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Abstract— A fundamental question in sensor networks is to
determine the sensing capacity – the minimum number of sensors
necessary to monitor a given region to a desired degree of
fidelity based on noisy sensor measurements. In the context
of the so called compressed sensing problem sensing capacity
provides bounds on the maximum number of signal components
that can be identified per sensor under noisy measurements.
In this paper we show that sensing capacity is a function of
SNR, signal sparsity—the inherent complexity/dimensionality of
the underlying signal/information space and its frequency of
occurrence and sensing diversity – the number of modalities
of operation of each sensor. We derive fundamental tradeoffs
between SNR, sparsity, diversity and capacity. We show that
the capacity is a monotonic function of SNR and diversity. A
surprising result is that as sparsity approaches zero so does the
sensing capacity irrespective of diversity. This implies for instance
that to reliably monitor a small number of targets in a given
region requires disproportionately large number of sensors.

I. I NTRODUCTION

Consider a simple sensing architecture as shown in figure
1. The objectX to be estimated/detected belongs to an
dimensional real space. The operatorΦ can be thought of as a
sensing modality which can be tuned based on the application.
The direct observation of the phenomenaX may be corrupted
by external factors such as clutter (false events). One wishes
to form an estimatêX given the corrupted set of observations
Y such that1nd(X̂,X) ≤ d0 for a given distortion measure.
The knowledge of the operatorΦ is assumed to be generally
available at reconstruction end.

Fig. 1. A sensing architecture with various components illustrated

Generally speaking we are interested in performance char-
acterization in terms of the modalityΦ , the nature of the
signalsX and the signal to noise ratio. This set up models
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Fig. 2. Sensors with different modalities

many statistical inferencing problems of interest, however,
in this work we are primarily motivated by sensor network
applications. Sensor networks involve judicious utilization of
resource constrained communication networks formed out of
geographically separated sensors. One could penalize different
modalitiesΦ and formalize resource constraints in sensor net-
works. Rather than focusing on this aspect one of our primary
goals here is to compare different modalities for different types
of sensor networking problems such as counting, detection
and localization. To concretize what we mean by modalities
consider a network ofN sensor arrays. Each sensor array has
a maximum powerP and can operate in different modalities
as shown in Figure 2. Examples of modalities could be: (a)
Narrow-Beam High Resolution Modality:Each sensing array
can beamform to a different location and with maximum
admissible SNR. Here sensing regions may not overlap. (b)
Wide-Beam Low Resolution:Each sensing array can have a
wider focus but with a corresponding decrease in SNR. Here
sensing regions overlap. (c)Random-Beams:Each sensing
array can beamform to a random set of locations.Gaussian
Modulated Beams:Each sensing array can take a gaussian
average of the beam-formed output for each location. Target
localization under the first modality was studied by one of
the authors in [8] where each sensor was assumed to have a
limited sensing range with non-overlapping sensing regions.



It was shown there that when target density is unknown it
is impossible to meaningfully control both false alarms and
misses.

Another goal of this paper is to develop information-
theoretic bounds for the emerging field of compressed sensing.
These problems concern continuous natural phenomena. The
principle observation here is that most natural phenomena of
interest is compressible, i.e. succinctly representable in a nat-
ural basis, [13]. The problem of estimating such a phenomena
can then be recast in a discrete framework as that of estimating
the coefficients in some natural basis in which the signal has
unique and sparse representation. Some examples of these
applications pertaining to sensor networks are (1) Imaging
a scattering medium [12] (2) MIMO radar [15]. (3) Geo-
exploration via underground seismics. Compressed sensing
deals with computing the minimum number of observations
m required for perfect reconstruction of a sparse signal when
given level of sparsity. This subject has been a subject of
intensive research in the applied mathematics literature, [3],
[1], [5], [13], [14], [9] and in signal processing and sensor
networks literature [10], [6], [7]. The problem has its roots
in the problem of finding sparsest representation in the given
basis of signals observed in additive noise and was addressed
in [13], [14]. Instead of looking at the entire signal, [3],
[1], [5] focused on thecompressed sensingproblem, i.e.,
reconstruction of sparse signals from a small number of
random projections of the signal. They showed that for a k-
sparse signalk+1 random projections are necessary for exact
reconstruction with probability one, in the absence of noise.
In [2], [9] these results were extended to the case of noisy
random projections.

Much of these developments have been algorithmic, and
in a non-bayesian setting motivated by the good performance
of L1 relaxation to a combinatorial problem that involves an
L0 constraint. Our paper deviates from these approaches in
many respects. First, we consider a Bayesian setting and adopt
an information-theoretic perspective. Therefore the bounds
that we derive are independent of any algorithm used for
reconstruction. Next we consider both discrete and continuous
signal spaces and formalize the problem in terms ofsensing
capacity. The sensing capacity for the discrete alphabets—
for instance locations of targets—was introduced in [11]. We
extend this definition to the continuous case. Sensing capacity
is informally defined as the maximum signal dimension (or
complexity)/sensor-measurement that can be recovered to a
pre-defined degree of accuracy(distortion). Alternatively, it can
be interpreted as the minimal number of sensors required to
monitor a given region of interest.

Our contribution is two fold. First, we derive fundamental
tradeoffs between sensing diversity, sparsity, SNR and sensing
capacity. Second, in derivation of these bounds we explore
alternate derivations of mutual information that reveal the
effect of structure of the sensing matrix. Our results serve
as operational guidelines for a network designer to build
the most efficient sensing structure or system for particular
application(s) of interest.

We reveal a surprising behavior. We show that sensing
capacity goes to zero as the sparsity goes to zero independent
of SNR and diversity. This means that it requires dispropor-
tionately large number of sensors to detect singular events in
a large area. We show that small sensing diversity invariably
leads to small sensing capacity. In other words, small diversity
requires large number of sensors for achieving same accuracy
relative to situations with large diversity. The effect of sensing
diversity is characterized in a number of different settings.

The paper is organized as follows. In section II we will
formalize the problem and give a precise definition of sensing
capacity. In section III we will present the main results
where we will provide upper and lower bounds to the sens-
ing capacity for full diversity and no correlation. Then in
section IV, we will provide results on the effect of the
structure of the sensing matrix on sensing capacity. The proofs
of our results can be found in BU-CISE technical report,
- {http://www.bu.edu/phpbin/cise/search.php}, report number
2007-IR-0010).

II. PROBLEM SET-UP

In this section we will make the problem set up precise.
We begin by defining signal sparsity and sensing diversity in
relation to the set up of figure 1. In this work we will assume
that there is no clutter and is modeled as a part of the signal
to be estimated.

Definition 2.1: Let k be a positive integer≤ n andα =
k

n
. An n-dimensional signalX is said to bek-sparse, if each

component ofX is i.i.d distributed with probability of(1−α)
to be zero and the non-zero components are chosen from some
distributionpX(x). We denoteα as thesparsity ratio.

A. Exploiting Transform Sparsity

Let Z ∈ Rn be the signal of interest. Furthermore assume
that we are able to exploit thetransform sparsityin the
recovery ofZ, i.e, Z can be represented asΦX, in which
Φ is some basis and onlyk components ofX is nonzero.
Now the sensing model becomes,

Y = QΦX + N = GX + N (say)

B. The choice of sensing matrix

In this work we will restrict our choice to a particular class
of random matrices, but we will also talk about non-Gaussian
deterministic matrices as well. Specifically, the sensing matrix
Q ∈ Rm×n is random matrix with i.i.d Gaussian entries. In
addition the matrixQ is chosen independently ofX.

In order that the measurement SNR per sensor remains same
for all the choices of sensing diversity factors, we impose
that the total power in each row ofQ be equal toP and
with respect to the distribution over the non-zero values in
X, E[X2] = 1. Note that whenΦ is an orthonormal basis,
the distribution of G is same as that ofQ. When Φ is
not orthonormal, in particular normal but not orthogonal, the
resulting matrixG has correlations across the columns, though
the rows are independent. In this paper we will mainly focus



on the case when there is no correlation inG. We will partially
extend the results to correlatedG with correlation induced by
Φ.

Definition 2.2: Let l be a positive integer≤ n and define
β = l

n . For each row of the sensing matrixG, suppose each
entry gij has probability1 − β to be zero. We callβ as the
sensing diversityand say that the matrixG has diversityβ.

For sake of brevity, we will denote the sensing matrix byG
in the rest of the paper. In the following,H2(α) = α log2

1
α +

(1−α) log2
1

1−α is the binary entropy function. All logarithms
in this paper are base 2 unless otherwise specified.

C. Sensing capacity and problem formulation

We define the sensing rate as the ratio of signal dimension
to the number of sensors,R = n

m . We say that a sensing rate
R is d0-achievable ifm projections{yi = 〈gi,X〉 + ni}m

i=1

can ensure the reconstruction distortion to withind0 with
probability one. We have the following definition for sensing
capacity.

Definition 2.3: Thed0-distortion sensing capacityis de-
fined asC(d0) = max R over all d0-achievableR, i.e.,

C(d0) = lim sup
{ n

m
| Prob{d(X, X̂) > d0} → 0, n, m ∈ Z+

}
.

Though the above definition includes perfect reconstruction
as a special case, i.e.d0 = 0. The problem that is considered
in the paper is to find the Sensing Capacity under the linear
sensing model proposed. Below we present our main results.

III. M AIN RESULTS

A. Sensing capacity

Theorem 3.1: If G is a random Gaussian matrix with
i.i.d. elements and noiseN being a Gaussian noiseN (0, Im),
then for a sensing diversity ofl = n, i.e. β = 1, the d0-
distortion sensing capacity obeys-

C ≤ 0.5 log(1 + ρα)
RX(d0)

where RX(d0) is the corresponding scalar rate distortion
function andρ the signal-to-noise ratio expected power in a
row of G over the noise power (each of the non-zero signal
components are normalized to unit power).

Proof: See Appendix
We point out that the sensing capacity provides asymptotic

bounds on the minimum number of observations required
to reliably recover the underlying signal/targets to within a
distortiond0, i.e.,

m ≥ nC(d0)

We illustrate these ideas through some examples. Assume
for simplicity thatX ∈ {0, 1}n. In the extreme case when the
signalX is 1-sparse, i.e.,k = 1(or α = 1

n → 0), by the above
upper bound, we have,

C ≤ lim
α→0

log(1 + ρα)
2(H2(α))

= 0

On the other hand, whenk = n
2 (or α = 1

2 ), the upper bound
of the sensing capacity is given by (noteH2( 1

2 ) = 1),

C ≤ log(1 + 1
2ρ)

2
Figure 3 shows how the sensing capacity changes with the

sparsity ratioα whenX is binary alphabet. Note that the sens-
ing capacity approaches zero for small sparsity. Consequently,
disproportionately large number of sensors are required for
monitoring sparse events.Also note that asSNR →∞, i.e.,
when noise approaches zero the capacity approaches infinity.
Indeed it is easy to show that a single measurement is sufficient
for error-free reconstruction.
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Fig. 3. The plot of Sparsity versus capacity for various SNRs (X =
{0, 1}).

B. Achievable Sensing Capacity : Weak Achievability

In this section we will provide lower bounds to the sensing
capacity, for the caseβ = 1 andG being a random Gaussian
matrix with i.i.d. elements.

Given N points in Rn, {X1, ..,XN}. Let B∆,Xi ={
X : 1

nd(Xi,X) ≤ ∆
}

be a distortion ball of average dis-
tortion ∆ around the pointXi. Given ε > 0, let N be the
minimal number such that

Pr(
N⋃

i=1

B∆,Xi) ≥ 1− ε

For sake of brevity denoteB∆,Xi = Bi. Let the underlying
vector generating the observationY be X. We seek the
probability that we decide in favor ofX′ which is at an average
distance ofat least2∆ from X. We have,

Pe

(
X → X′|G,X ∈ Bi,X′ ∈ Bj : 1

nD(Bi,Bj) ≥ ∆
)

≤ maxX∈Bi,X′∈Bj e−||G(X′−X)||2 1
4N0

Since the average set distance1
nD(., .) is ≥ ∆, the worst

case probability of error (in set decoding) is determined by



the sequences that are at an average distance of∆. Taking ex-
pectation overG we have for the average pairwise probability
of error,

Pe

(
X → X′|X ∈ Bi,X′ ∈ Bj : 1

nD(Bi,Bj) ≥ ∆
)

≤ EGexp
{
−||G(X′ −X)||2 1

4N0

}

≤
(

1
1 + ∆P

2N0

)m/2

Without loss of generality, one can choose∆ = cα for
somec ≤ 2. From rate distortion theory the minimal number
of points such that the covering condition is satisfied with
high probability is given by2nRX(∆), whereRX(∆) is the
rate distortion function. Hence summing over all the distortion
balls we get for the average probability of error that,

Pe

≤ ∑N
j=1 Pe

(
X → X′|X ∈ Bi,X′ ∈ Bj : 1

nD(Bi,Bj) ≥ cα
)

≤

 1

1 +
cα

2
ρ




m/2

2nRX(∆)

Thus the achievable sensing capacity is given by

C(cα) ≥ Cachieve =
1
2 log(1 +

cα

2
ρ)

RX(∆)

Also, as cα → 0, Cachieve is zero, i.e. zero distortion
sensing capacity is zero. Also for any SNR, the ratio of upper
and lower bounds satisfies:

Cupper

Cachiev
=

log(1 + αρ)
log(1 + cα

2 ρ)

The gap between upper and lower bounds for the discrete
binary alphabet case are shown in figure 4. The achievability
is weak in the sense that with the number of projections
prescribed by the achievable capacity one can only ensure
reconstruction to within distortion2∆ instead of∆.

IV. EFFECT OFDIFFERENTSENSING MODALITIES

In this section we will consider different sensing modalities
and derive upper bounds for sensing capacity. First consider
the case where sensing matrix is identity. This is the case,
which arises typically when we have a limited sensing range
and the sensing regions of the different sensors does not
overlap. First note that from the data processing inequality,
I(Xn, Y n) ≥ I(Xn, GY n) for any m × n matrix G with
m < n and such that each row ofG has unit norm. While
this implies that our lower bounds for the probability of error
(based on generalized Fano’s inequality (see appendix))will
always be smaller than any other sensing modalityG, the sens-
ing capacity is always upper bounded by one. Consequently,
we focus on sensing matrices that lead to sensing capacity
larger than one.
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Fig. 4. The gap between Upper and Lower bounds on Sensing
Capacity for the binary alphabet case as a function of distortion for
a fixed sparsity. The distortion is the average Hamming distortion.

We next consider deterministic matricesG. We denote the
rows of G asGj , j = 1, 2, . . . , m. Let the cross-correlations
of these rows be denoted as:

rk =
GT

k Gk+1

GT
k Gk

As before to ensure the SNR,ρ to be fixed we impose
GT

k Gk = P for all k and let ρ = P/N0 where N0 is the
noise power. Then we have the following result:

Proposition 4.1: An upper bound for the sensing capac-
ity for a deterministic sensing matrixG ∈ IRm×n is given
by:

C(d0) ≤
m−1∑

k=1

log
(
1 + αρ

αρ+1 (1 + αρ(1− rk))
)

RX(d0)
(1)

The main outline of the proof consists in upperbounding
H(Y m):

H(Y m) ≤ H(Y1)+
m−1∑

j=1

H(Yj+1 | Yj) ≤ H(Y1)+H(Yj+1−ηjYj)

whereηjYj is the best MMSE estimate forYj+1.
We apply this result to several situations next. First consider

a very wide-beam sensor, i.e,Gj = 1√
n
[1 1 . . . , 1]. This

is a rank deficient situation it is clear that this modality
will be unsuccessful in target localization or sparse signal
estimation. On the other hand our sensing capacity bound leads
to C(d0) ≤ 1/ log(1/α) which is slightly optimistic but does
show that capacity is small. Next consider a sensing matrix
arising as a consequence of a finite-impulse-response(FIR)
filtering operation of the observed data. Suppose the filter
length isL with all coefficients equal to one. It follows that
the G matrix has a banded structure along the main diagonal.
To guarantee coverage we needm ≥ n−L + 1. This implies
thatL has to be large in order form to be small. However, this



is similar to the previous case the sensing capacity turns out
to be smaller than one. This is because the term(1 − rk)
in Equation 1 is close to zero because of relatively large
overlap between subsequent rows ofG. Consequently, we can
consider a sub-sampling of the filtered output to reduce the
overlap. Sub-sampling at rateL corresponds to no overlap
case. In this caserk = 0 and our bounds turn out to be too
lose. Indeed, first we require thatm ≥ n/L to guarantee
coverage. This implies thatL needs to be large to obtain
small m. However, from Fano’s inequality it is easy to show
that Pe 6→ 0 in this case. This is because each observation
does not provide sufficient information to localize within the
L different locations. While we considered the no-overlap case
these conclusions are not substantially for small overlaps (i.e.
at sub-sampling rates smaller thanL) as well.

To overcome these issues we observe from Equation 1
that a large sensing capacity upperbound requiresrk to be
small while maintaining a significant overlap between any
two rows. This implies that the cross-correlation between any
two subsequent rows have to be negligible. By improving
these bounds one can argue that indeed, the cross-correlations
between any two rows must be negligible. This suggests that
the components of theG matrix should be chosen randomly
to obtain the best upperbounds. Consequently, we consider the
effect of diversity on the sensing capacity. We will show that
low diversity leads to a low sensing capacity. We will finally
consider the effect of correlation on the achievable sensing
capacity. We show that high level of correlation across the
columns reduces achievable sensing capacity. To this end we
have the following lemma.

Lemma 4.1: Suppose the sensing matrix has diversity
β = l

n andX ∈ {0, 1}n, then we have,

I(X;Y|G) ≤ m

2
Ej

[
log

(ρ

l
j + 1

)]
, (2)

where the expectation is evaluated over the distribution

Pr(j) =

(
k
j

)(
n−k
l−j

)
(
n
l

)
We provide the main idea behind the proof here and
the details can be found in BU-CISE technical report,
{http://www.bu.edu/phpbin/cise/search.php}, report number
2007-IR-0010). The main idea is that since the matrixG
is chosen independently ofX we can expand the mutual
information betweenX and Y,G in two different ways as
follows:

I(X;Y,G) = I(X;G)︸ ︷︷ ︸
=0

+ I(X;Y|G)

= I(X;Y) + I(X;G|Y)

This way of expanding gives us a handle on evaluating
the mutual information with respect to the structure of the
resulting sensing matrixG. From above we get that,

I(X;Y|G) = I(X;Y) + I(X;G|Y)
= h(Y)− h(Y|X) + h(G|Y)− h(G|X,Y)

The proof essentially requires evaluation of the last term in the
above expression. The termI(X;Y) turns out to be negligible
since the sensing matrix is unknown.

A. Effect of sensing diversity

The following lemma follows from lemma 4.1 and lemma
6.1.

Lemma 4.2: If G is random Gaussian matrix with i.i.d.
elements and the diversity factor isβ = l

n , then thed0-
distortion Sensing Capacity for diversity ofl obeys-

C ≤
0.5Ej log(1 +

jρ

l
)

RX(d0)

where the expectation is evaluated over the distribution

Pr(j) =

(
k
j

)(
n−k
l−j

)
(
n
l

)
To illustrate the effect of low sensing diversity on sensing

capacity letβ = 1
n .From the upper bound for the mutual

information in the partial diversity case given by lemma 4.1,
we have

I(X;Y|G)
≤ m

2 Ei

[
log

(
ρ
l i + 1

)]
= m

2 Ei [log (ρi + 1)]
= m

2 [(1− α) log(ρ · 0 + 1) + α log(ρ + 1)]
= mα

2 log(1 + ρ)
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The sensing capacity is ,

C ≤
α
2 log(1 + ρ)

H2(α)

Compared with the sensing capacity inequality in theorem
3.1, we can see that low diversity will reduce the sensing



capacity. The gap between these two cases (i.e.,l = 1 v.s.
l = n) are shown in figure 5. An interesting point to notice is
that one can achieve almost all the sensing capacity with small
(but sufficient) enough diversity. The dependence of Sensing
Capacity on both sparsity and diversity is shown in figure 6.
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B. Effect of Correlation on achievable sensing capacity

Now we will show that correlation in sensing matrixG
reduces achievable capacity. Consider the numerator of the
exponent in the upper bound to the probability of pair-wise
error in max-likelihood decoding -

m∑

i=1

|
n∑

j=1

gij∆j |2

The terms
∑n

j=1 gij∆j for eachi are independent Gaussian
random variables with zero mean and variance given by-
∆T Σgi∆ where∆ is the vector consisting of∆j , j = 1, .., n
andΣgi is the covariance matrix (symmetric and positive semi-
definite) of thei-th row of G. Let 1

n∆T ∆ = cα. Then we can

normalize the variance of each ofgij ∼ N (0,
P

n
). Then, we

can get an upper bound to the probability of error via

min ∆T Σ̃gi∆ = λmin∆T ∆

whereλmin is the minimum eigenvalue of the normalized
covariance matrixΣ̃gi . Thus a worst case bound on the
variance (which is related to the expected distance between
GX1 andGX2) is cαPλmin. Now taking the expectation we
have the worst case upper bound to the pairwise probability
of error as,

Pe(pair) ≤
(

1
1 + cαPλmin

2N0

)m/2

For the discrete alphabet case summing over all thek sparse
sequences we get for the average probability of error that

Pe ≤ 2−
m
2 log

(
1+

cαρλmin
2

)
2nRX(d0)

Thus the achievable capacity scales as

Cs ≥
1
2

log(1 + cαλmin

2 )

RX(d0)

which in general is smaller than the case when the columns
of G are uncorrelated, i.e.λmin ≤ 1. In the case when all the
elements ofG are say 1√

n
(in the full diversity case), then

λmin = 0. In this case the sensing capacity is zero.

C. Effect of Sensing diversity on Achievable Sensing Capacity

In this section we will provide achievable bounds to the
sensing capacity when the diversity isβ – fraction of non-
zero elements in each row ofG. Let l = βn be the number of
non-zero elements in each row of the matrixG. Now consider
the numerator of the exponent in the upper bound to the pair-
wise probability of error -

m∑

i=1

|
n∑

j=1

gij∆j |2

Note for eachi the random variablesz = |∑n
j=1 gij∆j |2

are independent. We have for the average pairwise probability
of error that

Pe ≤ ∏m
i=1 E(e−|

∑n
j=1 gij∆j |2/4N0)

Now ∆j = X1j −X2j . Without loss of generality let the
positions in whichX1 and X2 differ be equal toncα. Note
that c ≤ 2 and α ≤ 1

2 . Also gij are non-zero inl positions.
Let r denote the number of overlaps of the vectorgi and the
vectorX1−X2. Conditioned onr ,

∑n
j=1 gij∆j is a Gaussian

random variable with zero mean and varianceP
l r. Taking the

expectation with respect to this random variable we have for
the upper bound on the probability of error that,

Pe ≤ ∏m
i=1 Er

(
1

1+ P r
2lN0

)1/2

≤ ∏m
i=1 e−

1
2Er log(1+ P r

2lN0
)

where the last inequality follows from Jensen’s inequality.

Note thatPr(r) =

(
ncα

r

)(
n−ncα

l−r

)
(
n
l

) . Thus the achievable bound

on the capacity decreases.

V. COMPARISON WITH EXISTING COMPRESSEDSENSING

BOUNDS

The bounds obtained in this paper can be related to those
obtained in the context of compressed sensing problem, [9],
[6], [5]. There the bounds on the number of projections
required for reconstructing ak-sparse signal was addressed
in the framework of complexity regularized estimation of the
sparse vector. The regularization term is theL0 norm on
the reconstructed signal with a weight factor ofk log n

m . They



have the following result: The expected mean squared error in
reconstruction is upper bounded by,

E
[

1
n
||X− X̂||2

]
≤ C1C2

k log n

m
(3)

whereC1 ∼ 1 andC2 ∼ 50(P +σ)2 {(1 + p)log2 + 4}, under
normalization of the signal and the noise power andp is the
number of quantization levels, [9].

We argue that the above bound requires a normalization with
respect to sparsity rate,α = k/n to be meaningful. This is be-
cause for an extremely sparse situation, for instance,k=const,
the average distortion metric in Equation 3 implies that an
all zero estimate can ensure negligible error. Specifically, (1)
for X is extremely sparse, i.e.α << 1 and the sparsity rate
approaches zero the average distortion over the number of
non-zero elements is

E
[

1
αn
||X− X̂||2

]

where α = k
n , is the sparsity ratio. Using this as the

performance metric we have from equation 3,

E
[

1
αn
||X− X̂||2

]
≤ C1C2

n log n

m
(4)

In this case the the average number of projections required
such that the per non-zero element distortion is bounded by a
constant, scales asO(n log n). This is indeed consistent with
our sensing capacity results as well. The sensing capacity goes
to zero as 1

log n . (2)X is sparse, i.e.α < 1 but not very
small the above normalization does not produce any significant
effect. In this case since the number of non-zero elements is a
fixed fraction ofn, an average distortion criteria is a reasonable
distortion measure. Applying Markov inequality we have that

Pr

(
1
n
||X− X̂||2 ≥ d0

)
≤ E 1

n ||X− X̂||2
d0

This implies that

Pr

(
1
n
||X− X̂||2 ≥ d0

)
≤ C1C2

k log n

d0m

On the other hand from the results on achievable sensing
capacity we have that

Pr
(

1
n ||X− X̂||2 ≥ d0

)

≤ −m
2 log(1 + d0SNR/2) + nRX(d0)

In order to compare the results we fix a performance guarantee
of ε, i.e.,Pr(d(X, X̂) ≥ d0) ≤ ε for comparison purposes. For
a givenε > 0, we have for the minimal number of projections
required that,

m ≥ 2 (log(1/ε) + nRX(d0))
log(1 + d0SNR/2)

from our results. From results in [9] it follows that,

m ≥ C1C2
αn log n

d0ε

For the special case of binary alphabet the number of
projections based on the achievable sensing capacity is
m1 ≥ O(nH2(α)) and from results in [9] we havem2 ≥
O(αn log n). A plot of these orders as a function ofα for a
fixed n is shown in figure, 7.
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Fig. 7. The figure compares the performance in terms of scaling
of the number of projections as a function of the sparsity rate for
max-likelihood procedure and complexity regularized estimators of
[9].

VI. A PPENDIX

We have the following lemma for discrete alphabet case.
The lemma can be extended along similar lines for continuous
alphabet case by using Asymptotic Equipartition Property over
the i.i.d. realization ofX. The proof then closely follows
the proof for the discrete case below, where we start with
a distortion error event based on1nd(X̂(Y),X) ≥ d0 and
then evaluate conditional entropy of arate-distortion mapping
conditioned on the error event and the observationY. The use
of AEP allows us to separate various conditional entropies in
terms of the cardinalities of the rate distortion mapping as
minimal cover over the AEP set.

Lemma 6.1: For hamming distortion measuredH(., .)
and for distortion levels,d0 ≤ (|X | − 1) minX∈X PX ,

Pr( 1
ndH(Xn, X̂n(Y) ≥ d0)) ≥

nRX(d0)− I(Xn;Y)− 1
n log(|X |)− n (h(d0) + d0 log(|X | − 1))

Proof: Given an observationY about the eventX .= Xn.
Define an error event,

E =
{

1 if 1
ndH(Xn, X̂n(Y)) ≥ d0

0 otherwise

ExpandingH(Xn, E|Y) in two different ways we get that,

H(Xn|Y) ≤ 1 + nPe log(|X |) + (1− Pe)H(Xn|E = 0,Y)



Now the term

(1− Pe)H(Xn|E = 0,Y)
≤ (1− Pe)

(
n

d0n

)
(|X | − 1)nd0

≤ n(1− Pe) (h(d0) + d0 log(|X | − 1))

whereh(d0)
.= d0 log2

1
d0

+ (1 − d0) log2
1

1−d0
. Then we

have for the lower bound on the probability of error that,

Pe ≥ H(Xn|Y)− n (h(d0) + d0 log(|X | − 1)))− 1
n log(|X |)− n (h(d0) + d0 log(|X | − 1))

SinceH(Xn|Y) = H(Xn)− I(Xn;Y) we have

Pe ≥ n (H(X)− h(d0)− d0 log(|X | − 1))− I(Xn;Y)− 1
n log(|X |)− n (h(d0) + d0 log(|X | − 1))

It is known thatRX(d0) ≥ H(X)−h(d0)−d0 log(|X |−1),
with equality iff

d0 ≤ (|X | − 1) min
X∈X

PX

see e.g., [4]. Thus for those values of distortion we have for
all n,

Pe ≥ nRX(d0)− I(Xn;Y)− 1
n log(|X |)− n (h(d0) + d0 log(|X | − 1))

A. Proof of theorem 3.1

Proof: From modified Fano’s inequality (see lemma 6.1
it follows that

Pe ≥ RX(d0)− I(X;Y|G)− 1
n log(|X |)− n (h(d0) + d0 log(|X | − 1))

Let the average rate distortion function forX be RX(d0),
i.e., RX(d0) = nRX(d0). For the worst case lower bound
on Pe we maximize the mutual informationI(X;Y|G). Now
note that

max
Σx:traceΣx≤kP

I(X;Y|G) =
1
2

log det

(
Im +

k

n

GInG∗

N0

)

i.e., the maximization is achieved when the input covariance
matrix is an identity matrix. The normalization factor ofα = k

n
appears since the total power iskP . In the above expression
In denotesn × n identity matrix. Taking expectation with
respect to random realizations ofG we have for the expected
probability of error,

Pe ≥
RX(d0)−EG

1
2 log det

(
Im + k

n

GInG∗

N0

)
− 1

n log(|X |)− n (h(d0) + d0 log(|X | − 1))

Sincelog det(.) is a concave function by Jensen’s inequality
we can further lower bound the probability of error by

Pe ≥
RX(d0)− 1

2 log det

(
Im + k

nEG
GInG∗

N0

)
− 1

n log(|X |)− n (h(d0) + d0 log(|X | − 1))

Note that for the lower bound to be zero the numerator in
the above expression should be zero. This implies

RX(d0)− 1
2

log det

(
Im +

k

n
EG

GInG∗

N0

)
− 1 ≤ 0

Let RX(d0) = nRX(d0) whereRX(d0) is the scalar rate
distortion function. Also note thatEGG∗ = Im. Then we get
that,

nRX(d0) ≤ m

2
log (1 + αρ) + 1

It implies,
n

m
≤ 0.5 log(1 + αρ) + 1

n

RX(d0)

Taking the limitsn, k →∞ : k = αn and we get the upper
bound to thed0 distortion sensing capacity.

REFERENCES

[1] E. Candes, J. Romberg, and T. Tao,Robust uncertainity principles: Exact
signal reconstruction from highly incomplete frequency information,
IEEE Transactions on Inforamtion Theory52 (2006), no. 2, 489–509.

[2] , Stable signal recovery from incomplete and inaccuarte mea-
surements, Communications on Pure and Applied Mathematics59
(2006), no. 8, 1207–1223.

[3] E. Candes and T. Tao,Near optimal signal recovery from random
projections: Universal encoding strategies?, preprint (2004).
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