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Abstract— A fundamental problem in wireless networks is
determining the broadcast capacity, i.e. the maximum data
transfer rate from a given node to every other node in a
relay network. This problem becomes more important as many
network protocols rely on broadcast of certain control messages.
In this paper, the scaling of the broadcast capacity with the
number of nodes (N ) in the network is studied. In the high-
density regime (i.e. the node density goes to infinity; the network
area is fixed), it is shown that the broadcast capacity is upper
bounded by Θ(log N). Schemes are provided that achieve i)
Θ(log N) throughput if the channel fading is spatially continuous;
ii) Θ(log log N) throughput if the channel fading is spatially
i.i.d.. The reasons for this drastic reduction in throughput and
the connections with multiuser diversity are discussed. Analogous
results are provided for the extended-network model (i.e. the node
density is fixed; the network area goes to infinity).

I. INTRODUCTION

In both wireless and wired networks, communication
consists of not only transmissions between single source-
destination pairs (unicast), but also transmissions from a
source to a group of destinations (multicast, one-to-many) and
from a group of sources to a destination (many-to-one). In
the case of one-to-many communication, if the destination set
corresponds to the entire network nodes, this transmission is
also referred as broadcast.

For many wireless network applications, broadcasting and
multicasting constitute a significant portion of network traf-
fic, and they may cause performance bottlenecks. Several
authors have studied designing broadcast protocols based on
various criteria such as energy efficiency and reduction of
retransmissions [1]. In contrast with traditional approaches,
an important observation is that “collisions” between different
transmitting nodes, which hinder point-to-point communica-
tion, may actually be beneficial, when the transmitting nodes
are broadcasting the same message [2]. Motivated by this idea,
we are interested in designing novel broadcasting protocols
and fundamental performance bounds on practical schemes.
The goal of this paper is to study the broadcast capacity of
wireless networks.

In recent years, there has been a lot of interest in fundamen-
tal limits of wireless networks with unicast traffic [3]–[11].
These works were initiated by [3], where the authors study
the capacity for a multihop wireless network with multiple
source-destination pairs. Later, in [5], [6] schemes that exceed
the performance of multihopping for wireless unicast commu-
nications are presented. Without going into details of these

works, we would like to mention that taking an information
theoretic perspective usually leads to sophisticated physical
layer designs with better performance. In [12], [13], the
authors have studied scaling laws of many-to-one networks.

A few works, [14]–[17], have studied the scaling laws for
broadcast capacity of wireless networks. In [14], the authors
assume that each node has a fixed transmission radius, and
show that under multihop broadcasting, the broadcast capacity
scales as Θ(1). In [15], the author studies a multihop relay
network where node locations are modelled as a Poisson
process. The capacity bounds are derived under the assumption
that the link rates are governed by signal-to-interference ratio
(SINR). In [16], the authors show that the broadcast capacity
is Θ(1) under the protocol model [3]. As opposed to these
works, we follow an information theoretic approach, find
upper bounds to the broadcast capacity and provide schemes
that achieve the same scaling as the upper bound in case of
spatially-continuous fading.

In a recent work [17], the authors characterized the broad-
cast capacity for slowly fading channels. They considered a
model where an outage is declared if any of the receivers
fails to decode the source message, and the broadcast capacity
is defined as the maximum data rate at which the outage
probability converges to zero as the number of nodes goes to
infinity. Theys showed that the broadcast capacity converges
to C = log(1 + P

N0
), where P is the sum power constraint on

the network and N0 is the noise power. This result is obtained
under the assumption that there is i.i.d small scale fading
between nodes, but there is no signal attenuation with distance.
The achievability result is based on a two-phase cooperative
broadcasting scheme.

In this paper, we study a network composed of a single
source and N destinations. The destination nodes also serve
as relays for others. The channel coefficients are assumed to
be ergodic in time, and the metric of interest is the scaling of
broadcast capacity with respect to the number of nodes. Our
results are based on two different channel models: (i) spatially
continuous fading; (ii) spatially i.i.d. fading.

In the first part of the paper, we study high-density networks
(i.e. the node density goes to infinity while the network
area is fixed) under the total power constraint. We show
that the broadcast capacity is upper bounded by Θ(log N)
and provide schemes that achieve i) Θ(log N) throughput if
the channel fading is spatially continuous; ii) Θ(log log N)
throughput if the channel fading is spatially i.i.d.. Under the



spatially-continuous model it becomes possible to coherently
combine the signals from a small group of nodes to other
receivers as the network density increases. Coherent combin-
ing of a polynomial number of nodes leads to achievability
of Θ(log N) throughput. In the case of spatially i.i.d. fading,
the gains are similar to multiuser diversity gains—a small
fraction of nodes receive the source message correctly, but they
retransmit and amplify it enough that every other node receives
it successfully. As in the case of classical multiuser diversity in
in single-hop broadcast/multiaccess setting, the achieved rate
is only Θ(log log N).

Next, we study the extended networks (i.e. the network area
goes to infinity while the node density is fixed) and provide
a Θ(log N) upper bound on the broadcast capacity under per-
node power constraint. We also determine the transmission rate
of the cooperative multistage broadcasting protocol introduced
in [2] (Θ(1) scaling). Comparison of cooperative broadcast
with conventional multihop communication is left as a future
work.

The paper is organized as follows. In Section II, we intro-
duce the network and system models. Section III summarizes
the main results. The analysis of high density networks under
spatially-continuous channel models is given Section IV and
V, and under i.i.d. fading model is studied in Section VI. Sec-
tion VII studies extended networks. The analysis of transmis-
sion rate for multistage cooperative broadcasting is studied in
Section VIII. Finally, Section IX presents concluding remarks
and future directions.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a network of a single source and N desti-
nations. We will denote the source node with index 0 and
the index set of the destinations with S := {1, . . . , N}. We
assume the nodes are half-duplex, i.e., they can not transmit
and receive at the same time. We study two different regimes:

1) High Density Network Model: The nodes are uniformly
and independently distributed in a given region with area
A. The node density increases with an increase in the
number of nodes.

2) Extended Network Model: The nodes are uniformly and
independently distributed with a given node density. The
network area increases with an increase in the number
of nodes.

Each node communicates over a wireless channel which is
effected by both signal attenuation and small scale fading. Let
h̃(xi,xk) denote the channel coefficient between i’th and k’th
nodes located at xi and xk, respectively:

h̃(xi,xk) =
h(xi,xk)
‖xi − xk‖α/2

, (1)

where h(·, ·) denotes the small-scale fading function, and
i, k ∈ S . The parameter α denotes the pathloss exponent
and usually lies in the interval (2, 4). We assume small-scale
fading is zero mean and unit variance, i.e., for any given node-
pair {i, k}, E{h(xi,xk)} = 0 and E{|h(xi,xk)|2} = 1. We
assume that the source is located at the origin, i.e., x0 = (0, 0).

In the following, we will also use hik := h(xi,xk) whenever
appropriate, and dik := ‖xi − xk‖. We will denote the
time variation in the channel coefficients as hik[m], where
m denotes the m’th time instant. The received signal at the
k’th node at time m is

yk[m] =
∑

i 6=k

hik[m]xi[m] + zk[m],

where xi[m] is the transmitted signal by the i’th node at time
m and zk[m] denotes the i.i.d. additive white Gaussian noise
at the k’th node at time instant m with power N0.

We assume that the locations of the nodes are slowly-
varying (fixed over the communication duration), and the
small-scale fading is fast-varying. We are interested in the scal-
ing of the ergodic capacity for both high density networks and
extended networks. In the next subsection, we give detailed
explanation of the considered channel models. We assume the
total transmission power of the nodes is fixed:

N∑

i=0

Pi ≤ P, (2)

where Pi denotes the average power for the i’th relay and
P < ∞ is independent of the number of nodes N .

A. Fading Models

We consider different fading distributions over the space and
assume hik[m]’s are ergodic in time. Each model represents
different scenarios:

I) Spatially-continuous Phase Fading: Here, we assume
that the small-scale channel variation between i’th and
k’th nodes, h(xi,xk), is only due to the phase differ-
ence, that is:

h(xi,xk) = ejθ(xi,xk),

where θ(·, ·) represents the phase variation as a function
of node locations. We assume θ(xi,xk)’s are uniformly
distributed in (0, 2π]. The function θ(·, ·) is assumed to
be uniformly continuous:

A1) ∀δ > 0, ∃ε > 0 s.t. ∀ x1,x2,y ∈ R2,

if ‖x1−x2‖ < ε, then |θ(x1,y)− θ(x2,y)| < δ,

almost surely.
This assumption essentially means that as two nodes
get closer and closer, their channel coefficients become
highly correlated. The main motivation behind this
model is its simplicity which helps understanding the
intuition behind the results we obtain.

II) Spatially-Continuous Small-Scale Fading Model: Here,
we consider small-scale fading with a certain correlation
model. The correlation is such that h(·, ·) is uniformly
continuous and satisfies the following conditions:

A2) ∀δ > 0, ∃ε > 0 s.t. ∀x1,x2,y ∈ R2, if
‖x1 − x2‖ < ε, then |h(x1,y) − h(x2,y)| < δ,
almost surely.



A3) ∀δ > 0, ∃ε > 0 s.t. ∀x,y1,y2 ∈ R2, if
‖y1 − y2‖ < ε, then |h(x,y1) − h(x,y2)| < δ,
almost surely.

A4) ∀x ∈ R2, h(x,x) = 1.

III) Independent and Identically Distributed Small-Scale
Fading: Here, we assume that h(x,y)’s are independent
and identically distributed for different values of (x,y)
pairs.

III. SUMMARY OF MAIN RESULTS

In the following sections, we propose novel network
schemes that coordinate the transmissions from source and
relays to the destinations. Let T denote the number of channel
uses for the network protocol. A rate Rs(bits/sec) is said to
be achievable under the proposed protocols if there exists a
sequence of (M := 2nRs , n) codes such that the probability
of error of decoding Pe converges to zero as n→∞. Define
Cs := nRs

T (bits/channel use) as the broadcast rate.
We assume each node utilizes a Gaussian codebook such

that each message m ∈ {1, 2, . . . , 2nRs} is mapped to a
codeword Xm of length n, where Xm ∼ N (0, I). We assume
the distribution over different messages is uniform. Each node
transmits Xm for message m.

• Under models I & II, the broadcast capacity for high
density networks scales as

Chigh
1 = Θ(log N),

for large N with probability approaching 1 (w.p.a. 1).
• Under model III, the broadcast capacity for high density

networks satisfies

K1 log(log N) ≤ Chigh
2 ≤ K2 log N,

for large N , w.p.a. 1.
• For extended networks, the broadcast capacity is upper

bounded as
Cext ≤ K3 log(log N)

for large N , w.p.a. 1.

IV. SCALING OF BROADCAST CAPACITY UNDER
SPATIALLY-CONTINUOUS PHASE FADING

In this section, we show that under spatially-continuous
phase fading model, the cooperative broadcast capacity is

Chigh
1 = Θ(log N), (3)

w.p.a. 1, for large N . Although validity of spatially-continuous
phase fading is debatable, this model leads to a simplified
analysis and helps understand the intuition behind more com-
plicated models. In order to prove (3), we provide an upper
bound for Chigh

1 that scales as log(N) in Section IV-A, and
we describe a novel scheme with achievable rate that scales
as log(N) in Section IV-B.

A. Upper Bounds on the Cooperative Broadcast Capacity

Lemma 1: The broadcast rate Chigh
1 under spatially-

continuous phase fading model is bounded above as

Chigh
1 ≤ K log(N), for N→∞,

where K is a constant.
Proof: The proof is based on the cut-set bound theorem

[18, Chapter 14, page 445]. We are interested in only the cut
that separates the source from the rest of the network. Based
on this cut, the broadcast rate is bounded by the capacity of
the single-input multiple-output (SIMO) channel where the
relays act as co-located antennas at the receiver. For details,
see Appendix B.
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Fig. 1. SIMO cut: source is denoted with a square; nodes are denoted by
filled circles; SIMO cut is dashed circle.

B. Proposed Cooperative Broadcasting Protocol

In this section, we provide a scheme that has achievable
rate which scales as log(N) for large N under spatially-
correlated phase fading. This result is due to the spatial
correlation of the fading model which lets the neighboring
nodes coherently retransmit the source message to every other
node in the network. The proposed scheme is composed of
two phases: (i) source broadcasts the message; (ii) close-by
neighbors (detailed explanation is given below) of the source
node retransmit the source message. The transmissions in
different phases are time-duplexed, i.e., Phase-1 occurs during
[0, T/2) and Phase-2 occurs during [T/2, T ) where T is the
transmission period. We provide a detailed explanation of these
two phases in the following.
• Phase-1: In the first phase, source node broadcasts the

message. Under the spatially-correlated phase fading
model, the channel gain from the source to the k’th node
is

G0k =
∣∣∣∣

ejθ(x0,xk)

‖x0 − xk‖α/2

∣∣∣∣
2

= ‖x0 − xk‖−α.

Let the transmission rate of the source node be RI =
1
2 log(1 + N b). Consider the nodes that lie within the
disc with radius r := N−b/α around the source node.
These nodes have channel gains G0k ≥ N b, hence can
decode the message correctly. We will name these nodes



as the close-by neighbors of the source node. The number
of close-by neighbors is

Nr :=
N

A
πr2 = N−2b/α+1, (4)

where the total area is assumed to be A = π for
simplicity. We would like −2b/α + 1 > 0 which implies
b < α/2 (satisfied for small b’s).

• Phase-2: In the second phase, the nodes within the radius
r retransmit the source message. For convenience, we
assume that the index set of these nodes is Sr :=
{1, . . . , Nr}. The effective channel gain at the k’th node
(k ∈ S\Sr) due to transmission of the nodes in Sr is
given by:

Gk =

∣∣∣∣∣
Nr∑

i=1

√
Pie

jθ(xi,xk)‖xi − xk‖−α/2

∣∣∣∣∣

2

.

Using the definition dik := ‖xi − xk‖, we can rewrite
the gain Gk as

Gk =
Nr∑

i1=1

Nr∑

i2=1

√
Pi1Pi2e

j(θ(xi1 ,xk)−θ(xi2 ,y))d
−α/2
i1k d

−α/2
i2k

=
Nr∑

i1=1

(Pi1d
−α
i1k + 2d

−α/2
i2k ×

Nr∑

i2>i1

√
Pi1Pi2 cos(∆k

i1i2)d
−α/2
i2k ),

where ∆k
i1i2

:= |θ(xi1 ,xk)−θ(xi2 ,xk)|. Under assump-
tion A1), we know that ||x1 − x2|| < r implies that
|θ(x1,y) − θ(x2,y)| < δr < π/2 almost surely. Using
this fact, we can lower bound the effective gain as

Gk ≥
Nr∑

i1=1

(Pi1d
−α
i1k + 2d

−α/2
i1k cos(δr)

Nr∑

i2>i1

√
Pi1Pi2d

−α/2
i2k ).

The distances dik are upper bounded by dmax := 1 (since
we assumed the total area A = π). Then,

Gk ≥
Nr∑

i1=1

(Pi1d
−α
max + 2d−α/2

max cos(δr)
Nr∑

i2>i1

√
Pi1Pi2d

−α/2
max )

=
Nr∑

i1=1

(Pi1 + 2 cos(δr)
Nr∑

i2>i1

√
Pi1Pi2)

In the following, we assume Pi = P
N which satisfies the

total power constraint (2).

Gk ≥ PNr cos(δr) + P (1− cos(δr))
= PN1−4b/α cos(δr) + PN−2b/α(1− cos(δr))

Then, one can easily find a constant K such that

RII = min
k

1
2

log(1 +
Gk

N0
) ≥ K log(1 + N), (5)

for large N .

Since both RI and RII scales as log(N) for large N , the
described two-phase protocol is optimal under the correlated
phase fading model.

V. SCALING OF BROADCAST CAPACITY UNDER
SPATIALLY-CONTINUOUS SMALL-SCALE FADING MODEL

In this section, the small-scale fading is assumed to be er-
godic in time, and the message experiences many realizations
of the fading. In the following, we analyze the scaling behavior
of the ergodic capacity, which is the maximum achievable rate
on average.

Similar to Section IV, first we provide an upper bound for
the ergodic capacity, and then we describe a novel scheme
with achievable rate that scales as log(N). We will use the
notation hik = h(xi,xk) for convenience.

Lemma 2: The ergodic broadcast capacity Chigh
1 under

spatially-correlated small-scale fading is bounded above as

Chigh
1 ≤ K log N,

w.p.a. 1, for large N .
Proof: See Appendix C.

Next, we provide a scheme that has achievable rate which
scales as log(N) for large N . The transmissions happen in
two phases:
• Phase I: In the first phase, source node broadcasts the

message. The channel gain from the source to the k’th
node is

G0k = d−α
0k |h0k|2,

where h0k = h(x0,xk). Let the transmission rate be
RI = 1

2 log(1 + N b). Consider the nodes that lie within
the disc with the radius r := N−b/α (close-by neighbors
of the source). The channel gains from the source to these
nodes are lower bounded as

G0k ≥ N b|h0k|2.
A given node which lies in radius r receives the source
transmission with channel gain greater and equal to N b

almost surely. This follows from the assumption A4). The
number of nodes that can decode the source message
correctly is

Nr ≥ N

A
πr2 = N−2b/α+1, (6)

almost surely. Here the total area is assumed to be π.
For b < α/2, −2b/α + 1 > 0, and hence, Nr increases
with the total number of nodes N . Let Sr := {1, . . . , Nr}
denote the set of successful nodes.

• Phase II: In the second phase, the nodes within the set Sr

retransmit the message. The instantaneous channel gain
at the k’th node (k ∈ S\Sr) due to transmission of the
nodes in Sr is given by:

Gk =

∣∣∣∣∣
Nr∑

i=1

√
Pih(xi,xk)d−α/2

ik

∣∣∣∣∣

2

,



and the achievable rate in the second phase is given by

RII = min
k

1
2
E{log(1 +

Gk

N0
)}.

Note that log((1 − z) + zex) is a convex function in x
for 0 < z < 1 and x > 0. Using this fact and Jensen’s
Inequality, we derive a lower bound on RII . For N0 ≥ 1,

RII ≥ min
k

1
2

log
(

(1− 1
N0

) +
1

N0
eElog(Gk+1)

)
. (7)

For N0 < 1, using the fact that the capacity increases with
the inverse of the noise variance, we can lower bound RII

as

RII ≥ min
k

1
2
E{log(Gk + 1)}, for N0 < 1. (8)

We will lower bound the E{log(Gk + 1)} which will
allow us to lower bound Chigh

1 :

E{log(Gk + 1)} ≥ E{log(Gk + 1)|Gk ≥ Na}·
Pr{Gk ≥ Na}. (9)

We claim that Pr{Gk ≥ Na}→p > 0, in the limit
N→∞. The proof of this claim is given in the Appendix
under Lemma 8. Based on this claim,

E{log(Gk + 1)} ≥ log(1 + Na)p,

which implies

RII ≥
{

1
2 log

(
(1− 1

N0
) + (1+Na)p

N0

)
if N0 ≥ 1

1
2 log ((1 + Na)p) otherwise

≥ K log(N),

as N→∞ for some constant K.
Since both RI and RII scales as log N for large N ,

Chigh
1 = Θ(log N),

as N→∞.

VI. SCALING OF BROADCAST CAPACITY UNDER I.I.D.
SMALL-SCALE FADING

In this section, we assume the channel coefficients are
spatially independent and identically distributed. We will also
assume that the channel coefficient h(x,y) ∼ Nc(0, 1). A
brief description of the two-phase scheme is as follows. In the
first phase, the source node broadcasts with rate Θ(log log N).
In order for a node to be able to decode this message; it
should have a channel gain which scales like log N . The
important point is that, although source node transmits with a
high rate, there is always a group of node which can decode
this message. This idea follows from the i.i.d. fading and is
very similar to multiuser diversity [19]. In the second phase,
successful nodes retransmit the message. Note that each node
has a neighbor who has been able to decode the message
reliably in the first phase. The nodes that were unsuccessful
in the first phase receive from its successful neighbor in the
second phase. Hence, every node can decode the message. The
details are as follow.

Lemma 3: The capacity under spatially i.i.d. small-scale
fading is upper bounded as

Chigh
2 ≤ K log N,

w.p.a. 1, where K is a constant which is independent of N .
Proof: The proof is the same as the proof of Lemma 2.

In the following, we describe a scheme of rate C2 =
Θ(log( log N

K )) for K > dα
max, where dmax := maxk d0k. The

scheme is composed of two phases:
• Phase 1: After source transmission with rate RI =

1
2 log(1 + log N

K ), a given node xk receives the source
message correctly with probability

Pc = Pr
{ |h(x0,xk)|2

dα
0k

>
log N

K

}

≥ Pr
{ |h(x0,xk)|2

dα
max

>
log N

K

}

= exp
(
−dα

max log(N)
K

)

=
1

Ndα
max/K

.

Then, the number of nodes that decodes source message
correctly scales as

N1 := NPc ≥ N

Ndα
max/K

= N1−dα
max/K ,

w.p.a. 1.
• Phase 2: In the second phase, nodes that have received

source message correctly retransmits. Let’s pick a node,
call it k’th node, that has not received source message
correctly and consider a disc around this node with radius
ε. The nodes that have received source message correctly
in the first phase in this disc retransmit the message. Total
number of these nodes is lower bounded as

Nε ≥ N1ε
2 = ε2N1−dα

max/K ,

the total area is assumed to be A = π, and dmax = 1.
Note that sum of independent Gaussian random variables
is a Gaussian with a variance equal to the sum of the
variances. Using this fact, the received signal power at
the k’th nodes is

Gk ≥ 1
εα

Nε
P

Nε
.

Let ε = N−δ/α, for some δ > 0; then we obtain

Gk = N δ.

Hence each node can decode the source message cor-
rectly.

In summary, in the first phase, similar to multiuser diversity,
a group of lucky nodes with good channel realizations receive
the message. In the second phase, these nodes retransmit and
amplify signal power for their nearest neighbors.



VII. EXTENDED NETWORK

In this section, we consider a network with N nodes
(uniformly and randomly distributed) with a fixed node density
ρ = 1. We look at the asymptote as the number of nodes
increases, i.e. N→∞ and the total area increases. We will
analyze both one-dimensional and two-dimensional configu-
rations. The upper bounds provided on the broadcast capacity
is valid for both correlated and i.i.d. fading models.

In the following, we will use a result which can be also
be found in a related work [7, Lemma 4.1]. Suppose that we
randomly place N identical balls into N boxes (assuming it
is equally likely to place any ball into any of the boxes). Let
Nk be the number of balls that falls into the k’th box, for
k = 1 . . . N . Note that Nk is random. Then,

Nk ≤ log N, (10)

w.p.a. 1.

A. Linear Network

Lemma 4: Under total power constraint (2), the broadcast
capacity for the extended network is upper bounded as

Cext
1 ≤ K log(log N),

w.p.a. 1.
Proof: The proof is based on the cut-set bound theorem

[18]. We are interested in only the cut that separates source
from the rest of the network. Based on this cut, the broadcast
rate is bounded by the capacity of the single-input multiple-
output (SIMO) channel where the relays act as co-located
antennas at the receiver:

Cext
1 ≤ log(1 +

P0

N0

N∑

i=1

|h(x0,xi)|2),

where N0 is the variance of the AWGN channel. Using the
properties of expectation and Jensen’s inequality,

Cext
1 ≤ log(1 +

P0

N0

N∑

i=1

1
dα
0i

E{|h0i|2})

= log(1 +
P0

N0

N∑

i=1

1
dα
0i

). (11)

We are going to divide the network into intervals of length
r := 1/ρ such that the i’th interval is ((i − 1)r, ir) for i =
1 . . . N . Let Ni denote the number of nodes that lie in the i’th
interval. In order to lower bound d0i, we will move all the
nodes that lie in the i’th interval to the location ri (see Fig.
2).

Fig. 2. Extended Network: Upper bound derivation - one dimensional
network

Using the new topology, we can upper bound
∑N

i=1
1

dα
0i

as

N∑

i=1

1
dα
0i

≤ K1 +
N−1∑

i=1

Ni+1

rαiα
, (12)

where K1 :=
∑

i∈(0,r)
1

dα
0i

, where i ∈ (0, r) means that the
i’th node lies in the interval (0, r). Using the result (10), we
can further upper bound

∑N
i=1

1
dα
0i

as

N∑

i=1

1
dα
0i

≤ K1 +
ζ(α)
rα

log N, (13)

w.p.a. 1. Then, using (18) and the total power constraint (2),
we can upper bound Cext

1 as

Cext
1 ≤ log(1 +

P

N0
(K1 +

log Nζ(α)
rα

))

≤ Θ(log log N), (14)

w.p.a. 1.

B. Planar Network

Lemma 5: Under total power constraint (2), the broadcast
capacity for the extended network is upper bounded as

Cext
2 ≤ K log(log N),

w.p.a. 1.
Proof: Similar to the linear network, the broadcast rate

is bounded by the capacity of the single-input multiple-output
(SIMO) channel where the relays act as co-located antennas
at the receiver [18]:

Cext
2 ≤ log(1 +

P0

N0

N∑

i=1

|h(x0,xi)|2),

where N0 is the variance of the AWGN channel. Using the
properties of expectation and Jensen’s inequality,

Cext
2 ≤ log(1 +

P

N0

N∑

i=1

1
dα
0i

E{|h0i|2})

= log(1 +
P

N0

N∑

i=1

1
dα
0i

). (15)

Divide the network into rectangles such that each rectangle
is of unit area (see Figure 3). Note that based on the result
(10), the number of nodes in each rectangle is ≤ log N , w.p.a.
1. Let r =

√
1

Nπρ and let Ci denote the circle with radius
ri = ir. Consider circles Ci, i = 1 . . . N . We will move the
nodes that lie in the ring between the circles Ci and Ci+1 onto
the circle Ci for i = 1 . . . N (see Fig. 3).

Note that the i’th circle can contain at most πr2i2 rectan-
gles; hence, the number of nodes in the i’th circle is upper
bounded as

Mi ≤ (πr2i2) log N,

w.p.a. 1.



Fig. 3. Extended Network: Upper bound derivation - two dimensional
network

Then, we can upper bound
∑N

i=1
1

dα
0i

as

N∑

i=1

1
dα
0i

≤ K1 +
N∑

i=2

Mi −Mi−1

rα(i− 1)α
, (16)

≤ K1 +
N−1∑

i=1

π(2i + 1)
rα−2iα

log N, (17)

where K1 :=
∑

i∈C1
1

dα
0i

, and i ∈ C1 means that the i’th node
lies inside the circle C1. We will first study the the scenario
where the pathloss exponent α > 2:

N∑

i=1

1
dα
0i

≤ K1 +
π

rα−2
(2ζ(α− 1)− ζ(α)) log N.

(18)

On the other hand, for α = 2, the summation in (16) can be
rewritten as

N∑

i=1

1
dα
0i

≤ K1 +
N−1∑

i=1

π(2i + 1)
i2

log N,

≤ K1 + π(2(1 + log(N − 1)) + ζ(2)) log N.

(19)

This follows from the fact that
∑N

i
1
i ≤ 1 +

∫ N

1
1
xdx.

Using (15), (18), and (19), under total power constraint (2),
we obtain

Cext
2 ≤ K log(log(N)), (20)

w.p.a. 1, for some finite K independent of N .
Note that it is straight forward to extend the above results to

the case where we replace the total power constraint with a per-
node power constraint. Assume that each node can transmit
with an average power P , i.e.,

Pi ≤ P, i = 0 . . . N. (21)

Then,

Cext
2 ≤ K log(N), (22)

w.p.a. 1.

VIII. MULTISTAGE COOPERATIVE BROADCAST

In this section, we describe and analyze a scheme which
achieves Θ(1) scaling in an extended network, for pathloss
exponent α = 2 under a power density constraint, which is
equivalent to per node power constraint. Based on the analysis
in the previous section, it is straight forward to see that the
broadcast capacity in this case is upper bounded by Θ(log N).
Here, we follow the seminal work [3], and use the physical
layer model based on signal-to-interference ratio. Next, we
briefly describe the scheme.

Suppose that N nodes are uniformly and randomly dis-
tributed within S = {(x, y) : x2 + y2 ≤ R2} and the source
node is located at the origin. The scheme is as follows in
detail. The source node initiates the transmission by sending
a message with power Ps. We will assume the noise is of
unit power. After source transmission, the group of nodes that
receives the message with sufficient SNR τ will be called
level-1 nodes. We will denote the location of level-1 nodes by
the set S1 = {(x, y) ∈ S : Ps

x2+y2 ≥ τ}. We assume that the
message is channel coded so that the nodes with received SNR
greater than or equal to τ can decode the message correctly.
Let Pr denote the transmission power of each relay. After
the transmission of the nodes in S1, the nodes that receive
the message with SNR greater and equal to τ will be called
level-2 nodes. We assume that the group transmissions are
synchronized and each node uses the same Gaussian codebook.
It is assumed that each relay accumulates signals from one
previous levels. The set of locations of level-k nodes Sk is
given as

Sk = {(x, y) ∈ S\
k−1⋃

i=1

Si :
∑

(x′,y′)∈Sk−1

Pr

(x− x′)2 + (y − y′)2
≥ τ},

(23)
for k ≥ 2.

We analyze the performance of this scheme for a single
shot transmission, that is, the source node sends a single
message in [2]. There, we were interested in determining the
critical SNR threshold such that the message propagates to
the entire network. In order to obtain the results in [2], we
first considered a random network in which the node locations
are randomly and uniformly distributed, and we obtained a
continuum model from the random network by letting the
number of nodes go to infinity while fixing the total relay
power. Let ρ = N/Area(S) be the density (node/unit area) of
relays within the region S. Define the relay power per unit
area as P̄r , PrN/Area(S) = Prρ.

Under the continuum model, each level becomes a disc
with inner radius rk−1 and outer radius rk, i.e., the level-k
set Sk can be approximated by the region Ak = {(x, y) :
r2
k−1 < x2 + y2 ≤ r2

k} [2, Theorem 1, Lemma 1]. We
explicitly determined level discs, i.e., {rk} and analyzed
network dynamics as a function of decoding threshold τ , relay
power density P̄r, and source power Ps. Furthermore, we
showed that there exists a phase transition in the network
behavior: if the SNR threshold is below a critical value, the



message is delivered to the whole network. Otherwise, only
a fraction of the nodes is reached proportional to the source
transmit power. That is,

lim
k→∞

rk→
{
∞ if τ ≤ π ln(2)P̄r

K if τ > π ln(2)P̄r

(24)

where K < ∞ depends on P0, τ/P̄r and AWGN noise is
assume to be unit power. The result (24) is obtained under the
pathloss attenuation model `(r) = 1/r2.

In this work, we study the scenario where the source node
continuously transmits. Let Ts denote the transmission period
of the source node. Notice that periodic source transmission
adds interference into the picture which was ignored in the
single shot analysis [2].

Due to the symmetric nature of the pathloss attenuation
model and uniform relay power allocation, the nodes receive
messages in the order of their distances from the source
node. For a given node k, we define downstream nodes as
the ones that receive the source message before node k and
the nodes that receive the message after node k are called
the upstream nodes. Notice that nodes can easily cancel the
upstream interference, since they have already decoded the
corresponding message. This is based on the assumption that
the nodes can estimate the channel coefficients perfectly at
the receiver side. Let P (x, y) denote the transmission power
of the node located at (x, y). Then, the nodes with sufficient
signal to interference plus noise ratio (SINR) can decode the
messages. Assuming source starts transmission at time zero,
the SINR at location (x, y) at time k is given as

γk(x, y) =

∑
(x′,y′)∈Sk−1

P (x′,y′)
(x−x′)2+(y−y′)2

1 +
∑

(x′,y′)∈Uk

P (x′,y′)
(x−x′)2+(y−y′)2

, (25)

where Uk =
⋃

i∈Lk
Si, Lk is the set of levels that transmit

at time k. Let ν := mod(i, Ts), then Ii = {ν, ν + Ts, ν +
2Ts, . . . , i− Ts}, and mod(a, b) denotes the remainder of the
division of a by b. We assume that the nodes with sufficient
SINR can decode the message correctly [3]. Then, the set of
locations of level-k nodes Sk is given as

Sk = {(x, y) ∈ S \
k−1⋃

i=1

Si :
∑

(x′,y′)∈Sk−1

γk(x′, y′) ≥ τ}, (26)

where S1 = {(x, y) ∈ S : P0
x2+y2 ≥ τ}.

We claim that in order for the message to propagate under
period source transmission, the transmission levels (regions
under continuum model) should increase in size exponentially.
This will help suppressing the interference caused by the
downstream nodes. We will show that this is a sufficient
condition for the message to propagate. Define

L := lim
k→∞

ak−1

ak
< 1, (27)

where ak = r2
k, and rk is the outer radius of the kth level.

Lemma 6: Let Ts = 1. Using the continuum model, the
critical threshold τc can be derived as

τc ≥ arg max
L∈(0,1)

log(1 + L)
log(µ)− log(1− L2)

,

where P̄r is the relay power density and µ = exp
(
1/πP̄r

)
.

Proof: In the continuum, each level becomes a disc. This
can be obtained by generalizing the derivation in [2, Section
II.c]. Let rk−1 and rk denote the inner and outer radius of
level-k disc, respectively. The received power at a distance x
from the source due to transmission of level-k nodes is given
by

Gk(x) := πP̄r log
|x2 − r2

k−2|
|x2 − r2

k−1|
.

See [2] for details of the derivation.
Let ak = r2

k. The solution for ak can be find by solving the
following non-linear dynamical equation:

π
P̄r

τ
log

(
ak − ak−2

ak − ak−1

)
= 1 + πP̄r log

(
ak

ak − ak−2

)
+

Ps

ak
,

with initial conditions a0 = 0 and a1 = Ps

τ . In order to solve
ak, we ignore the effect of source transmission Ps

ak
for large

k, and obtain a simpler form:

ak − ak−2

ak − ak−1
≈

(
ak

ak − ak−2

)τ

µτ , for large k. (28)

Using definition (27) and (28), we find that

τ(L) =
log(1 + L)

log(µ)− log(1− L2)
.

Note that τ(L) is a concave function in L, and has a single
maximum in the interval L ∈ (0, 1). Then the proof of the
theorem follows.
Then, the transmission rate of multistage cooperative broadcast
is

Rs = log(1 + τc) ≥ Θ(1).

IX. CONCLUSIONS

A fundamental problem in large scale wireless networks is
determining the maximum transfer rate from a source to the
whole network. The previous works on the subject focus on
multihop strategies, for which the broadcast capacity scales at
most as Θ(1). We consider both high density networks and
extended networks for spatially correlated and i.i.d. channel
models. We determine the upper and lower bounds on the
broadcast capacity. Currently, we are working on designing
schemes with rates that approaches these upper bounds for
the extended network. Table I and II summarize the scaling of
the upper and lower bounds on the broadcast capacity.

TABLE I
UPPER BOUNDS ON BROADCAST CAPACITY

Spatially-correlated I.i.d
fading fading

high-density networks log N log N
extended networks log(log N) log(log N)



TABLE II
LOWER BOUNDS ON BROADCAST CAPACITY

Spatially-correlated I.i.d
fading fading

high-density networks log N log(log N)
extended networks constant constant

APPENDIX

A. Behavior of dmin for large number of nodes N

Lemma 7: Consider a disc network with radius R = 1.
Assume that the source node is located at the center and the
rest of the nodes (N of them) are distributed uniformly in this
circular region. Let dmin denote the minimum distance from
the source to every other node in the network. Then,

Pr{| 1
dmin

−Nδ| < ε}→1, as N→∞, (29)

where δ > 0 and ε > 0.
Proof: For a disc network of radius R = 1 with the

source node located at the center, the probability distribution
function of dmin is given as

Fdmin(x) = Pr{dmin ≤ x} = 1− (
1− x2

)N
.

Then, the proof follows easily.

B. Proof of Lemma 1

The proof is based on the cut-set bound theorem [18,
Chapter 14, page 445]. We are interested in only the cut that
separates source from the rest of the network. Based on this
cut, the broadcast rate is bounded by the capacity of the single-
input multiple-output (SIMO) channel where the relays act as
co-located antennas at the receiver:

Chigh
1 ≤ log(1 +

P0

N0

N∑

i=1

|h(x0,xi)|2),

where N0 is the variance of the AWGN channel. Let dmin :=
mini ‖x0 − xi‖, then under spatially-continuous phase fading
model

|h(x0,xi)|2 =
1

‖x0 − xi‖α
<

1
dα

min

< N δ1α,

with high probability as N→∞ for some small δ1. Then,

Chigh
1 ≤ log(1 +

P

N0
N δ1α+1) ≤ K log N,

w.p.a. 1, for some K independent of N .

C. Proof of Lemma 2

Similar to Lemma 1, we will use the cut-set bound theorem
[18] based on the cut that separates the source from the rest
of the network. Then,

Chigh
2 ≤ E{log(1 +

P0

N0

N∑

i=1

1
dα
0i

|h0i|2)}.

Using the properties of expectation and Jensen’s inequality,

Chigh
2 ≤ log(1 +

P0

N0

N∑

i=1

1
dα
0i

E{|h0i|2})

= log(1 +
P0

N0

N∑

i=1

1
dα
0i

)

≤ log(1 +
P

N0

N

dα
min

),

where dmin := mini d0i denotes the minimum distance from
the source node to every other node in the network. Using
Lemma 7, we obtain

Chigh
2 ≤ log(1 +

P

N0
N (δ1)α+1),

≤ K log(N),

w.p.a. 1.

D. Claim and its proof

Lemma 8: As N→∞,

Pr{Gk ≥ Na}→p > 0.

Proof: We can rewrite the instantaneous channel gain as

Gk =
Nr∑

i1=1

Nr∑

i2=1

√
Pi1Pi2h(xi1 ,xk)h∗(xi2 ,xk)d−α/2

i1k d
−α/2
i2k

=
Nr∑

i1=1

(Pi1d
−α
i1k |h(xi,xk)|2 + 2d

−α/2
i1k ·

Nr∑

i2>i1

√
Pi1Pi2Re{h(xi1 ,xk)h∗(xi2 ,xk)}d−α/2

i2k ).

Since, the nodes that lie within a radius r have transmitted
in the first phase ‖xi1 − xi2‖ < r implies |h(xi1 ,xk) −
h(xi2 ,xk)| < δr almost surely. Using this fact, we know that

2Re{h(xi1 ,xk)h∗(xi2 ,xk)} ≥
|h(xi1 ,xk)|2 + |h(xi2 ,xk)|2 − δ2

r︸ ︷︷ ︸
:=A(xi1 ,xi2 ,xk)

. (30)

Using (30), we can derive an lower bound for Pr{Gk ≥ Na}:

PLB := Pr{B ≥ Na},

where

B :=
Nr∑

i1=1

(Pi1d
−α
i1k |h(xi1 ,xk)|2 + d

−α/2
i1k ·

Nr∑

i2>i1

√
Pi1Pi2A(xi1 ,xi2 ,xk)d−α/2

i2k ). (31)



Let’s condition on the event |h(xi,xk)| > δh > δr√
2

, ∀k.
Then,

PLB ≥ Pr {B ≥ Na | |h(xk,y)| > δh, ∀k} ·
Pr{|h(xk,y)| > δh, ∀k}

≥ Pr{Nrδ
2
h + (N2

r −Nr)(δ2
h − δ2

r/2) >
Na+1dα

max

P
|

|h(xk,y)| > δh,∀k} ·
Pr{|h(xk,y)| > δh,∀k}.

Note that under the condition

a < 1− 4b/α (32)

for large enough N ,

PLB ≥ Pr{|h(xk,y)| > δh, ∀k} (33)

If we choose δh small enough, then we find that

p := Pr{|h(xk,y)| > δh,∀k} > 0.

Then, E{log(Gk + 1)} ≥ log(1 + Na)p.
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