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Abstract—We propose novel lattice coding/decoding schemes
for half-duplex outage-limited cooperative channels. These
schemes are inspired by the cooperation protocols of Azarian et
al. and enjoy an excellent performance-complexity tradeoff. More
specifically, for the relay channel, we devise a novel variant of
the dynamic decode and forward protocol, along with a lattice-
coded implementation, which enjoys a near-optimal diversity-
multiplexing tradeoff with a low encoding/decoding complexity.
On the other hand, for the cooperative multiple-access channel,
we present a lattice-coded implementation of the optimal non-
orthogonal amplify and forward protocol. Finally, we establish
the performance gains of our proposed protocols via a compre-
hensive simulation study.

I. INTRODUCTION

The design of cooperation protocols for half-duplex outage-
limited channels was pioneered by the work of Laneman et
al. [1]. Inspired by a high signal-to-noise ratio (SNR) analysis,
Azarian et al. obtained more efficient protocols that achieve a
superior diversity-multiplexing tradeoff (DMT) [2]. The practi-
cal implementation of Azarian et al. cooperation schemes was
recently considered by Yang and Belfiore where they presented
a low complexity scheme that achieves the optimal DMT of the
amplify and forward relay channel. Here, building on our work
in [2], [3], we construct low complexity lattice coding schemes
which efficiently exploit the available cooperative diversity in
the relay and cooperative multiple access (CMA) channels. In
particular, our work considers the following distinct scenarios:

1) For the decode and forward (DF) relay channel, we
first devise a novel variant of the dynamic decode and
forward (DDF) protocol [2] which, through the judicious
use of orthogonal space-time constellations, reduces
the channel seen by the destination to a single-input
single-output (SISO) time-selective channel. This variant
achieves the excellent DMT of the DDF protocol, while
reducing the decoding complexity at the destination. We
further modify this variant by limiting the relay to start
transmission only at a finite number of time instants.
As argued in the sequel, this modification allows for a
significant reduction in complexity while still achieving
a near-optimal DMT. We then present a lattice-coded
implementation of this variant and evaluate its perfor-
mance through a comprehensive simulation study.

2) For the CMA channel, we present a lattice-coded imple-
mentation of the DMT-optimal nonorthogonal amplify

and forward (CMA-NAF) protocol proposed in [2].
This implementation employs the minimum mean square
error decision feedback equalizer (MMSE-DFE) Fano
decoder of [3], to achieve near maximum-likelihood
(ML) performance at a much lower complexity.

II. NOTATION AND SYSTEM MODEL

In our work, all channels are assumed to be flat Rayleigh-
fading and quasi-static, i.e., the channel gains remain con-
stant during one codeword and change independently from
one codeword to the next. Furthermore, the channel gains
are mutually independent with unit variance. The additive
noises at different nodes are zero-mean, mutually-independent,
circularly-symmetric, and white complex-Gaussian. The vari-
ances of these noises are proportional to one another such
that there are always fixed offsets between the different SNRs.
In particular, we define the ratio of the destination noise
variance to that of the relay (or cooperating node in the CMA
case) by c, i.e., c � σ2

v/σ2
w, where σ2

v denotes the noise
variance at the destination and σ2

w the noise variance at the
relay (or cooperating node). All nodes have the same power
constraint, have a single antenna, and operate synchronously.
Only the receiving node of any link knows the channel gain; no
feedback to the transmitting node is permitted. All cooperating
partners operate in the half-duplex mode, i.e., at any point in
time, a node can either transmit or receive, but not both. This
constraint is motivated by, e.g., the typically large difference
between the incoming and outgoing signal power levels.

Our work relies heavily on the notion of diversity-
multiplexing tradeoff (DMT) posed by Zheng and Tse in [4].
In this formulation, we consider a family of codes (one for
every SNR ρ), such that the code corresponding to ρ has a
rate of R(ρ) bits per channel use (BPCU) and error probability
Pe(ρ). For this family, the multiplexing gain r and the diversity
gain d are defined as

r � lim
ρ→∞

R(ρ)
log ρ

, d � − lim
ρ→∞

log Pe(ρ)
log ρ

. (1)

In the sequel, we say that protocol A uniformly dominates
protocol B if, for any multiplexing gain r, dA(r) ≥ dB(r).
Furthermore, protocol A is said to be Pareto optimal, if there
is no protocol B dominating protocol A in the Pareto sense.
Protocol B is said to dominate protocol A in the Pareto sense



if there is some r0 for which dB(r0) > dA(r0), but no r such
that dB(r) < dA(r).

III. DECODE AND FORWARD (DF) COOPERATION

For exposition purposes, we limit our discussions below
to the single relay scenario. In the DDF protocol the source
transmits data at a rate of R bits per channel use (BPCU)
during every symbol-interval in the codeword. A codeword is
defined as M consecutive sub-blocks, where each sub-block
is composed of T symbol-intervals. All channel gains are
assumed to remain fixed during the length of a codeword.
The relay, on the other hand, listens to the source for enough
number of sub-blocks such that the mutual information be-
tween its received signal and source signal exceeds MTR. It
then decodes and re-encodes the message using an independent
codebook and transmits the encoded symbols for the rest of
the codeword. We denote the signals transmitted by the source
and relay by {xk}MT

k=1 and {x̃k}MT
k=M ′T+1, respectively, where

M ′ is the number of sub-blocks that the relay waits before
starting transmission given by [2].

M ′ = min
{

M,

⌈
MR

log2 (1 + |h|2cρ)

⌉}
, (2)

where h is the source-relay channel gain. In this expression,
c = σ2

v/σ2
w denotes the ratio of the destination noise variance,

to that of the relay. The following result from [2], describes
the DMT achievable by the DDF protocol as T → ∞ and
M → ∞.

Theorem 1: ( [2]) The DMT achieved by the DDF protocol
is given by

d(r) =
{

2(1 − r) if 1
2 ≥ r ≥ 0

(1 − r)/r if 1 ≥ r ≥ 1
2

. (3)

In [2], the achievability result in (3) was established using
independent and random codebooks at the source and relay
nodes. This approach may not be practically feasible due to the
prohibitive decoding complexity required at the destination.
Allowing the relay node to start transmission at the beginning
of any sub-block (based on the instantaneous value of the
source-relay channel gain), is another potential source for
complexity. In practice, this requires the source to use a very
high-dimensional constellation (with a very low code-rate)
to ensure that the information stream is uniquely decodable,
even after one sub-block, given that the source-relay channel
is good enough. It also impacts the amount of overhead in
the relay-destination packet, since the destination needs to be
informed of the starting time of the relay. Here, we introduce
two modifications of the original DDF protocol that aim to
lower the complexities associated with these two aspects.

1) After successfully decoding, the relay can correctly
anticipate the future transmissions from the source (i.e.,
xk for MT ≥ k ≥ M ′T + 1) since it knows the
source codebook. Based on this knowledge, the relay

implements the following scheme, i.e.

x̃k =
{

x∗
k+1 for k = M ′T + 1, M ′T + 3, · · ·

−x∗
k−1 for k = M ′T + 2, M ′T + 4, · · · ,

(4)

which reduces the signal seen by the destination for
MT ≥ k ≥ M ′T + 1 to an Alamouti constellation.

2) We allow the relay to transmit only after the codeword
is halfway through, i.e., we replace the rule in (2) with

M ′ = min
{

M, max
{

M

2
,

⌈
MR

log2 (1 + |h|2cρ)

⌉}}
,

(5)

Fortunately, these modifications do not entail any loss in
performance (at least from the DMT perspective) as formalized
in the following lemma.

Lemma 2: The modified DDF protocol (with modifications
given by (4) and (5)), still achieves the DMT in Theorem 1.

It is now evident that the channel seen by the destination
in the modified DDF protocol is a time-selective SISO. This
greatly reduces the decoding complexity at the destination, as
it facilitates leveraging standard SISO decoding architectures
(e.g., belief propagation, Viterbi/Fano decoders). In addition,
restricting the relay to transmit only after M ′ ≥ M/2 implies
that the constellation size can be chosen such that the infor-
mation stream is uniquely decodable only after M ′ = M/2.

The next result investigates the effect of limiting the relay
to start transmission only at a finite number of time-instants.
These time-instants partition the code word into N + 1
segments which are not necessarily equal in length. We let
the j-th segment (N + 1 ≥ j ≥ 1) span sub-blocks Mj−1 + 1
through Mj , with M0 � 0 and MN+1 � M . We further define
the set of waiting fractions {fj}N+1

j=0 by fj � Mj

M . Thus

f0 = 0 < f1 < · · · < fN < fN+1 = 1.

The question now is how to choose {fj}N
j=1, for a finite

N , such that the protocol achieves the optimal DMT. The
following lemma shows that this problem does not have a
uniformly optimal solution and characterizes a Pareto optimal
set of waiting fractions.

Lemma 3: For the DDF protocol with a finite N ,
1) there exists no uniformly dominant set of fractions

{fu
j }N

j=1.
2) let fp

1 = 1
2 and

fp
j =

1 − fp
j−1

2 − (1 + 1
fp

N
)fp

j−1

, for N ≥ j > 1 (6)

then the set of fractions {f p
j }N

j=1 is Pareto optimal, with

dp(r) = 1 − r + (1 − r

fp
N

)+. (7)

In the following simulation study, we use the low com-
plexity variant of the DDF protocol suggested by Lemmas (2)
and (3). Furthermore, we consider construction-A lattice codes
obtained from systematic convolutional codes (CCs) with gen-
erator polynomials over ZQ. The generator polynomials are



of constraint length 4 and chosen at random (the optimization
of generator polynomials is beyond the scope of this work).
Unless otherwise stated, we choose the SNR level of the
source-relay channel to be 3 dB higher than the SNR at the
destination. In all scenarios, we use the MMSE-DFE Fano
decoder with a bias bF = 1.2 and a step-size Δ = 5 [3]. The
frame length for the coded bit-stream is 128. For the range of
transmission rates considered in the sequel, it turns out that in-
creasing the number of segments beyond 3 provides negligible
increase in performance. Figure 1 shows the outage probability
of the low-complexity DDF variant, when the codeword is
partitioned into 2, 3 and 4 segments. As seen from the figure,
the gap between the outage curves is negligible. Therefore,
we consider only the variant of DDF relay protocol with 3
segments. Moreover, we choose the waiting fractions {f p

j }2
j=1

according to Lemma 3, i.e., { 1
2 , 2

3}. Figure 2 compares the low
complexity DDF variant with Yang-Belfiore implementation of
the NAF protocol for 2 and 3 BPCU. As seen from this figure,
the proposed DDF strategy offers a gain of about 4 dB (and
about 6 dB) over the NAF scheme, for 2 (and 3) BPCU.

IV. THE COOPERATIVE MULTIPLE ACCESS (CMA)
CHANNEL

In the CMA-NAF protocol, each of the two sources trans-
mits once per cooperation-frame, where a cooperation-frame
is defined by two consecutive symbol-intervals. Each source,
when active, transmits a linear combination of the symbol
it intends to send and the (noisy) signal it received from
its partner during the last symbol-interval. For source j and
cooperation-frame k, we denote the broadcast and repetition
gains by aj and bj , respectively, the symbol to be sent by xj,k,
and the transmitted signal by tj,k. At startup the transmitted
signals will take the form

t1,1 = a1x1,1 (8)

t2,1 = a2x2,1 + b2(ht1,1 + w2,1) (9)

t1,2 = a1x1,2 + b1(ht2,1 + w1,1) (10)

t2,2 = a2x2,2 + b2(ht1,2 + w2,2) (11)

where h denotes the inter-source channel gain and w j,k the
noise observed by source j during the cooperation-frame k.
(We assume that wj,k has variance σ2

w .) The corresponding
signals received by the destination are

y1,1 = g1t1,1 + v1,1 (12)

y2,1 = g2t2,1 + v2,1 (13)

y1,2 = g1t1,2 + v1,2 (14)

y2,2 = g2t2,2 + v2,2 (15)

where gj is the gain of the channel connecting source j to the
destination and vj,k the destination noise of variance σ2

v . The
broadcast and repetition gains {aj, bj} are (experimentally)
chosen to minimize outage probability at the destination. As
a consequence of symmetry, a1 and a2, as well as b1 and
b2, will have the same optimal value. Thus, we assume that
broadcast and repetition gains are the same at each source and

omit the subscripts, yielding {a, b}. We assume the codewords
of each source to be of length N . Notice that it takes 2N
symbol-intervals, or equivalently N cooperation frames for the
two sources to transmit their codewords. In [2], it was shown
that the CMA-NAF protocol achieves the optimal DMT of the
cooperative multiple access channel.

In order to apply our lattice decoding framework to the
CMA-NAF protocol, we exploit the linearity of the CMA-
NAF protocol over the field of complex numbers, to describe
the joint effect of lattice coding at the sources and cooperation
among them, by one extended generator matrix. This results
in a typical setting in which the MMSE-DFE Fano decoder
is expected to be efficient in recovering the two information
streams jointly at the destination. In particular, by examining
(8) through (15), we realize that the received signal at the
destination can be written as

ỹc = H̃cxc + Bcwc + vc, (16)

where ỹc � [y1,1, y2,1, · · · , y1,N , y2,N ]T denotes the vec-
tor of received signals at the destination, and xc �
[x1,1, x2,1, · · · , x1,N , x2,N ]T denotes the vector formed by
multiplexing the two sources’ codewords (i.e., xc

j �
[xj,1, · · · , xj,N ]T , j ∈ {1, 2}) in an alternate fashion. wc ∼
NC(0, σ2

wI2N−1) and vc ∼ NC(0, σ2
vI2N ) denote noise

vectors observed by the two sources and the destination,
respectively. Finally, matrices H̃c ∈ C

2N×2N and Bc ∈
C

2N×(2N−1) are given by

H̃c = aGc

⎡
⎢⎢⎢⎣

1
bh 1
...

...
. . .

(bh)2N−1 (bh)2N−2 · · · 1

⎤
⎥⎥⎥⎦ , (17)

and

Bc = bGc

⎡
⎢⎢⎢⎢⎢⎣

0
1 0
...

...
. . .

(bh)2N−3 (bh)2N−4 · · · 0
(bh)2N−2 (bh)2N−3 · · · 1

⎤
⎥⎥⎥⎥⎥⎦

, (18)

with Gc � IN ⊗ diag(g1, g2). The noise component in (16),
i.e. z̃c � Bcwc + vc, is colored and is whitened in the front-
end of the receiver (before our lattice decoding framework can
be applied). The details of the proposed MMSE-DFE Fano
decoder is reported in [5].

In the following simulation study, we demonstrate the ex-
cellent performance of the lattice-coded CMA-NAF protocol,
through comparing it against other schemes. As before, we
take construction-A lattice codes as our coding scheme. The
frame length is set to N = 128. Figures 3 and 4 compare the
FER performance of the lattice coded CMA-NAF protocol and
Yang-Belfiore implementation of the NAF relay protocol, for
2 BPCU and 4 BPCU, respectively. The figures also show the
performance when the CMA-NAF protocol is used with un-
coded QAM transmission. Both coded and uncoded transmis-
sion with the CMA-NAF protocol perform significantly better



0 10 20 30 40
10

−4

10
−3

10
−2

10
−1

10
0

 

 
DDF, 2 seg., 2bits
DDF, 3 seg, 2bits
DDF, 4 seg, 2bits
DDF, 2 seg, 3bits
DDF, 3 seg, 3bits
DDF, 4 seg, 3bits

Fig. 1. Outage probability of Pareto optimal DDF protocol with 2, 3 and 4
segments.

than the NAF-relay protocol. The performance gap between
the two schemes widens as the transmission rate increases.
This can be explained by the superior DMT of the CMA-NAF
protocol, compared to the NAF-relay protocol. For comparison
purposes, Figures 3 and 4 also give the performance curves
when the two sources do not cooperate, i.e., each source
transmits independently. Here too, we consider both coded
and uncoded transmission.

V. CONCLUSIONS

We presented novel lattice-coded protocols for the half-
duplex outage-limited cooperative channels. The proposed
protocols exhibit attractive performance-complexity tradeoffs.
For the DF relay channel, we first devised a novel variant of the
DDF protocol which enjoys a comparable DMT to the original
DDF with a much lower complexity. We then presented a
lattice-coded implementation of this variant and evaluated
its performance through simulation. For the CMA channel,
we presented a low complexity lattice-coded implementation
of the CMA-NAF protocol. Our results establish the natural
matching between the optimal CMA-NAF protocol and the
MMSE-DFE Fano decoder.
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Fig. 2. FER of DDF relay protocol (with 3 segments) versus NAF relay
protocol.
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Fig. 3. FER of CMA-NAF, Relay NAF and non-cooperative protocols (2
BPCU).
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Fig. 4. FER of CMA-NAF, Relay NAF and non-cooperative protocols (4
BPCU).


