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Abstract— Suppose we have a directed graph G with set
of nodes V = {1, . . . , N} and a measure xi for every node
i ∈ V . The average consensus problem consists in computing
the average xA = N−1P

i xi in an iterative way, exchanging
information among nodes exclusively along the available edges
in G. This problem appears in a number of different contexts
since the 80’s (decentralized computation, load balancing, clock
syncronization) and, recently, has attracted much attention for
possible applications to sensor networks (data fusion problems)
and to coordinated control for mobile autonomous agents. Several
algorithms for average consensus can be found in the literature:
they differentiate on the basis of the amount of communication
and computation they use, on their scalability with respect to
the number of nodes, on their adaptability to time-varying
graphs, and, finally, they can be deterministic or random. In this
presentation we will focus on random algorithms: we will review
some algorithms present in the literature and we will propose
some new ones. We will present some performance results which
will allow to make some comparison. Finally, we will establish
some probabilistic concentration results which will give a stronger
significance to previous results.

I. INTRODUCTION

Suppose we have a (directed) graph G with set of nodes
V = {1, . . . , N} and a measure xi for every node i ∈ V . The
average consensus problem consists in computing the average
xA = N−1

∑
i xi in an iterative distributed way, exchang-

ing information among nodes exclusively along the available
edges in G. This problem appears in a number of different
contexts since the early 80’s (decentralized computation [1],
load balancing [2], [3], [4]) and, recently, has attracted much
attention for possible applications to sensor networks (data
fusion problems [5], [6], [7], [8], [9], clock syncronization
[10]) and to coordinated control for mobile autonomous agents
[11], [12], [13], [14], [15], [16], [17]. Other places where
consensus algorithms have been studied in general are [18],
[19], [20], [21], [22], [23]

Several algorithms for average consensus can be found in
the literature: they differentiate on the basis of the amount of
communication and computation they use, on their scalability
with respect to the number of nodes, on their adaptability to
time-varying graphs, and, finally, they can be deterministic or
random.

We now briefly review two of the possible applications of
average consensus, to better understand which are the impor-

tant issues of this problem. In load balancing the nodes can
be thought as identical processors, computers, and the edges
as physical connections among themselves. The corresponding
communication graph presents in general some nice symmetry
(e.g. a line, a ring, a torus, a hypercube, etc...) and also a
symmetry with respect to communication exchange (if i and
j are connected by an edge, it means that i can send data to j
and viceversa). In many situations the communication graph is
fixed. The measure xi at each node is in this case the amount
of tasks (all considered to be equal) which the processor i
has to accomplish. The idea is that, in order to speed up the
whole computation, processors should exchange tasks along
the available edges in order to equilibrate as much as possible
the tasks among the various processors. The natural goal is that
each processor will have at the end the same quantity of tasks
to work on namely a quantity of task close to the average
xA. There are two different approaches to this problem. In
the first approach each processor evaluate the average xA

with an iterative consensus algorithm and afterwords, there
is a physical movements of tasks among processors. In the
second approach instead the movement of tasks is coupled to
the evolution of the iterative algorithm: this physical transfer
forces the iterative algorithm to be inherently symmetric with
respect to any pair of communicating processors.

In the context of sensor networks, nodes are sensors de-
ployed (often randomly) in some geographical area. They typ-
ically transmit in a wireless fashion and the common adapted
model is that they can communicate to the other sensors within
a distance R. The communication graph obtained in this case
is typically a random graph: a good model is the geometric
graph. The quantities xi they want to average can be in this
case some measurement all the sensors have done (e.g. a
temperature) and the averaging is done in order to increase
precision, by filtering out the noise. In other cases they may
want to average an internal state (e.g. cell charge) to obtain
aggregate information on the whole net.

One of the key points in these applications is that both
computation and transmission are time and energy consuming
tasks which have to be kept as low as possible. Also it
should be pointed out that in many practical applications a
node can not simultaneously receive data from two different
neighbor nodes (for instance collision can delete messages



in wireless environment) and in some applications it cannot
simultaneously transmit to more than a node (this happens
for instance for processors nets). Thus, even in case where
the communication graph is quite dense, algorithms should
take into considerations these fundamental limitations. This
fact makes the use of random algorithms quite appealing as it
turns out that they allow to achieve better performance than
deterministic ones with comparable complexity.

In the context of mobile autonomous agents instead, the
consensus problem often takes the form of the so called
rendez-vous problem: here xi represent the position of node
i and the goal is to make physically the agents meet in
their centroid xA. Mathematically, it appears as a similar
problem: while the agents increase their precision in the
evaluation of xA, they also move towards it. However, the
analogy is here a bit misleading. Indeed, a natural model
for the communication graph is the geometric one as for
sensor networks: each agent can only talk to the other agents
within a given distance. However, since the agents change
their position, their communication graph also changes: as
a consequence, the resulting dynamical system is in general
much more complicated. Except the studies in [24] where
the authors consider algorithms which deliberately prevent the
breaking of previous established communication edges, we
believe there does not exist rigorous mathematical analysis
of these models except for quite simplified scenarios where
the graph variation is decoupled from the dynamics.

For the purpose of our paper the applications context we
have in mind are those connected to sensor and computer
networks and not to mobile agents scenario.

Deterministic (time-invariant and time-varying) consensus
algorithms have been studied in many papers: starting from the
pioneering work [1], many variations can be found in above
cited literature. Most of papers study the same algorithm: every
node runs a first order linear dynamical system to update its
estimation and the systems are coupled through the available
communication edges. Different schemes (higher order, with
memory) however have shown up in the literature, see [4], [3],
[22]. The type of problem typically faces in the literature are:
necessary and sufficient conditions for convergence, speed of
convergence, optimization issues. On the other hand random
linear schemes have been studied for instance in [5], [21], [9]
under the name of gossip algorithms. In this case the evolution
matrix of the algorithm is changed randomly at every clock
step: convergence is now considered in a probabilistic sense
and performance is studied in mean square sense or in terms
of a sort of contraction time. The algorithms studied in the
literature assume symmetric communication graph and lead
in general to symmetric evolution matrices which preserve
the global average over time. Symmetry is fundamental in
certain applications as, fr instance, the second approach to
load balancing discussed above. However in other situations,
symmetry may not be so important and actually an undesirable
feature in situations where communications are asymmetric
(this happens for instance in sensor networks). Also the related
property of achieving exactly the average can be a bit relaxed:

in some situations it may be sufficient to converge to some
value sufficiently close to the average.

In this paper we will focus to random first order linear
consensus algorithms as in [21]. However, differently from
[21] we will not focus exclusively on average consensus: we
will consider more general consensus algorithms which do not
converge to the average, but, under certain circumstances, to
some good approximation of it. In this paper we will focus on
three examples. The first one is the symmetric gossip model
studied in [21]: at each clock step, a communication edge is
randomly chosen and the two nodes average their estimations
of the average. This algorithm clearly needs symmetric links
and maintain the global average. The second model is what
we called in-gossip: at each time step, each node receives
data from one randomly chosen neighbor and perform the
average. In this case symmetric communication is not needed.
However it does not preserve the global average. Finally, the
third proposed model is a sort of broadcasting one: at each
time step a randomly chosen node activates and sends its data
to all its neighbors. As the in-gossip model, it is asymmetric
and does not preserve the global average.

For the various algorithms we propose a mean square
analysis. We first analyze the special case when the commu-
nication graph is the complete graph: in this case we obtain
complete results in term of speed of convergence and average
displacement which allow to make sensible comparison among
the three schemes.

We then pass to consider more general graphs. Here we
focus on the family of Abelian Cayley graphs which al-
ready contains some interesting graph architectures (ring,
torus, hypercube). We show that for such graphs analytical
computations of mean square quantities can in principle be
obtained. Results in this case are however only at a primitive
steps. We propose some numerical evaluations of the speed of
convergence in the case of a ring communication graph.

We then present a probabilistic concentration analysis which
shows how with probability one the behavior of our system
converges to the mean square analysis when the number of
nodes N → +∞ while time t remains fixed or is anyhow of
type t = o(N). This means that the mean square analysis is
meaningful in the scenario N >> t. Therefore our analysis is
particularly meaningful for large scale networks.

II. PROBLEM FORMULATION

A. Linear consensus algorithms

The iterative consensus algorithms we will study in this
paper consist of N coupled linear dynamical systems (as many
as the nodes)

xi(t + 1) =
N∑

j=1

Pij(t)xj(t) i = 1, . . . , N ,

where xi(t) ∈ R is the state of the i-th system at time t and
Pij(t) ∈ R coefficients which vary with the time t.

More compactly we can write

x(t + 1) = P (t)x(t) , (1)



where x(t) ∈ RN and P (t) ∈ RN×N . The sequence P (t) is
said to achieve the consensus if the following conditions are
satisfied:

(a) If x(0) ∈ I then x(t) = x(0) for every t ∈ N.
(b) For any x(0) ∈ RN , there exists a scalar α such that

lim
t→∞

x(t) = α1 . (2)

where 1 := (1, . . . , 1)T and I is the subspace generated by 1.
Moreover, if α = N−11∗x(0), we say that average consensus
is achieved.

In this paper we will assume to have statistical informa-
tion on the matrices P (t) and we will adopt a probabilistic
approach to the problem instead of a worst case analysis.

More precisely, in this paper we will assume that P (t) is
a sequence of i.i.d. matrix valued random variables and x(t)
is the stochastic process which is the solution of the equation
(1). We say that the sequence P (t) achieves the probabilistic
consensus if condition (a) above holds while (b) is replaced
by
(b’) For any x(0) ∈ RN , there exists a scalar random

variable α such that, almost surely,

lim
t→∞

x(t) = α1 . (3)

If α = N−11∗x(0) almost surely, we talk about probabilistic
average consensus.

In this paper we will restrict to cases in which P (t) are
stochastic matrices: namely we assume that P (t)ij ≥ 0 for
every i and j and P (t)1 = 1. Notice that condition (a) is then
clearly automatically satisfied. If, moreover, 1∗P (t) = 1∗, we
say that P (t) is doubly stochastic. In this case we have that
the average is invariant: 1∗x(t) = 1∗x(0) for every t. Hence,
if (b) or (b’) holds, then automatically α = N−11∗x(0).

Let
Q(t) = P (t− 1) · · ·P (0) , (4)

so that we can write x(t) = Q(t)x(0). The random variable α
in (3) is a linear function of the initial condition x(0) so that
we can write α = ρ∗x(0) for some random variable ρ taking
values in RN and such that 1∗ρ = 1. Therefore probabilistic
consensus can be equivalently expressed by saying that there
exists a random variable ρ taking values in RN such that

lim
t→∞

Q(t) = 1ρ∗ (5)

almost surely. Notice that 1ρ∗ is a matrix with all rows equal
to ρ∗. ρ is called the random asymptotic weight associated
with P (t). We have probabilistic average consensus exactly
when ρ = N−11.

B. Constraints on the algorithm: the communication graph

Given a matrix P of dimension N × N , we can consider
the directed graph GP = (V, E) where V = {1, . . . , N} and
E ⊆ V × V is defined by

(j, i) ∈ E ⇔ Pij 6= 0 .

GP is called the directed graph associated with P . If we use
a consensus algorithm P (t), we are assuming that at instant
t all communications along the edges of GP (t) are feasible.
The amount of non zero elements in P (t) is thus a a measure
of the number of communications that simultaneously have to
take place in our network to implement such a scheme.

In many circumstances there is an a priori fixed communica-
tion skeleton, namely a fixed underlying directed graph G =
(V, E), establishing which are the feasible communications
among agents. We will say that the scheme P (t) is adapted
to G if GP (t) is a subgraph of G for every instant t. In the
sequel we will assume that every self loop is always in G (we
assume that every agent has always access to its own data).

For future utility we need to set some basic notation on
graphs. Consider a directed graph G = (V, E) where V =
{1, . . . , N} and E ⊆ V × V . For every i ∈ V we put

N+
i = {j ∈ V \ {i} | (i, j) ∈ E}

N−
i = {j ∈ V \ {i} | (j, i) ∈ E} .

Elements in N+
i (resp. in N−

i ) are called out-neighbors (resp.
in-neighbors) of i. Moreover we put ν+

i = |N+
i |, ν−i = |N−

i |.
Let ei be the i-th element of the canonical basis of RN . The
adjacency matrix of G is defined as

AG =
∑

i∈V

∑

j∈N+
i

eie
∗
j =

∑

i∈V

∑

j∈N−
i

eje
∗
i .

Notice that self loops have not been considered: this will make
notation simpler further on. The in-degree and out-degree
matrices are defined, respectively as

DG− =
∑

i

ν−i eie
∗
i . DG+ =

∑

i

ν+
i eie

∗
i .

If it happens that, whenever (i, j) ∈ E, then also, (j, i) ∈ E,
we will call the graph symmetric (or undirected). In this case
we will drop the superscript ± in the above notations.

All the Examples considered in this paper will deal with
symmetric graphs. However most of the theoretical results we
will present do actually apply also to directed graphs.

III. RANDOM ALGORITHMS ACHIEVING CONSENSUS

A. Conditions for the probabilistic consensus

We start recalling some well known facts on consensus
algorithms in case when P (t) = P is constant (see [20] for
more details).

Proposition III.1. Let P be an N ×N stochastic matrix. The
following conditions are equivalent:

(1) P achieves consensus.
(2) For every i, j = 1, . . . , N , there exist k, t such that

P t
ikP t

jk > 0 .

(3) GP is a connected directed graph such that the tree of
the strongly connected components has just one source
which is aperiodic.

If we start from a graph G satisfying property (3) above,
it is very simple to construct a P achieving consensus: it is



sufficient to make sure that GP = G. One possibility is for
instance to consider

P = k0I + (1− k0)D−1
G−AG ,

where k0 ∈ (0, 1) is an arbitrarily chosen parameter. If, more-
over, G is strongly connected, we can also make sure that we
obtain a doubly stochastic matrix so that average consensus is
indeed achieved: this is slightly more complicated (see [20] for
details). In the simple case when G is strongly connected and
symmetric, however we can construct a symmetric solution P
as follows. Put

0 < Pij = Pji < min{ν−1
i , ν−1

j } ∀(i, j) ∈ E ,

Pij = 0 ∀(i, j) 6∈ E .

Pii = 1−
∑

j

Pij .

Such a P achieves average consensus.
Probabilistic consensus turns out to be an easily checkable

property, namely as easily checkable as the deterministic
consensus in the time-invariant case. The following result
appears in [25]:

Theorem III.2. The algorithm P (t) achieves probabilistic
consensus if and only if for every i, j ∈ V we have that

P(Ωij) = 1

where
Ωij = {∃k , ∃t , |Qik(t)Qjk(t) > 0} .

To obtain a more handy condition, we consider the average
P̄ = E(P (t)) and the average dynamics m(t + 1) = P̄m(t).
We have the following result:

Corollary III.3. The following conditions are equivalent:

(1) P (t) achieves probabilistic consensus.
(2) P̄ achieves consensus

Proof: (1)⇒(2) immediately follows from Lebesgue dom-
inated convergence theorem.

(2)⇒(1): If P̄ achieves consensus it follows from Proposi-
tion III.1 that for every i, j, there exist k, t such that

P̄ t
ikP̄ t

jk > 0 .

As a consequence, P(Ωij) > 0. On the other hand it is
immediate to check that Ωij is a tail event. Hence, for the
Kolmogorov 0−1 law, we must have P(Ωij) = 1. By previous
Theorem, (1) then follows. ¥

Notice that, if Q(t) → 1ρ∗, we have that P̄ t = E(Q(t)) →
1Eρ∗. It can very well happen that Eρ = 1 even if ρ is not
equal to 1 a.s. In other terms even if P̄ achieves average
consensus, not necessarily, P (t) will also achieve average
probabilistic consensus. This will appear in the examples we
will propose.

B. Examples

We now present a number of examples on which most of
the paper will be focused on.

Example III.4: The symmetric gossip model This is the
example studied in [21]. We start from a symmetric graph
G = (V, E) and we assume that at every time instant a node
among the N possible is chosen randomly. This node then
chooses also randomly one of its neighbors, it establishes a
bidirectional link with it and they average their quantity. More
precisely, let, for every (i, j) ∈ E,

Rij = I − k0(ei − ej)(ei − ej)∗ ,

(where k0 ∈ (0, 1)). Then, P (t) is concentrated on these
matrices and

P(P (t) = Rij) = P(P (t) = Rji) =
1
N

[
1
νi

+
1
νj

]
.

We have that

P̄ =
∑

(i,j)∈E

1
2N

[
1
νi

+
1
νj

]
[I − k0(ei − ej)(ei − ej)∗]

Notice that, if (h, k) ∈ E and h 6= k,

P̄hk =
1
N

[
1
νh

+
1
νk

]
k0 .

A remark regarding the parameter k0: it has to be considered
as a sort of design parameter respect to which optimize
performance. This will also appear in the next two examples.

Example III.5: The in-gossip model This example was
studied in [20]. We start from any directed graph G = (V,E)
and we assume that at every instant, each system receives the
state of another system chosen randomly and independently at
each time instant among its possible in-neighbors.

This is modelled in the following way. Fix, for every i ∈ V
an in-neighbor λi. To the configuration λ = (λ1, . . . , λN ) we
then associate

Eλ =
∑

i

eie
∗
λi

.

P (t) is this time uniformly concentrated on the matrices

(1− k0)I + k0E
λ .

In this case we obtain

P̄ =
∑

λ

1∏
i ν−i

[(1−k0)I +k0E
λ] = (1−k0)I +k0D

−1
G−AG .

Example III.6: The broadcasting model We start from any
directed graph G = (V, E) and we assume that that at every
time instant a node among the N possible is chosen randomly.
This node then broadcast its value to all its out-neighbors. P (t)
is this time uniformly concentrated on the N matrices

I + k0

∑

j∈N+
i

(eje
∗
i − eje

∗
j ) .



In this case we have

P̄ = I +
k0

N

∑

i

∑

j∈N+
i

(eje
∗
i − eje

∗
j ) = I +

k0

N
[AG −DG−] .

Corollary III.7. If the graph G is strongly connected, then
the algorithms in Examples III.4, III.5, and III.6 all achieve
probabilistic consensus.

Notice that Example III.4 yields doubly stochastic matrices:
average in this case is always preserved. Examples III.5 and
III.6 instead do not have this feature even if the communication
graph is symmetric.

IV. THE MEAN SQUARE PERFORMANCE

We will measure the performance of a particular algorithm
P (t) achieving probabilistic consensus by considering two
figures. The first figure we consider is a normalized version
of the distance from the consensus

d(t) =
1
N
||x(t)− 1xA(t)||2 =

1
N

N∑

i=1

|xi(t)− xA(t)|2 .

Consider now the centroid xA(t) = N−1
∑

i xi(t). The
second figure we will consider is the centroid displacement
from its initial value

β(t) = |xA(t)− xA(0)|2 .

These two figures will be now analyzed by considering their
expectations: E[d(t)], E[β(t)].

A. Evolution of E[d(t)]

We are interested in studying E[||x(t)− 1xA(t)||2] and, in
particular, their exponential rate of convergence:

R = lim sup
t→+∞

(E[||x(t)− 1xA(t)||2])1/t .

Notice that

E[||x(t)− 1xA(t)||2] = E[x∗(t)(I −N−111∗)x(t)]
= x∗(0)∆(t)x(0)

where

∆(t) := E[P (0)∗P (1)∗ · · ·P (t− 1)∗·
·(I −N−111∗)P (t− 1) · · ·P (1)P (0)]

if t ≥ 1 and where ∆(0) := (I−N−111∗). A simple recursive
argument shows that

∆(t + 1) = E[P (0)∗∆(t)P (0)]

This shows that ∆(t) is the evolution of a linear dynamical
system which can be written in the form

∆(t + 1) = L(∆(t)) .

If now we consider the reachable subspace R of the pair
(L, ∆(0)), namely the smallest L-invariant subspace ofRN×N

containing ∆(0), we clearly have that

R = max{|λ| : λ eigenvalue of L|R} .

Consider the canonical basis of RN×N : {ehk} (which is
the matrix with all elements equal to 0 except a 1 in position
(h, k)) we have that L is represented by a non-negative matrix.
Indeed,

(L(ehk))ij = E[Phi(0)Pkj(0)] ≥ 0 .

Moreover, ∑

(i,j)

(L(ehk))ij = 1 ,

namely the transpose matrix is also stochastic. It will be useful
in the sequel to characterize the eigenspace of L relatively to
the eigenvalue 1. We have the following result:

Proposition IV.1. Assume that P (t) achieves consensus with
random asymptotic weight ρ. Then, the eigenspace of L rela-
tive to 1 is one-dimensional and E[ρρ∗] is the only eigenvector
satisfying 1∗E[ρρ∗]1 = 1.

Proof: Notice that x(0)∗Lt(∆)x(0) = E[x(t)∗∆x(t)].
Since x(t) → 1ρ∗x(0) in mean square sense, it follows that

E[x(t)∗∆x(t)] → x(0)∗1∗∆1E[ρρ∗]x(0) .

Hence,
limLt(∆) = (1∗∆1)E[ρρ∗] .

This proves the result. ¥

B. The average displacement

For what concerns the average displacement, we are inter-
esting in evaluating the following figure

δ = E[|xA(∞)− xA(0)|2]
= E[|(ρ∗ −N−11∗)x(0)|2] = x(0)∗Bx(0) (6)

where

B = E[ρρ∗]− 2N−1E[ρ]1∗ + N−211∗ .

Notice that B is expressed in terms of E[ρ] and E[ρρ∗] which
are eigenvectors of P̄ and L, respectively.

In the case when P̄ achieves the average consensus, in
particular we obtain

B = E[ρρ∗]−N−211∗ . (7)

V. ANALYSIS OF THE EXAMPLES FOR THE COMPLETE
GRAPH

In this section we analyze the simplest case when actually
no communication constraint is pre-imposed at the commu-
nication level. We will show that in this case a complete
analysis can be carried on for previous examples: both for
the mean square evolution and for the average displacement.
A fundamental fact which is common to all our examples is
that, for the complete graph, the operator L keeps invariant
the subspace generated by I and N−111∗. Everything thus
reduce to a 2 × 2 matrix. We will use the following trivial
fact:

Lemma V.1. Let (
a b
c d

)



be a matrix with non-negative elements such that a + c = 1
and b+d = 1. Then, its eigenvalues are 1 and d−c. Moreover,
(b, c)∗ is an eigenvector of 1 .

In the sequel of this chapter we assume that G is the
complete graph, so that AG = 11∗−I and ν+

j = ν−j = N−1
for every j ∈ V .

A. The symmetric gossip model

We have the following result:

Proposition V.2. Assume that ∆ = αI + βN−111∗, then,

∆+ = E[P (t)∗∆P (t)] = α+I + β+N−111∗

where (
α+

β+

)
=

(
1− 4k0(1−k0)

(N−1) 0
4k0(1−k0)

N−1 1

) (
α
β

)
.

Proof: Notice that

E[P (t)∗P (t)] = 1
N(N−1)

∑
i 6=j [I − k0(ei − ej)(ei − ej)∗]2

= I − 2k0
1

N(N−1)

∑
i 6=j(ei − ej)(ei − ej)∗

+2k2
0

1
N(N−1)

∑
i6=j(ei − ej)(ei − ej)∗

= I − 2k0(1− k0) 1
N(N−1)

∑
i 6=j(eie

∗
i + eje

∗
j − eje

∗
i − eie

∗
j )

= I − 2k0(1− k0) 1
N(N−1) (2(N − 1)I − 211∗ + 2I)

= (1− 2k0(1− k0) 2
(N−1) )I + 2k0(1− k0) 2

N(N−1)11
∗ .

E[P (t)11∗P (t)∗] = 11∗ .

This implies the claim. ¥
In this case we have that ∆(t) converges to N−111∗ and

the speed of convergence is given by the second eigenvalue

R = 1− 4k0(1− k0)
1

(N − 1)

which is minimum for k0 = 1/2 for which we obtain

R = 1− 1
(N − 1)

.

We recall that in this case, all matrices are doubly stochastic.
This yields in particular δ = 0.

B. The in-gossip model

We have the following result:

Proposition V.3. Assume that ∆ = αI + βN−111∗, then,

∆+ = E[P (t)∗∆P (t)] = α+I + β+N−111∗

where
(

α+

β+

)
=

(
(1− k0)2 + k2

0 − 2k0(1−k0)
(N−1)

k2
0(N−2)
(N−1)2

2k0(1−k0)N
(N−1) 1− k2

0(N−2)
(N−1)2

) (
α
β

)
.

(8)

Proof: Notice that

E[P (t)∗P (t)]
= 1

(N−1)N

∑
λ

[(1− k0)I + k0E
λ∗][(1− k0)I + k0E

λ]

= (1− k0)2I + k0(1− k0) 1
(N−1)N

∑
λ

[Eλ∗ + Eλ]+

k2
0

1
(N−1)N

∑
λ

Eλ∗Eλ

Now,
1

(N−1)N

∑
λ

Eλ∗Eλ = 1
(N−1)N

∑
λ

∑
i

eλi
e∗λi

= 1
(N−1)

∑
i

(I − eie
∗
i ) = N

N−1I − 1
N−1I = I .

Substituting we obtain

E[P (t)∗P (t)] = (1− k2
0)I + 2k0(1− k0) 1

N−1 [11∗ − I] + k2
0I

= [(1− k2
0) + k2

0 − 2k0(1− k0) 1
N−1 ]I + 2k0(1− k0) 1

N−111
∗

Similarly,

E[P (t)∗11∗P (t)] = (1− k0)211∗

+k0(1− k0) 1
(N−1)N

∑
λ

[Eλ∗11∗ + 11∗Eλ]

+k2
0

1
(N−1)N

∑
λ

Eλ∗11∗Eλ .

We have
1

(N−1)N

∑
λ

Eλ∗11∗Eλ = 1
(N−1)N

∑
λ

∑
i,j

eλi
e∗λj

= 1
(N−1)2

∑
i6=j(

∑
λi

eλi)(
∑

λj
eλj

)∗ + 1
(N−1)

∑
i

∑
λi

eλie
∗
λi

= 1
(N−1)2

∑
i6=j(1− ei)(1∗ − e∗j ) + 1

(N−1)

∑
i(I − eie

∗
i )

= 11∗ − 2
N−111

∗ + 1
(N−1)2 (11∗ − I) + I

= ( N
N−1 − 1

(N−1)2 )I + (1− 2
N−1 + 1

(N−1)2 )11∗

Hence,

E[P (t)∗11∗P (t)] = (1− k0)211∗

+k0(1− k0) 1
(N−1) [(11

∗ − I)11∗ + 11∗(11∗ − I)]
+k2

0(1− 1
(N−1)2 )I + k2

0(
N

N−1 − 2
N−1 + 1

(N−1)2 )11∗

= k2
0N(N−2)
(N−1)2 I + [1− k2

0(N−2)
(N−1)2 ]11∗

This proves the result. ¥
It follows from Lemma V.1 that in this case

R = 1− k2
0(N − 2)
(N − 1)2

− 2k0(1− k0)N
N − 1

.

Instead B can be computed as follows:

B = E[ρρ∗]−N−211∗ = k2
0(N−2)

N(N−1)2(
k2
0(N−2)

(N−1)2
+

2k0(1−k0)N
N−1 )

·[I −N−111∗] ' k0
2(1−k0)

1
N2 [I −N−111∗] .

Hence,

δ ≤ k0

(1− k0)
1

N2
||x(0)||2 ≤ k0

(1− k0)
1
N
||x(0)||2∞ .

This in particular shows that if we assume that all initial
measures are bounded by a common fixed value M , the
average displacement goes to 0 as 1/N when N → +∞.

C. The broadcasting model

We have the following result:

Proposition V.4. Assume that ∆ = αI + βN−111∗, then,

∆+ = E[P (t)∗∆P (t)] = α+I + β+N−111∗

where (
α+

β+

)
=

(
1− 2k0(1− k0) k2

0

2k0(1− k0) 1− k2
0

) (
α
β

)
.



Proof: Notice that

E[P (t)∗P (t)] = 1
N

∑
i(I + k0

∑
j 6=i(eje

∗
i − eje

∗
j )
∗)·

·(I + k0

∑
j′ 6=i(ej′e

∗
i − ej′e

∗
j′))

= I + 2k0
N (11∗ − I − (N − 1)I)

+k2
0

N

∑
i

∑
j 6=i

∑
j′ 6=i(eie

∗
j − eje

∗
j )(ej′e

∗
i − ej′e

∗
j′)

= I + 2k0
N (11∗ −NI)

+k2
0

N

∑
i

∑
j 6=i(eie

∗
i − eie

∗
j − eje

∗
i + eje

∗
j )

= I + 2k0
N (11∗ −NI) + k2

0
N (2(N − 1)I − 2(11∗ − I))

= [1− 2k0(1− k0)]I + 2k0(1−k0)
N 11∗

Similarly,

E[P (t)∗11∗P (t)] = 11∗ + 2k0
N (11∗ − I − (N − 1)I)11∗

+k2
0

N

∑
i

∑
j 6=i

∑
j′ 6=i(eie

∗
j − eje

∗
j )11

∗(ej′e
∗
i − ej′e

∗
j′)

= 11∗ + k2
0

N

∑
i

∑
j 6=i

∑
j′ 6=i(eie

∗
i − eie

∗
j′ − eje

∗
i + eje

∗
j′)

= 11∗ + k2
0

N [(N − 1)2I − 2(N − 1)(11∗ − I)
+(N − 2)(11∗ − I) + (N − 1)I

From this the thesis easily follows. ¥
In this case, using Lemma V.1 we obtain that R = (1−k0)2

independent of N . We now evaluate B:

B = E[ρρ∗]−N−211∗ =
k0

2− k0

1
N

[I −N−111∗] .

In this case it is easy to see that there exist bounded initial
conditions x(0) for which the average displacement is not
infinitesimal for N → +∞. However we can estimate as
follows:

δ ≤ 2k0

2− k0
||x(0)||2∞ .

The case k0 = 0 corresponds to the identity evolution (indeed
in this case R = 1 and δ = 0). On the other hand, the case
k0 = 1 yields convergence to consensus in one step (in this
case indeed R = 0 but it yields the largest possible δ. Varying
k0 between these two extremes we are trading off speed of
convergence against precision in the evaluation of the average.

VI. MORE GENERAL COMMUNICATION GRAPHS: THE
CAYLEY CASE

In this chapter we will move to more challenging examples
for the communication graphs. We will consider Abelian
Cayley graphs: this class of graphs include already many
interesting examples (the circuit, the torus, the hypercube)
but retains some fundamental structure which allows to obtain
some theoretical, though not yet conclusive results.

A. Abelian Cayley graphs

Let G (with an addition +) be any finite Abelian group of
order |G| = N , and let S be a subset of G containing zero.
The Cayley graph G(G,S) is the directed graph with vertex
set G and arc set

E = {(g, h) : h− g ∈ S} .

Notice that for a Cayley graph both the in-degree and the
out-degree of each vertex are equal to |S|. Notice also that
strongly connectivity can be checked algebraically. Indeed, it

can be seen that a Cayley graph G(G,S) is strongly connected
if and only if the set S generates the group G, which means
that any element in G can be expressed as a finite sum of (not
necessarily distinct) elements in S. If S is such that −S = S
then the graph obtained is symmetric. See [26] for more results
on these graphs.

Symmetries can be introduced also on matrices. Let G be
any finite Abelian group of order |G| = N . A matrix P ∈
RG×G is said to be a Cayley matrix over the group G if

Pi,j = Pi+h,j+h ∀ i, j, h ∈ G .

It is clear that for a Cayley matrix P there exists a π : G → R

such that Pi,j = π(i−j). The function π is called the generator
of the Cayley matrix P . Notice that, if π and π′ are generators
of the Cayley matrices P and P ′ respectively, then π + π′ is
the generator of P + P ′ and π ∗ π′ is the generator of PP ′,
where (π∗π′)(i) :=

∑
j∈G π(j)π′(i−j) for all i ∈ G. This in

particular shows that P and P ′ commute. It is easy to see that
for any Cayley matrix P we have that P1 = 1 if and only
if 1∗P = 1∗. This implies that a Cayley stochastic matrix is
automatically doubly stochastic.

From now on we assume we have fixed a Cayley graph
G = (G,E) which we assume to be symmetric. Whenever we
talk of a Cayley matrix, we assume to be such with respect to
the group G.

We have this basic fact whose proof is by inspection.

Proposition VI.1. For the three examples above we have the
following result:

(1) P̄ is a Cayley matrix.
(2) E[P (t)i+h,j+hP (t)n+h,m+h] = E[P (t)i,jP (t)n,m].

Corollary VI.2. For the three examples above we have that
the sequence of matrices ∆(t) are all Cayley.

Proof: By induction on t: it is an immediate consequence
of (2) of previous proposition. ¥

B. The symmetric gossip model

We have the following result:

Proposition VI.3. Assume that G = (G,E) is a symmetric
Cayley graph with degree ν. Assume that ∆ is a symmetric
Cayley matrix and put ∆+ = E[P (t)∆P (t)∗]. Then,

π∆+(λ) = 1
N [(N − 4k0) + 4k2

0ν
−1πAG (λ)]π∆(λ)

+ 4k0
N ν−1πAG∆(λ)− 4k2

0
N π∆(0)ν

−1πAG (λ)
+ 4k2

0
N [π∆(0)− < ν−1πAG , π∆ > δ0(λ)]

Let us analyze in detail an example.
Example VI.4: Consider the symmetric circuit graph G on N
elements:

πAG (λ) =
{

1 if λ = ±1
0 otherwise ν = 2 . (9)

In this case we have that

πAG∆(λ) = π∆(λ− 1) + π∆(λ + 1)
< ν−1πAG , π∆ >= 1

2 [π∆(1) + π∆(−1)] . (10)



From Proposition VI.3 we obtain:

π∆+(0) = [1− 4k0(1−k0)
N ]π∆(0)

+ 2k0(1−k0)
N [π∆(1) + π∆(−1)]

π∆+(1) = [1− 2k0(2−k0)
N ]π∆(+1)

+ 2k0(1−k0)
N π∆(0) + 2k0

N π∆(2)
π∆+(−1) = [1− 2k0(2−k0)

N ]π∆(−1)
+ 2k0(1−k0)

N π∆(0) + 2k0
N π∆(−2)

π∆+(λ) = [1− 4k0
N ]π∆(λ)

+ 2k0
N [π∆(λ− 1) + π∆(λ + 1)]

(λ 6= 0,±1)

C. The in-gossip model

We have the following result:

Proposition VI.5. Assume that G = (G,E) is a symmetric
Cayley graph with degree ν. Assume that ∆ is a symmetric
Cayley matrix and put ∆+ = E[P (t)∗∆P (t)]. Then,

π∆+(λ) = (1− k0)2π∆(λ) + 2k0(1− k0)ν−1πAG∆(λ)
+k2

0ν
−2πA2

G∆(λ) + k2
0π∆(0)(δ0(λ)− ν−2πA2

G
(λ)) .

Let us analyze in detail an example.

Example VI.6: Consider the symmetric circuit graph G on N
elements as before. Using (9) and (10) as well

πA2
G
(λ) =





1 if λ = ±2
2 if λ = 0
0 otherwise

. (11)

we obtain

π∆+(λ) = [(1− k0)2 + k2
0
2 ]π∆(λ) + k0(1− k0)·

·[π∆(λ− 1) + π∆(λ + 1)] + k2
0
4 [π∆(λ− 2) + π∆(λ + 2)]

+k2
0π∆(0)(δ0(λ)− ν−2πA2

G
(λ)) .

From this we obtain,

π∆+(0) = [(1− k0)2 + k2
0]π∆(0) + k0(1− k0)·

· [π∆(−1) + π∆(1)] + k2
0
4 [π∆(−2) + π∆(2)]

π∆+(+2) = [(1− k0)2 + k2
0
2 ]π∆(2)

+ k0(1− k0)[π∆(1) + π∆(3)] + k2
0
4 π∆(4)

π∆+(−2) = [(1− k0)2 + k2
0
2 ]π∆(−2)

+ k0(1− k0)[π∆(−1) + π∆(−3)] + k2
0
4 π∆(−4)

π∆+(λ) = [(1− k0)2 + k2
0
2 ]π∆(λ)

+ k0(1− k0)[π∆(λ− 1) + π∆(λ + 1)]
+ k2

0
4 [π∆(λ− 2) + π∆(λ + 2)] (λ 6= 0,±2)

D. The broadcasting model

We have the following result:

Proposition VI.7. Assume that G = (G,E) is a symmetric
Cayley graph with degree ν. Assume that ∆ is a symmetric
Cayley matrix and put ∆+ = E[P (t)∗∆P (t)]. Then,

π∆+(λ) = (1− 2k0ν
N + k2

0
N πA2

G
(λ))π∆(λ)

+2(k0
N + k2

0
N πAG (λ))πAG∆(λ) + k2

0
N < πAG , πAG∆ > δ0(λ) .
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Fig. 1. The graph illustrating of the rate of convergence in the Examples
VI.4 (dashed line), VI.6 (dotted line) and VI.8 (solid line) for N = 20. In
order to make a fair comparison in the Examples VI.4 and VI.8 the rates are
powered to N .

Let us analyze in detail the symmetric circulant example.
Example VI.8: Consider the symmetric circuit graph G on N
elements as before. From relations (9), (10), (11) and from

< πAG , πAG∆ >= 2π∆(0) + π∆(+2) + π∆(−2)

we obtain this time

π∆+(λ) = (1− 2k0ν
N + k2

0
N πA2

G
(λ))π∆(λ)

+ 2(k0
N − k2

0
N πAG (λ))[π∆(λ− 1) + π∆(λ + 1)]

+ k2
0

N [2π∆(0) + π∆(+2) + π∆(−2)]δ0(λ) .

which leads to

π∆+(0) = (1− 4k0
N + 4k2

0
N )π∆(0) + 2k0

N [π∆(−1) + π∆(+1)]
+k2

0
N [π∆(−2) + π∆(+2)]

π∆+(+1) = (1− 4k0
N )π∆(+1) + 2(k0

N − k2
0

N )[π∆(0) + π∆(2)]
π∆+(−1) = (1− 4k0

N )π∆(−1) + 2(k0
N − k2

0
N )[π∆(0) + π∆(−2)]

π∆+(+2) = (1− 4k0
N + k2

0
N )π∆(2) + 2k0

N [π∆(1) + π∆(3)]
π∆+(−2) = (1− 4k0

N + k2
0

N )π∆(−2) + 2k0
N [π∆(−1) + π∆(−3)]

π∆+(λ) = (1− 4k0
N )π∆(λ) + 2k0

N [π∆(λ− 1) + π∆(λ + 1)]
(λ 6= 0,±1,±2)

We computed the rate of convergence in the Examples VI.4,
VI.6 and VI.8 for N = 20 as function of the parameter k0.
Figure 1 shows the the rate of convergence in these three
Examples. Notice that, in Examples VI.4 and VI.8 essentially
one node communicate at each time while in Example VI.6
all nodes communicate. Therefore the synchronous in-gossip
will be always faster than the other two. Therefore, in order
to make a fair comparison, in the figure the rates relative to
Examples VI.4 and VI.8 are powered to N .

VII. CONCENTRATION RESULTS

In this chapter we discuss some initial concentration results
obtained through the theoretical tool of Azuma’s inequality for
martingale which we recall below.



Theorem VII.1. Azuma’s inequality Let X0, X1, . . . Xm be
a martingale such that |Xi+1 −Xi| ≤ c for every i such that
0 ≤ i < m. Then, for every θ > 0 we have that

P[|Xm −X0| > θ] ≤ e−
θ2

2c2m .

Now we assume that our random stochastic matrices can
be generated in the following way. We assume the existence
of independent random variables T1(t), . . . , TmN

(t) taking
values in a finite set T . These r.v. contain all the randomness
to construct P (t) in the sense that there exists a function
Γ : T mN → RN×N yielding

P (t) = Γ(T1(t), . . . , TmN
(t)) .

It is easy to see that the matrices P (t) in our examples can
indeed be generated in this way. Specifically, in the symmetric
gossip case we have that mN = 1 and T = |E|: T1(t)
simply codifies the edge which is activated. In the in-gossip
model instead we have that mN = N and T = {1, . . . , N}:
Tj(t) simply codifies the neighbor which is chosen by agent
j. Finally, in the broadcasting model we have mN = 1 and
T = {1, . . . , N}: T1(t) simply codifies the node which is
activated

We can now state and proof the following general result.

Proposition VII.2. Assume that the random stochastic ma-
trices P (t) can be generated through the discrete r.v.
T1(t), . . . , TmN (t) as above and that they possess the follow-
ing further properties:

(1) There exist a ∈ N, independent of N , such that when
in Γ(t1, . . . , tmN ) we vary just one of its variables tj
keeping fixed all the others, only at most a rows may
vary.

(2) P̄ is doubly stochastic.
Then,

P[|d(t,N)− Ed(t,N)| ≥ δ] ≤ e
− δ2N2

36||x(0)||4∞a2(t+1)mN

Proof: Assume t is fixed and consider the following
doubly indexed martingale:

Xs,k = E[d(t,N) |P (0), . . . , P (s− 1), T1(s), . . . , Tk(s)]

(where s = 0, . . . , t and k = 1, . . . N ).
It follows from conditions (1) and (2) that

|Xs,k −Xs,k−1| = 1
N |EP (s+1),...P (t){ETk+1(s),...TmN

(s)

{ETk(s){||(I −N−111∗)P (t− 1) · · ·P (s + 1)
Γ(T1(s), . . . TmN

(s))P (s− 1) · · ·P (0)x(0)||2
−||(I −N−111∗)P (t− 1) · · ·P (s + 1)
Γ(T1(s), . . . TmN (s))P (s− 1) · · ·P (0)x(0)||2}}}|
≤ 1

NEP (s+1),...P (t−1){ETk+1(s),...TmN
(s){max

σ,σ′

| ||(I −N−111∗)P (t− 1) · · ·P (s + 1)
Γ(T1(s), . . . , σ, . . . TmN (s))P (s− 1) · · ·P (0)x(0)||2−
−||(I −N−111∗)P (t− 1) · · ·P (s + 1)
Γ(T1(s), . . . , σ′, . . . TmN

(s))P (s− 1) · · ·P (0)x(0)||2}|}}
(12)

If we consider the two vectors

y = Γ(T1(s), . . . , σ, . . . TmN
(s))P (s− 1) · · ·P (0)x(0)

y′ = Γ(T1(s), . . . , σ′, . . . TmN
(s))P (s− 1) · · ·P (0)x(0) ,

we have that

||y||∞ ≤ ||x(0)||∞ , ||y′||∞ ≤ ||x(0)||∞ (13)

and there exist indices j1, . . . , ja such that

y′ − y =
a∑

l=1

rlejl
, |rl| ≤ 2||x(0)||∞ (14)

From estimation (12), using (13) and (14), we obtain

|Xs,k −Xs,k−1| ≤ 1
NEP (s+1),...P (t−1){supy:||y||∞≤||x(0)||∞

{ max
j1,...ja

{suprl:rl≤2||x(0)||∞
| ||(I −N−111∗)P (t− 1) · · ·P (s + 1)y||2−
||(I −N−111∗)P (t− 1) · · ·P (s + 1)(y +

∑a
l=1 rlejl

)||2 |}}}
≤ 1

NE{supy:||y||∞≤||x(0)||∞{ max
j1,...ja

{suprl:rl≤2||x(0)||∞

| < (I −N−111∗)Q(t− s)(
a∑

l=1

rlejl
− 2y),

, (I −N−111∗)Q(t− s)(
a∑

l=1

rlejl
) > |}}}

≤ 6||x(0)||2∞
N E{< Q(t− s)1, Q(t− s)(

a∑
l=1

ejl
) >}

≤ 6||x(0)||2∞
N < 1, P̄ t−s(

a∑
l=1

ejl
) >= 6a||x(0)||2∞

N

(15)
Result now follows from Azuma’s inequality. ¥
Let us comment on the application to our examples. In the

symmetric gossip case, we have that a = 2 and mN = 1 so
that we have concentration around the mean average for fixed
t and N → +∞ or, more generally, as long as N2/t → +∞.
In the in-gossip case instead we have that a = 1 and mN =
N , so that we obtain a similar concentration result but under
the condition N/t → +∞. In the broadcast model instead
a = ν ≤ N (in the Cayley case) and mN = 1 so that we
obtain a similar result.

Similar concentration results can be obtained also for the
average displacement β(t).

VIII. CONCLUSIONS

In this paper we have analyzed three different random-
ized consensus algorithms. One of them needs symmetric
communication, while the other two can also be utilized in
asymmetric communication scenario. On the other hand, while
the first one preserves the global average, the other two do
not. We have analyzed the mean square convergence of the
three schemes for Abelian Cayley communication graphs and
we have proved a concentration result. We have concretely
analyzed two cases: the complete graph and the circulant
graph. For the complete case we could carry on a detailed
theoretical analysis of the speed of convergence and also of
the average displacement. For the circulant case, we only
have partial results and some numerical simulations. It was
not our goal to prove that one scheme was ’better’ than the



others, rather we wanted to put into evidence that there are
many possible schemes available for average consensus or
at least for consensus quite close to average: they differ for
complexity in their implementation, speed of convergence,
average displacement. What is preferable will mostly depend
on the specific application. The broadcasting example for
instance seems to show a better speed of convergence, while
it has probably the worse average displacement. Our analysis
is however only at the beginning and much more needs to
be done in this area. For instance we conjecture that the in-
gossip models always have (at least for Cayley graphs) the
average displacement which is infinitesimal with respect to
the number of nodes. Also analysis of other graphs would be
of interest. In particular, we would like to extend our analysis
to the geometric graph: this would be of interest in the area
of sensor networks.
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