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Abstract—A fundamental question in sensor networks is to
determine the sensing capacity — the minimum number of sensors Random Beams
necessary to monitor a given region to a desired degree of
fidelity based on noisy sensor measurements. In the context
of the so called compressed sensing problem sensing capacity
provides bounds on the maximum number of signal components
that can be identified per sensor under noisy measurements.
In this paper we show that sensing capacity is a function of
SNR, signal sparsity—the inherent complexity/dimensionality of .
the underlying signal/information space and its frequency of ¥ W
occurrence and sensing diversity — the number of modalities :
of operation of each sensor. We derive fundamental tradeoffs ‘
between SNR, sparsity, diversity and capacity. We show that ,
the capacity is a monotonic function of SNR and diversity. A lﬁ"
surprising result is that as sparsity approaches zero so does the I
sensing capacity irrespective of diversity. This implies for instance YF
that to reliably monitor a small number of targets in a given Narrow Beam
region requires disproportionately large number of sensors.
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I. INTRODUCTION Fig. 2. Sensors with different modalities

Consider a simple sensing architecture as shown in figure
1. The objectX to be estimated/detected belongs tona
dimensional real space. The operafocan be thought of as amany statistical inferencing problems of interest, however,
sensing modality which can be tuned based on the applicatigi.this work we are primarily motivated by sensor network
The direct observation of the phenomeXamay be corrupted applications. Sensor networks involve judicious utilization of
by external factors such as clutter (false events). One wishesource constrained communication networks formed out of
to form an estimat&X given the corrupted set of observationgeographically separated sensors. One could penalize different
Y such thatld(X,X) < dy for a given distortion measure. modalities® and formalize resource constraints in sensor net-
The knowledge of the operatdr is assumed to be generallyworks. Rather than focusing on this aspect one of our primary
available at reconstruction end. goals here is to compare different modalities for different types
of sensor networking problems such as counting, detection
and localization. To concretize what we mean by modalities
consider a network ol sensor arrays. Each sensor array has
a maximum powetP and can operate in different modalities
? as shown in Figure 2. Examples of modalities could be: (a)
X e Rn_’éi dcC . Yi—* X Narrow-Beam High Regolution Modglit)Each se_nsing array
can beamform to a different location and with maximum
Oh:;xr:ﬂ" Adsitive Naise N admissible SNR. Here sensing regions may not overlap. (b)
Wide-Beam Low ResolutiorEach sensing array can have a
wider focus but with a corresponding decrease in SNR. Here
sensing regions overlap. (Gandom-BeamsEach sensing
array can beamform to a random set of locatiogBaussian
Fig. 1. A sensing architecture with various components illustratetMlodulated BeamsEach sensing array can take a gaussian
average of the beam-formed output for each location. Target
Generally speaking we are interested in performance chboealization under the first modality was studied by one of
acterization in terms of the modalitg , the nature of the the authors in [8] where each sensor was assumed to have a
signalsX and the signal to noise ratio. This set up modelamited sensing range with non-overlapping sensing regions.
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It was shown there that when target density is unknown it We reveal a surprising behavior. We show that sensing
is impossible to meaningfully control both false alarms anchpacity goes to zero as the sparsity goes to zero independent
misses. of SNR and diversity. This means that it requires dispropor-
Another goal of this paper is to develop informationtionately large number of sensors to detect singular events in
theoretic bounds for the emerging field of compressed sensiagarge area. We show that small sensing diversity invariably
These problems concern continuous natural phenomena. Téals to small sensing capacity. In other words, small diversity
principle observation here is that most natural phenomenarefjuires large number of sensors for achieving same accuracy
interest is compressible, i.e. succinctly representable in a naglative to situations with large diversity. The effect of sensing
ural basis, [13]. The problem of estimating such a phenomedizersity is characterized in a number of different settings.
can then be recast in a discrete framework as that of estimatinghe paper is organized as follows. In section Il we will
the coefficients in some natural basis in which the signal hBsmalize the problem and give a precise definition of sensing
uniqgue and sparse representation. Some examples of themeacity. In section Ill we will present the main results
applications pertaining to sensor networks are (1) Imaginghere we will provide upper and lower bounds to the sens-
a scattering medium [12] (2) MIMO radar [15]. (3) Geoding capacity for full diversity and no correlation. Then in
exploration via underground seismics. Compressed sensgggtion IV, we will provide results on the effect of the
deals with computing the minimum number of observatiorstructure of the sensing matrix on sensing capacity. The proofs
m required for perfect reconstruction of a sparse signal wheh our results can be found in BU-CISE technical report,
given level of sparsity. This subject has been a subject -of http://www.bu.edu/phpbin/cise/search.phpeport number
intensive research in the applied mathematics literature, [2D07-IR-0010).
[1], [5], [13], [14], [9] and in signal processing and sensor
networks literature [10], [6], [7]. The problem has its roots
in the problem of finding sparsest representation in the givenln this section we will make the problem set up precise.
basis of signals observed in additive noise and was addres¥¢ej begin by defining signal sparsity and sensing diversity in
in [13], [14]. Instead of looking at the entire signal, [3]relation to the set up of figure 1. In this work we will assume
[1]’ [5] focused on thecompressed Sensingrob|em, ie., that there is no clutter and is modeled as a part of the signal
reconstruction of sparse signals from a small number tF be estimated.
random projections of the signal. They showed that for a 21 Definition 2.1: Let k be a positive integex n anda =
sparse signat + 1 random projections are necessary for exact. An n-dimensional signaX is said to bek-sparse, if each

reconstruction with probability one, in the absence of nOngomponent ofX is i.i.d distributed with probability of 1 —a)
In [2], [9] these results were extended to the case of NOigy e 7ero and the non-zero components are chosen from some

random projections. . distributionpx (). We denoten as thesparsity ratio
Much of these developments have been algorithmic, and

in a non-bayesian setting motivated by the good performan®e Exploiting Transform Sparsity

of L; relaxation to a combinatorial problem that involves an | et Z < R™ be the signal of interest. Furthermore assume

Ly constraint. Our paper deviates from these approachestiat we are able to exploit th&ansform sparsityin the

many respects. First, we consider a Bayesian setting and ad@gbvery ofZ, i.e, Z can be represented aBX, in which

an information-theoretic perspective. Therefore the bounqis is some basis and Onw components ofX is nonzero.

that we derive are independent of any algorithm used fRfow the sensing model becomes,

reconstruction. Next we consider both discrete and continuous

signal spaces and formalize the problem in termseising Y = Q®X + N = GX + N (say)

capacity The sensing capacity for the discrete alphabets— ) ) ]

for instance locations of targets—was introduced in [11]. W The choice of sensing matrix

extend this definition to the continuous case. Sensing capacityn this work we will restrict our choice to a particular class

is informally defined as the maximum signal dimension (af random matrices, but we will also talk about non-Gaussian

complexity)/sensor-measurement that can be recovered tdederministic matrices as well. Specifically, the sensing matrix

pre-defined degree of accuracy(distortion). Alternatively, it ca@ € R™*" is random matrix with i.i.d Gaussian entries. In

be interpreted as the minimal number of sensors requiredaddition the matrixQ is chosen independently &.

monitor a given region of interest. In order that the measurement SNR per sensor remains same
Our contribution is two fold. First, we derive fundamentafor all the choices of sensing diversity factors, we impose

tradeoffs between sensing diversity, sparsity, SNR and sensihgt the total power in each row d be equal toP and

capacity. Second, in derivation of these bounds we exploséth respect to the distribution over the non-zero values in

alternate derivations of mutual information that reveal th¥, E[X?] = 1. Note that when® is an orthonormal basis,

effect of structure of the sensing matrix. Our results sertke distribution of G is same as that of). When @ is

as operational guidelines for a network designer to builtbt orthonormal, in particular normal but not orthogonal, the

the most efficient sensing structure or system for particuleesulting matrixG has correlations across the columns, though

application(s) of interest. the rows are independent. In this paper we will mainly focus

Il. PROBLEM SET-UP



on the case when there is no correlatioldn\We will partially On the other hand, when= % (ora = %), the upper bound
extend the results to correlat€&l with correlation induced by of the sensing capacity is given by (ncﬂ@(%) =1),
P,
Definition 2.2: Let! be a positive integex n and define C < log(1 + 5p)

8= % For each row of the sensing matr%, suppose each - 2
entry g;; has probabilityl — 3 to be zero. We calp as the  Figure 3 shows how the sensing capacity changes with the
sensing diversityand say that the matri& has diversityg. sparsity ratioo whenX’ is binary alphabet. Note that the sens-

For sake of brevity, we will denote the sensing matrix@®y ing capacity approaches zero for small sparsity. Consequently,
in the rest of the paper. In the followingl, (o) = alog, 1 + disproportionately large number of sensors are required for

[

(1—a)log, ﬁ is the binary entropy function. All logarithms monitoring sparse event#lso note that asSNR — oo, i.e.,

in this paper are base 2 unless otherwise specified. when noise approaches zero the capacity approaches infinity.
Indeed it is easy to show that a single measurement is sufficient
C. Sensing capacity and problem formulation for error-free reconstruction.

We define the sensing rate as the ratio of signal dimension
to the number of sensor& = -. We say that a sensing rate 25
R is dy-achievable ifm projections{y; = (g;, X) + n;}",
can ensure the reconstruction distortion to within with

probability one. We have the following definition for sensing 2
capacity. o
Definition 2.3: Thedy-distortion sensing capacitig de- § 15l
fined asC(dy) = max R over all do-achievableR, i.e., §
Cla 1 n : 2
(dp) = lim sup {— | Prob{d(X,X) >do} -0, n,me Z } | ;
Though the above definition includes perfect reconstruction &

as a special case, i.éy = 0. The problem that is considered
in the paper is to find the Sensing Capacity under the linear
sensing model proposed. Below we present our main results.
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A. Sensing capacity

Theorem 3.1: If G is a random Gaussian matrix With?(?'f}:).The plot of Sparsity versus capacity for various SNRs

i.i.d. elements and noisN being a Gaussian noisa&/(0, I,,,),
then for a sensing diversity dof = n, i.e. 3 = 1, the dy-
distortion sensing capacity obeys- B. Achievable Sensing Capacity : Weak Achievability

In this section we will provide lower bounds to the sensing
0.5log(1 4 pa) . . )
S T Rdy capacity, for the casg = 1 and G being a random Gaussian
x(do) matrix with i.i.d. elements.
where Ry (dy) is the corresponding scalar rate distortion Given N points in R”, {X;,..,Xy}. Let Bax, =
function andp the signal-to-noise ratio expected power in éX_: 1d(X;,X) <A} bg a dlstc_)rtlon ball of average dis-
row of G over the noise power (each of the non-zero signtgrtion A around the pointX;. Givene > 0, let N be the

components are normalized to unit power). minimal number such that
Proof: See Appendix [ ] N
We point out that the sensing capacity provides asymptotic PT(U Bax,)>1—¢

bounds on the minimum number of observations required
to reliably recover the underlying signal/targets to within a
distortiondy, i.e.,

=1
For sake of brevity denotBa x, = B;. Let the underlying

vector generating the observatioi be X. We seek the
probability that we decide in favor &’ which is at an average

We illustrate these ideas through some examples. Assuffigiance ofat least2A from X. We have,
for simplicity thatX € {0,1}". In the extreme case when the
signalX is 1-sparse, i.ek = 1(or a = + — 0), by the above P. (X - X'|G,X€B;,X €B,:
upper bound, we have, —NGX'-X)|I* 1

iNg

m > nC(dy)

D(B;, B;) = A)

1
n
< maxxes; X’eB; €

o<l log(1+ pa) 0 Since the average set distanéé(.,.) is > A, the worst
= 2(Hy(a)) case probability of error (in set decoding) is determined by



the Sequences that are at an average diStanﬁe ﬁaklng ex- Upper and lower bounds for Sensing Capacity for fixed a = 0.3, SNR = 10

. . . . 12 T r
pectation ovelG we have for the average pairwise probability ; : —— Upper Bound
of error : : —#— Lower bound

P. (X = X'|XeB;,X' €B;: 2D(B;,B;) > A)
< Bgexp {~||GX - X)|P ok}

4N0
m/2
_ 1
“\1+ 5L

Without loss of generality, one can chooge = ca for
somec < 2. From rate distortion theory the minimal number
of points such that the covering condition is satisfied with
high probability is given by2"x(2) where Rx (A) is the 0 : : :
rate distortion function. Hence summing over all the distortion ° 0.08 distartion 019 02
balls we get for the average probability of error that,

Sensing Capacity

Fig. 4. The gap between Upper and Lower bounds on Sensing
p Capacity for the binary alphabet case as a function of distortion for
e

"N a fixed sparsity. The distortion is the average Hamming distortion.
< Zj:l P. (X — XI‘X S Bi7X/ S Bj : %D(B“BJ) > Ca)

m/2
< 1ca onRx (A) We next consider deterministic matriceés We denote the
14 5P rows of G asGj, j =1, 2, ..., m. Let the cross-correlations
of these rows be denoted as:
Thus the achievable sensing capacity is given by T
_— G Giy1
" GTGy

Llog(1+ < p)
2 . .
T(A) As before to ensure the SNRy to be fixed we impose
GLG, = P for all k and letp = P/N, where N, is the
Also, asca — 0, Cuchicve 1S Z€ro, i.e. zero distortion noise power. Then we have the following result:
sensing capacity is zero. Also for any SNR, the ratio of upper  Proposition 4.1: An upper bound for the sensing capac-
and lower bounds satisfies: ity for a deterministic sensing matri¢’ ¢ R™*" is given

Cupper _ log(1 + ap) by:
Cachiev  log(1+ 5 p) m—1log (1 + a1 +ap(l - Tk)))
The gap between upper and lower bounds for the discrete C(do) < Z Rx (do) 1)

binary alphabet case are shown in figure 4. The achievabilif.y1e main outli]?]:el of the proof consists in upperbounding
is weak in the sense that with the number of projectiorﬁ

C(COZ) > Cachieve =

m\ -
prescribed by the achievable capacity one can only ensuréY )
reconstruction to within distortioBA instead ofA. m—1
HY™) < HY)+ Y HYj4 | Y;) < HY)+H(Y0-n;Y;)
IV. EFFECT OFDIFFERENT SENSING MODALITIES j=1

In this section we will consider different sensing modalitieg’herer;Y; is the best MMSE estimate far; ;.
and derive upper bounds for sensing capacity. First consideiVe apply this result to several situations next. First consider
the case where sensing matrix is identity. This is the case,very wide-beam sensor, i.€/; = in[ll ..., 1]. This
which arises typically when we have a limited sensing rang®e a rank deficient situation it is clear that this modality
and the sensing regions of the different sensors does moli be unsuccessful in target localization or sparse signal
overlap. First note that from the data processing inequaligstimation. On the other hand our sensing capacity bound leads
I(X™Y™) > I(X™,GY™) for any m x n matrix G with to C(dp) < 1/log(1/c) which is slightly optimistic but does
m < n and such that each row @ has unit norm. While show that capacity is small. Next consider a sensing matrix
this implies that our lower bounds for the probability of erroarising as a consequence of a finite-impulse-response(FIR)
(based on generalized Fano’s inequality (see appendix))wviltering operation of the observed data. Suppose the filter
always be smaller than any other sensing modalitthe sens- length is L with all coefficients equal to one. It follows that
ing capacity is always upper bounded by one. Consequentlye G matrix has a banded structure along the main diagonal.
we focus on sensing matrices that lead to sensing capadityguarantee coverage we need> n — L + 1. This implies
larger than one. that L has to be large in order fon to be small. However, this



is similar to the previous case the sensing capacity turns diite proof essentially requires evaluation of the last term in the
to be smaller than one. This is because the t¢étm- r,) above expression. The terhiX;Y) turns out to be negligible

in Equation 1 is close to zero because of relatively largence the sensing matrix is unknown.

overlap between subsequent rowsthfConsequently, we can
consider a sub-sampling of the filtered output to reduce t
overlap. Sub-sampling at raté corresponds to no overlap The following lemma follows from lemma 4.1 and lemma
case. In this case;, = 0 and our bounds turn out to be too6.1.

lose. Indeed, first we require that > n/L to guarantee Lemma 4.2: If G is random Gaussian matrix with i.i.d.
coverage. This implies thal needs to be large to obtainelements and the diversity factor |8 = L, then thed,-
small m. However, from Fano’s inequality it is easy to showdistortion Sensing Capacity for diversity biobeys-

that P. /4 0 in this case. This is because each observation

ﬁé Effect of sensing diversity

does not provide sufficient information to localize within the 0.5E; log(1 + %)
L different locations. While we considered the no-overlap case C<
. X ) Rx (dp)
these conclusions are not substantially for small overlaps (i.e.
at sub-sampling rates smaller thaj as well. where the expectation is evaluated over the distribution
To overcome these issues we observe from Equation 1 (k) (nfllc)
that a large sensing capacity upperbound requifeso be Pr(j) = %

small while maintaining a significant overlap between an . ! . : . .
g g P y To illustrate the effect of low sensing diversity on sensing

two rows. This implies that the cross-correlation between an v et — LF th bound for th tual
two subsequent rows have to be negligible. By improvin pacity e_ﬂ = j-rom the upper bound for the mulua
|Bfrmation in the partial diversity case given by lemma 4.1,

these bounds one can argue that indeed, the cross-correlat

between any two rows must be negligible. This suggests t4 have
the components of th& matrix should be chosen randomly I(X;Y|G)
to obtain the be_st upperbound_s. Consequently, we consider the < %7Ei [log (%Z + 1)]
effect of diversity on the sensing capacity. We will show that = ™, [log (pi + 1)]

. . . . . . 2 ?
low (j|verS|ty leads to a low sensing capacity. We will fmally — 2[(1—a)log(p- 0+ 1)+ alog(p+ 1)]
consider the effect of correlation on the achievable sensing = majo0(1 4 p)

2

capacity. We show that high level of correlation across the
columns reduces achievable sensing capacity. To this end we
have the following lemma. SNR =10 a=03,SNR =10

Lemma 4.1: Suppose the sensing matrix has diversity — ** o ; 13
_ 1 n : : : : : :
f =+ andX € {0,1}", then we have, P ket SEV N 0 [T N T
: me. iy . : —
I(X:Y|G) < TE; [log (£5+1)] . @) |
where the expectation is evaluated over the distribution 5
(k) (n—k) § cree il
Pr(j) = LI Soep R 2 o
_ o 1) & : L0
We provide the main idea behind the proof here and © [ A 08
the details can be found in BU-CISE technical report, ' - '
{http://www.bu.edu/phpbin/cise/search.phpreport number ookl o7l
2007-IR-0010). The main idea is that since the mat@x ‘ : 5 S
is chosen independently X we can expand the mutual 0 : : I S S
. . : : 0 0.2 0.4 0 02 04 06 08 1
information betweernX and Y, G in two different ways as a Diversity ratio B
follows:
Fig. 5. The gap between sensing capacities in low diversity and full
IX;Y,G) =I1(X;G)+I(X;Y[G) diversity for the binary alphabet case. Shown also is the Sensing
-0 Capacity as a function of diversity for fixed sparsity. Note the
=I(X;Y) +I(X;G|Y) saturation effect of diversity.

This way of expanding gives us a handle on evaluating The sensing capacity is ,
the mutual information with respect to the structure of the

resulting sensing matrixz. From above we get that, c 5 log(1+ p)
- HQ(O()
IX;Y|G) =I(XY)+I1(X;GlY) Compared with the sensing capacity inequality in theorem

MY) - h(Y|X)+h(G|Y) - h(G|X,Y) 3.1, we can see that low diversity will reduce the sensing



capacity. The gap between these two cases (i.es,1 v.s.

I = n) are shown in figure 5. An interesting point to notice is P.< 2*%1%(1*%) gnRx (do)
that one can achieve almost all the sensing capacity with small B

(but sufficient) enough diversity. The dependence of Sensihfus the achievable capacity scales as
Capacity on both sparsity and diversity is shown in figure 6. 1
o §log(1 + Chmin )
L|ne!s of c?nstanf Sens:ng Ca!pacny! ! s = RX (do)

which in general is smaller than the case when the columns
of G are uncorrelated, i.6\,,,;, < 1. In the case when all the
elements ofG are say% (in the full diversity case), then
Amin = 0. In this case the sensing capacity is zero.

C. Effect of Sensing diversity on Achievable Sensing Capacity

In this section we will provide achievable bounds to the
sensing capacity when the diversity - fraction of non-
zero elements in each row 6f. Let! = 8n be the number of
non-zero elements in each row of the mat@x Now consider
the numerator of the exponent in the upper bound to the pair-
wise probability of error -

sparsity

0.5 . . . . m n

diversity Z 2
1> 9541
Fig. 6. Lines of constant sensing capacity as a function of sparsity =1 j=1
and diversity for the binary alphabet case. Note for eachi the random variables — |E?:1 gijAj\Q
are independent. We have for the average pairwise probability

B. Effect of Correlation on achievable sensing capacity ~ of error that

Now we will show that correlation in sensing matr( - LIS g AP AN
reduces achievable capacity. Consider the numerator of the Pe <TLZ E(em'&o=99% °)

exponent in the upper bound to the probability of pair-wise yow A; = X;; — X,;. Without loss of generality let the

error in max-likelihood decoding - positions in whichX; and X, differ be equal tonca. Note
m  n thatc < 2 anda < % Also g;; are non-zero in positions.
ST i AP Let r denote the number of overlaps of the veaggrand the
i=1 j=1 vectorX; —X,. Conditioned o, 3°7_, g;;A, is a Gaussian

A, for eachi are independent Gaussiar{a”dom variable with zero mean and variadﬁe Taking the
J xpectation with respect to this random variable we have for
e upper bound on the probability of error that,

The termsy_7'_ | gi;
random variables with zero mean and variance given b
ATY, A whereA is the vector consisting af\;,j = 1,..,n

and>,, is the covariance matrix (Symmetric and positive semi- 1/2
definite) of thei-th row of G. Let %ATA = ca. Then we can P. <II",E, <1+1P

. . P N = 2INg
normalize the variance of each gf; ~ A (0,—). Then, we <11, o~ 5Er log(1+575)

can get an upper bound to the probability of error via
where the last inequality follows from Jensen’s inequality.

min ATigiA = )\minATA (nca) (n—nca
. - _ __Note thatPr(r) = ~~2> =" 7 Thus the achievable bound
where A\,;, is the minimum eigenvalue of the normalized

n
= . l
covariance matrix2,,. Thus a worst case bound on thedn the capacity decreases.
variance (which is related to the expected distance betweQP
. h } . COMPARISON WITHEXISTING COMPRESSEDSENSING
GX; andGXy) is caP\,,;,. Now taking the expectation we BOUNDS

have the worst case upper bound to the pairwise probability
of error as, The bounds obtained in this paper can be related to those

obtained in the context of compressed sensing problem, [9],
1 m/2 [6], [5]. There the bounds on the number of projections
P.(pair) < (mmmn> required for reconstructing &-sparse signal was addressed
I+ 5% in the framework of complexity regularized estimation of the
For the discrete alphabet case summing over allkitlsparse sparse vector. The regularization term is thg norm on
sequences we get for the average probability of error that the reconstructed signal with a weight factor%f%. They



have the following result: The expected mean squared error inFor the special case of binary alphabet the number of

reconstruction is upper bounded by, projections based on the achievable sensing capacity is
my > O(nHa(«)) and from results in [9] we haven, >

(3) O(anlogn). A plot of these orders as a function affor a
fixed n is shown in figure, 7.

k:logn

[|X Xﬂ ere

whereC; ~ 1 andCy ~ 50(P+0)2{(1 +p)l092 + 4}, under

normalization of the signal and the noise power anid the = 10000
1 1 5 T T T T
number of quantization levels, [9]. _ o _ Masimum Likeihacd Decoding
We argue that the above bound requires a normalization with | = - - Complexity Regularized Estimator | |

respect to sparsity rate, = k/n to be meaningful. This is be-
cause for an extremely sparse situation, for instaheepnst,

the average distortion metric in Equation 3 implies that an
all zero estimate can ensure negligible error. Specifically, (1)
for X is extremely sparse, i.ex << 1 and the sparsity rate
approaches zero the average distortion over the number of
non-zero elements is

1 ~
B [|XX|2}
an

&
o

>
i
T

number of projections (log 10 ) scale
»
S N
T

w
o
T

w
o
T

where a = % is the sparsity ratio. Using this as the 5
performance metric we have from equation 3, 005
E LHX _ X||2 < 01027”0%” (4) Fig. 7. The figure compares the performance in terms of scaling
an - of the number of projections as a function of the sparsity rate for

max-likelihood procedure and complexity regularized estimators of
In this case the the average number of projections requir, P prextty reg

such that the per non-zero element distortion is bounded by a

constant, scales @(nlogn). This is indeed consistent with

our sensing capacity results as well. The sensing capacity goes VI. APPENDIX

to zero as? (2)X is sparse, i.eax < 1 but not very

small the above normalization does not produce any significantVe have the following lemma for discrete alphabet case.

effect. In this case since the number of non-zero elements i$ 2 lemma can be extended along similar lines for continuous
fixed fraction ofn, an average distortion criteria is a reasonabRlPhabet case by using Asymptotic Equipartition Property over

distortion measure. Applying Markov inequality we have thdhe i.i.d. realization ofX. The proof then closely follows
the proof for the discrete case below, where we start with

1 . ELl||X - X|? istorti :
Pr <||X_X||2 > d0> < =l I a distortion error event based ojfld(X(Y),X)_ > dy ar_ld
n do then evaluate conditional entropy ofate-distortion mapping
conditioned on the error event and the observa¥orThe use

This implies that ) i o
of AEP allows us to separate various conditional entropies in

Pr <1||X —X|]? > do) < 0102k10g” terms of the cardinalities of the rate distortion mapping as
n dom minimal cover over the AEP set.
On the other hand from the results on achievable sensing Lemma 6.1: For hamming distortion measuré (., .)
capacity we have that and for distortion levelsdy < (|X| — 1) minxecx Px,
Pr (%IIX - X|]? > do) Pr(tdg (X", X"(Y) > dy)) >
—%log(l-i-doSNR/Q)-i-nRx(do) nRx(do)—I(Xn;Y)—l

nlog(|X|) —n (h(do) + dolog(|X| — 1))
Proof: Given an observatioly about the everK = X",
Define an error event,

In order to compare the results we fix a performance guarantee
of ¢, i.e., Pr(d(X,X) > dy) < e for comparison purposes. For
a givene > 0, we have for the minimal number of projections
required that,

£

2 (log(1/€) + nRx(do))
log(1+ dgSNR/2)

from our results. From results in [9] it follows that,

Lif L (X", X"™(Y)) > do
0 otherwise

ExpandingH (X", E|Y) in two different ways we get that,

anlogn

m 2 Gil— = H(X"[Y) < 1+ nP.log(|X]) + (1 - P.)H(X"|E =0,Y)



Now the term
(1-P.)H(X"E=0,Y)
< (1=Po)(gn,) (x| = 1)mdo
<n(l— Pe) (h(do) + dolog(|X| — 1))

whereh(do) = dolog, 7= + (1 — do)log, =7-. Then we

have for the lower bound on the probability of error that,

o HX"Y) —n (h(do) + dolog(|X] —1))) — 1
nlog(|X[) —n (h(do) + do log(|X| — 1))

SinceH(X™|Y)=H(X")—1(X™Y) we have

n (H(X) — h(do) — do log(|X] — 1)) = I(X";Y) — 1
nlog(1X]) — n (h(do) + do log([X] — 1))

Itis known thatRx (dg) > H(X)—h(dy)—dp log(|X|—1),
with equality iff

Pe >

P >

GI,G*
Rx(do) — % log det (Im + ZEGN) -1
0

nlog(|X]) — n (h(do) + dolog(|X| — 1))

Note that for the lower bound to be zero the numerator in
the above expression should be zero. This implies

1 k GI,G*

Let Rx(dy) = nRx(dy) where Rx(dy) is the scalar rate
distortion function. Also note th@d8GG* = I,,,. Then we get
that,

nRx(do) < 7 log (1+ ap) +1

It implies,

0.5log(1+ ap) +
Rx (do)

1
n

n
— <
m

Taking the limitsn, k — oo : k = an and we get the upper

do < (|1X| — 1))1(1’1611/\1/13)(

see e.g., [4]. Thus for those values of distortion we have for
all n,
(1]
P> nRx(do)—I(Xn;Y)—l
© = nlog(|X]) — n (h(do) + dolog(|X| — 1))

[2]

" [3]

A. Proof of theorem 3.1 [4]

_ Proof: From modified Fano’s inequality (see lemma 6.1[5]
it follows that

. Rx(do) — I(X; Y|G) — 1 o

©~ nlog(|X[) — n (h(do) + do log(|X| — 1))

[7]
Let the average rate distortion function &t be Rx (dy),
i.e., Rx(do) = nRx(dp). For the worst case lower bound (8]
on P, we maximize the mutual informatioh(X; Y |G). Now

note that
[0

1 k GI,G*
I(X;Y|G) = ; logdet (I + nGNOG> (10]

max

YoitraceX<kP
i.e., the maximization is achieved when the input covarianga

matrix is an identity matrix. The normalization factor@f= %
appears since the total powerk$. In the above expression 12]
I,, denotesn x n identity matrix. Taking expectation with
respect to random realizations Gf we have for the expected
probability of error, 23]

(14]

. GI"G*) .
[15]

Rx(do) — Egé log det (Im + ;T
P.> 0
— nlog(|X]) = n (h(do) + dolog(|X| — 1))

Sincelog det(.) is a concave function by Jensen’s inequality
we can further lower bound the probability of error by

bound to thed, distortion sensing capacity.
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