric channel without loss of optimality.

Since using linear codes overZM , every Slepian-Wolf
coding problem is equivalent to a channel coding problem fora
cyclic-symmetric channel, we can say two source distributions
PXY andPX̃Ỹ in Slepian-Wolf coding are equivalent if their
corresponding dual channels are identical (after merging indis-
tinguishable output symbols and relabelling). More generally,
through the duality between Slepian-Wolf coding and channel
coding, every partial order on the domain of channel transition
probabilities induces a partial order on the domain of source
distributions in Slepian-Wolf coding. Such kind of ordering is
often useful for establishing monotonicity results under various
decoding algorithms.

Now we turn to another important class of symmetric
channels defined by Gallager [24].

Definition 4: A discrete memoryless channelPV |U :
ZM → V is defined to be symmetric ifV can be partitioned
into subsets in such a way that for each subset of the matrix
of transition probabilities (using input as rows and outputs of

5For any discrete memoryless channelPV |U : U → V, two output symbols
v1 andv2 are called indistinguishable ifPV |U (v1|u) = 0 ⇔ PV |U (v2|u) =

0 and the value of
PV |U (v1|u)

PV |U (v2|u)
does not depend onu for u ∈ {u ∈ U :

PV |U (v1|u) > 0}.
6As pointed out in [30], the definition of cyclic-symmetric channels is

similar to the definition of signal sets matched to groups in [22]. Interestingly,
signal sets matched to groups are equivalent to Slepian signal sets (i.e.,
Slepian’s “group codes for the Gaussian channel”). So in certain sense, Slepian
not only invented Slepian-Wolf coding (with Wolf), but alsohelped to develop
the right notion of symmetry that is crucial for establishing the duality between
Slepian-Wolf coding and channel coding. However, Slepian himself might not
realize this point.



the subset as columns) has the property that each row is a
permutation of each other row and each column (if more than
1) is a permutation of each other column.

It is easy to verify that every cyclic-symmetric channel is
also G-symmetric (i.e., symmetric in the sense of Gallager).
But the reverse is not true. The reason is simple: the G-
symmetry is preserved under both column permutation and
row permutation of the channel transition probability matrix;
however, the cyclic-symmetry is preserved under column
permutation but not row permutation. One may argue that
such a difference is caused by the fact the input symbols
are already ordered in the definition of a cyclic-symmetric
channel, which is clearly an unnecessary restriction. However,
we will show that there exist transition probability matrices
satisfying G-symmetry but not convertible to any transition
probability matrix satisfying cyclic-symmetry even if row
permutation is allowed. For example, consider the type of
transition probability matrices given by the following Latin
square [33]













a b c d e
b a d e c
c e a b d
d c e a b
e d b c a













It can be verified that there does not exist a bijective transform
T satisfying the conditions in Definition 3 for this kind of ma-
trices even if row permutation is allowed. On the other hand,it
is obvious that any channel with a transition probability matrix
of this type is G-symmetric.

The following definition of symmetric channels was used
in [34] by Cover and Thomas.

Definition 5: A channel PV |U : ZM → V is said to
be symmetric if every row of the transition matrix is a
permutation of every other row, and all the column sums are
equal.

It can be verified that the binary erasure channel is not
CT-symmetric (i.e., symmetric in the sense of Cover and
Thomas). But the binary erasure channel is cyclic-symmetric
(and therefore, G-symmetric). However, there exist channels
that are CT-symmetric but not G-symmetric (and therefore, not
cyclic-symmetric). Consider the following channel transition
probability matrix









0.1 0.3 0.35 0.05 0.2
0.3 0.35 0.05 0.2 0.1
0.35 0.05 0.1 0.2 0.3
0.05 0.1 0.3 0.35 0.2









.

It is easy to verify that the channel with this transition
probability matrix is CT-symmetric but not G-symmetric.

The motivation behind both G-symmetry and CT-symmetry
is to guarantee that the capacity-achieving input distribution is
the uniform distribution. We shall define a notion of symmetry
which includes both G-symmetry and CT-symmetry as special
cases, but preserves all their essential features.

Definition 6: A discrete memoryless channelPV |U :
ZM → V is said to be GCT-symmetric ifV can be partitioned
into subsets in such a way that for each subset of the matrix
of transition probabilities (using input as rows and outputs
of the subset as columns) has the property that each row is a
permutation of each other row and the column sums are equal.

It should be obvious from the definition that GCT-symmetry
includes both G-symmetry and CT-symmetry as special cases.

Although GCT-symmetry is much more general than
cyclic-symmetry, they share many important features. Let
(V0,V1, · · · ,VN−1) be a partition ofV as specified in Defi-
nition 6. The role of(V0,V1, · · · ,VN−1) is similar to that of
equivalence classes in the cyclic-symmetric channel case.We
can represent the outputV in the vector form(S,W ), where
S denotes the subset in whichV resides whileW specifies
which element in that subset isV . More precisely, letS = s if
V ∈ Vs, s ∈ ZN . Since each subset of the transition matrix has
the property that each row is a permutation of each other row,
it implies that the conditional probabilityPS|U (s|u) does not
depend onu, i.e., S is independent of the channel input. We
shall viewS as the channel state information at the decoder.
Clearly,S corresponds toV 1 in the cyclic-symmetric channel
case, which in turn corresponds toY in Slepian-Wolf coding.

For any input distributionPU , we have

I(U ;V ) = I(U ;S,W ) = I(U ;W |S)

and the channel capacity is given by

C(PV |U ) = max
PU

I(U ;W |S)

= max
PU

N−1
∑

s=0

PS(s)I(U ;W |S = s).

If the state informationS is available at the encoder, then the
input distribution can be optimized for each state realization,
and the channel capacity with the state information at both the
encoder and decoder is given by

CE(PV |U )

=
N−1
∑

s=0

PS(s) max
PU|S=s

I(U ;W |S = s)

=

N−1
∑

s=0

PS(s) max
PU|S=s

[H(W |S = s) − H(W |U, S = s)].

Again, since each subset of the transition matrix has the
property that each row is a permutation of each other row,
the conditional entropyH(W |U, S = s) does not depend on
PU |S=s. Therefore, we can write

H(W |U, S = s) = H(W |U = 0, S = s).

Since the column sums are equal in each subset of the
transition matrix, it implies that ifPU |S=s is the uniform
distribution overZM , then the resultingPW |S=s is the uni-
form distribution overVs. Clearly, the maximum value of



H(W |S = s) is log |Vs| and is achieved whenPW |S=s is
the uniform distribution. Therefore, we have

CE(PV |U ) =

N−1
∑

j=0

PS(s)[log |Vs| − H(W |U = 0, S = s)].

Since the optimal input distributionPU |S=j is always the
uniform distribution overZM no matter what the realization
of the state informationS is, we have

C(PV |U )

= max
PU

N−1
∑

s=0

PS(s)I(U ;W |S = s)

=

N−1
∑

s=0

PS(s) max
PU|S=s

I(U ;W |S = s)

= CE(PV |U )

=
N−1
∑

s=0

PS(s)[log |Vs| − H(W |U = 0, S = s)], (14)

i.e., the state information at the encoder does not help to in-
crease the channel capacity, which resembles the phenomenon
in Slepian-Wolf coding that the fundamental limit is unaffected
no matter the side information is available at the encoder or
not. We can also see that Theorem 1 is a special case of (14).

IV. CONCLUSION

We have established a duality between Slepian-Wolf cod-
ing and channel coding. It should be pointed out that this
duality holds at the level of each individual linear codebook,
and therefore, is considerably stronger than the formula-
level duality results based on the random coding argument.
Indeed, this codebook-level duality, though technically simple
to prove, is surprisingly powerful. Besides its implication on
the practical Slepian-Wolf code design, it also provides a link
for translating many difficult and profound results of channel
coding directly to those of Slepian-Wolf coding. In view of the
fact that channel coding is the most extensively studied area
in information theory, it is natural to expect that Slepian-Wolf
coding will benefit from channel coding through this link.
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