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Abstract— In order to fully understand the functions of
proteins in living organisms we must study their interactions
and construct accurate interaction maps. Each protein can
be composed of one or several peptide chains called domains
and each protein interaction can be seen as a consequence
of an underlying interaction of two domains, one from each
protein. Since high-throughput methods of measuring protein
interactions, such as yeast two-hybrid assay, have high error
rates, the structural similarities between proteins can beexploited
to detect some of the experimental errors and predict new,
unmeasured interactions. In this paper we solve the problem
of Bayesian inference of protein and domain interactions by
computing their probabilities conditioned on the measurement
results. We formulate the task of calculating these conditional
probabilities as a functional marginalization problem, where the
multivariate function to be marginalized naturally factor s into
simpler local functions, and we demonstrate how this equivalent
problem can be solved using the sum-product algorithm. We
note that this task is structurally similar to decoding low density
parity check codes using a message passing algorithm. The
robustness and accuracy of our approach is demonstrated by
predicting protein and domain interactions on both real and
artificial measurement data.

I. I NTRODUCTION

Progress in genomic technology has made it possible to
map entire genomes of numerous organisms, with new species
being examined on a steady basis. As the number of known
genes increases, it is the goal of modern systems biology
to understand the function of and the interrelation between
proteins encoded within them [1]–[4]. Of special interest is
establishing protein interaction maps that ultimately allow
us to build a complete interactome for a given organism.
Reaching this goal is crucial to gain a full understanding of
the living processes in a cell.

Interactions, in which proteins transiently or stably bindto
each other, can be detected by several experimental methods.
Since the typical number of proteins in mammals and plants
is between 20 and 40 thousand, hundreds of millions of
protein pairs must be examined for a potential interaction.
Unfortunately, testing techniques that can be automated and
performed in a high throughput setting produce a large number
of measurement errors, while the most accurate techniques
are too complex, time consuming, and costly to be practical
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for mapping the entire interaction network. For example, the
high-throughput yeast two-hybrid assay [5], [6] is estimated to
have a0.67 false negative and a0.0007 false positive rate [7].
Clearly, any data processing techniques that can extrapolate
from existing measurements to unmeasured protein pairs and
deal with noisy results are of great practical interest.

The most promising approaches are based on the obser-
vation that similar proteins generally interact with the same
partners. A particularly useful tool, which we will call an
independent domain model (IDM), models the fact that pro-
teins are generally composed of smaller, independently folding
peptide modules calleddomains [7], [8]. Any interaction
between two proteins is in fact a consequence of an underlying
interaction of two domains, one from each protein. Since most
domains appear as part of more than one protein, detecting an
interaction between one protein pair can be used as evidence
in inferring interactions of other protein pairs sharing the same
domain pair. Additionally, knowledge of domain interactions
can also be used to gain insight into the physical nature or
mechanism of protein interactions.

The practical determination of domain composition of a
given protein has been studied thoroughly. Since domains
fold independently, it is sufficient to check whether the amino
acid sequence representing a given domain is a substring of
the protein sequence. Databases of both protein sequences
and domain sequences are readily available on the Internet.
Processed lists of proteins and their component domains are
also available [9], [10].

Several techniques that use protein interaction measure-
ments to determine protein and domain interactions have been
presented in the literature, such as set cover techniques [11]
and variants of Maximum Likelihood Estimation (MLE) [7],
[8]. These methods first search for domain pairs that are likely
to interact, compute their likelihood score, and then use this
information to obtain the probabilities of protein pair interac-
tions. In [11], the authors interpret protein pairs as elements
and domain pairs as sets, with a set containing an element
if the two domains are part of the two proteins. The search
for interacting domain pairs is then treated as a problem of
covering protein pairs that were measured as interacting with
domain sets. Proposed optimality criteria include minimumset
cover, minimum exact set cover, and maximum specificity set
cover (MSSC). The domain interaction score is then computed



as the ratio of the number of measured elements in the set to
the size of the set for domain pairs in the cover set and zero for
all other domain pairs. In [7], the domain pairs are assumed
to interact randomly, and each domain pair is characterized
by its probability of interaction. These probabilities arethen
estimated using the MLE method, i.e., the values that best
explain the observed interactions are found. The authors search
for the MLE solution using the Expectation Maximization
(EM) algorithm [12].

In this paper we propose to use the IDM and experimental
data to infer protein and domain interactions using Bayesian
inference and to use the proper conditional probability of
interaction as a natural measure of the prediction confidence
[13]. We demonstrate how this conditional probability for
measured protein pairs, new protein pairs, and domain pairs
can be computed using the Sum-Product Algorithm (SPA)
[14], an iterative algorithm for computing marginal valuesof
multivariate functions.

The necessary notation is introduced in Section 2. Section
3 states the problem of computing the conditional probability
of protein and domain interaction and formulates the SPA.
Section 4 demonstrates the prediction capabilities of our
technique for different scenarios with real and artificial data,
and Section 5 draws some conclusions.

II. N OTATION AND ASSUMPTIONS

In order to precisely state the problem and develop our
solution, we must first define the necessary concepts and
variables. The main objects in our problem are protein pairs
and domain pairs, the interaction of which we measure and
predict. We denote the set of such protein pairs asA and
domain pairs asB. For each protein pair(i, j) ∈ A we write
Bi,j ⊂ B to denote the set of domain pairs(x, y) such that
domainx is present in proteini and domainy is present in
proteinj. Analogously,Ax,y ⊂ A is a set of protein pairs that
contain the domain pair(x, y).

For each protein pair(i, j) ∈ A we define an interaction
indicator Ai,j such thatAi,j = 1 denotes a hypothesis that
proteinsi and j interact andAi,j = 0 denotes the opposite
hypothesis. In an analogous way we define an interaction
indicatorBx,y for each domain pair(x, y) in B. Also, for each
(i, j) ∈ A, we useMi,j to describe the results of interaction
measurements performed on this pair. In general,Mi,j can
include zero, one, or more measurements.

The indicatorsAi,j , Bx,y, and Mi,j for all protein and
domain pairs inA andB are grouped into collectionsA, B,
andM, respectively. Furthermore,Bi,j denotes the collection
of all domain pairsBx,y, such that(x, y) ∈ Ai,j . For each of
the above indicators and collections written in capital letters,
we use lower case letters as their values. For example,A = a

refers to the hypothesis that all protein pairs interact according
to configurationa and the probability of such a hypothesis is
denoted byPA(a). Whenever the indicators are clear from the
context, we omit the subscript, simply writingP (a).

We also apply a compact notation for marginalizing sums
of multivariate functions [14]. For example, forf(x, y, z, q)

we write
∑

∼{x}

f(x, y, z, q) =
∑

y∈Y

∑

z∈Z

∑

q∈Q

f(x, y, z, q),

where∼ {x} indicates that the summation takes place over
the complete domainsY, Z, Q of all arguments off, except
x. Sums with∼ {} are taken over all arguments.

III. B AYESIAN INFERENCE AND THESUM-PRODUCT

ALGORITHM

A. The Sum-Product Algorithm

Bayesian inference of domain and protein interactions
involves computingPAi,j |M(1|m) and PBx,y|M(1|m), the
posterior probabilities of interaction given the available mea-
surements. These probabilities, besides directly measuring our
confidence in declaring certain domain or protein pairs as
interacting, can be used to compute any optimal Bayesian
estimator of interaction. In fact, all such estimates reduce to a
simple thresholding operation on the value ofPAi,j |M(1|m)
or PBx,y|M(1|m), with protein or domain pairs declared
as interacting if the probability exceeds the threshold and
declared noninteracting otherwise.

By applying the Bayes formula we obtain

PAi,j |M(1|m) =

∑

∼{ai,j}

P (a,b,m)
∣∣∣
ai,j=1

∑

∼{}

P (a,b,m)
, (1)

PBx,y|M(1|m) =

∑

∼{bx,y}

P (a,b,m)
∣∣∣
bx,y=1

∑

∼{}

P (a,b,m)
, (2)

where the sums do not marginalizem, a collection of known
constants. The direct computation of protein and domain
interaction probabilities according to formulas (1) and (2)
is in most cases prohibitively complex, since the number
of summands that must be evaluated is exponential in the
number of protein and domain pairs involved. Instead, in
this paper we apply the SPA [14], an iterative algorithm for
computing marginals of multivariate functions which can be
decomposed into products of simpler “local” functions in a
smaller number of variables. The particular function to be
marginalized in our case isP (a,b,m), which naturally factors
into P (b)P (a|b)P (m|a). Each of these factors can be further
decomposed into

P (b) =
∏

(x,y)∈B

P (bx,y), (3)

P (a|b) =
∏

(i,j)∈A

P (ai,j |bi,j), (4)

P (m|a) =
∏

(i,j)∈A

P (mi,j |ai,j). (5)



Sinceai,j is a deterministic function of the interaction vari-
ablesbi,j , the probabilityP (ai,j |bi,j) takes the form of a
simple indicator function,

P (ai,j |bi,j) =






1 if ai,j = 0 and∀bx,y∈bi,j
bx,y = 0,

1 if ai,j = 1 and∃bx,y∈bi,j
bx,y = 1,

0 otherwise.
(6)

The decomposition ofP (a,b,m) can be illustrated using
the factor graph presented in Fig. 1. In a factor graph, a
variable node is connected by an edge to a function node
if the variable is an argument of the function. Note that
mi,j are not included in the graph, since these variables
are not marginalized. The SPA computes marginal functions
of P (a,b,m) by passing messages between variable and
function nodes. A message entering or departing a variable
node is itself a function of this variable. The general formula
for the messages and the motivation for the message passing
operation of the SPA can be found in [14]. When applied to
our factor graph, the distinct message types, shown in Fig. 2a,
are computed as follows:

αi,j(ai,j) = P (mi,j |ai,j), (7)

βx,y(bx,y) = P (bx,y), (8)

γx,y
i,j (bx,y) =

∑

∼{bx,y}

P (ai,j |bi,j)αi,j(ai,j)

·
∏

(x′,y′)∈Bi,j

(x′,y′) 6=(x,y)

δx′,y′

i,j (bx′,y′), (9)

δx,y
i,j (bx,y) = βx,y(bx,y)

∏

(i′,j′)∈Ax,y

(i′,j′) 6=(i,j)

γx,y
i′,j′ (bx,y), (10)

εi,j(ai,j) =
∑

∼{ai,j}

P (ai,j |bi,j)
∏

(x,y)∈Bi,j

δx,y
i,j (bx,y). (11)

The marginal functions (1) and (2) can then be expressed as
a product of messages arriving at the node of the variable not
being marginalized, so that

∑

∼{ai,j}

P (a,b,m) = εi,j(ai,j)αi,j(ai,j), (12)

∑

∼{bx,y}

P (a,b,m) = βx,y(bx,y)
∏

(i,j)∈Ax,y

γx,y
i,j (bx,y). (13)

If the factor graph ofP (a,b,m) is free of cycles, it is
possible to order the above computations is such way that
every message can be computed from values obtained in
earlier steps. In such a case, (7)-(13) yield the exact marginal
functions. If, however, the factor graph contains cycles, some
functions γx,y

i,j and δx,y
i,j must be set to appropriate initial

values, after which computations (9) and (10) are performed
iteratively. In such a case, the final steps of (12) and (13) are
only approximations. Although this iterative processing is not
guaranteed to converge to the exact solution, applicationsof

iterative SPA to estimation problems in communication theory
have shown its performance is nearly optimal [15].

In the procedure described by (7)-(13), the messages are
functions of a single binary variable. This effectively means
that the actual message would have to consist of two numbers.
For example, computingδx,y

i,j (bx,y) corresponds to calculating
bothδx,y

i,j (0) andδx,y
i,j (1). However, for the purpose of comput-

ing (1) and (2), it is sufficient to track only the ratios of these
numbers. In particular, the algorithm (7)-(10) can be rewritten
as

α̃i,j =
αi,j(0)

αi,j(1)
=

PMi,j |Ai,j
(mi,j |0)

PMi,j |Ai,j
(mi,j |1)

, (14)

β̃x,y =
βx,y(0)

βx,y(1)
=

PBx,y
(0)

PBx,y
(1)

, (15)

γ̃x,y
i,j =

γx,y
i,j (0)

γx,y
i,j (1)

= 1 + (α̃i,j − 1)
∏

(x′,y′)
6=(x,y)

δ̃x′,y′

i,j

δ̃x′,y′

i,j + 1
, (16)

δ̃x,y
i,j =

δx,y
i,j (0)

δx,y
i,j (1)

= β̃x,y

∏

(i′,j′)
6=(i,j)

γ̃x,y
i′,j′ , (17)

where each message is just a single number. Furthermore, (1)
and (2) can be expressed as

PAi,j |M(1|m) =
(
1 + α̃i,j

∏

(x,y)

(
(δ̃x,y

i,j )−1 + 1
))−1

, (18)

Pbx,y |M(1|m) =
(
1 + β̃x,y

∏

(i,j)

γ̃x,y
i,j

)−1

. (19)

Equations (16)-(19) take advantage of the structure of (6)
and the calculation (11) is done within (18). The complete
algorithm performs the following steps.

1) Initialization: compute (14) and (15), and initializẽδx,y
i,j ,

2) Iterative processing: iteratively compute (16) and (17),
3) Final processing: evaluate (18) and (19).

B. Input to the algorithm

The input information to our sum-product algorithm is
provided through the parametersα̃i,j andβ̃x,y. In general, for
any protein pair(i, j) of interest, we will have the results of
zero, one, or several experiments testing for their interaction.
In the case ofK experiments, with statistically independent
false positive and false negative ratesf

(k)
p,i,j and f

(k)
n,i,j , k =

1, ..., Ka, respectively, the value of the likelihood ratiõαi,j

can be expressed as

α̃i,j =

Ka∏

k=1

P
M

(k)
i,j

|Ai,j
(m

(k)
i,j |0)

P
M

(k)
i,j

|Ai,j
(m

(k)
i,j |1)

, (20)



a���P(a���|b���,b���,b���)b���b���
b���

P(b���)
P(b���)
P(b���) P(m���|a���)a���P(a���|b���,b���) P(m���|a���)

Fig. 1. Factor graph representation of the joint probability distribution functionPABM. The variable nodesai,j andbx,y are represented by circles, while
the factors in (3), (4), and (5) are shown as squares, OR-gatesymbols, and diamomds, respectively.
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Fig. 2. Messages computed by the SPA a) before and b) after thesimplification (14)-(19).

where

P
M

(k)
i,j

|Ai,j
(1|1) = 1 − f

(k)
n,i,j ,

P
M

(k)
i,j

|Ai,j
(0|1) = f

(k)
n,i,j ,

P
M

(k)
i,j

|Ai,j
(1|0) = f

(k)
p,i,j ,

P
M

(k)
i,j

|Ai,j
(0|0) = 1 − f

(k)
p,i,j .

With appropriate statistical models, the parameterα̃i,j can also
be calculated for measurements with correlated errors and for
other evidence that exhibits a statistical dependence on the
interaction of proteins(i, j), but not on other protein pairs.

When no direct measurements are available for a protein
pair (i, j), the value ofα̃i,j is set to1. This corresponds to
the case of a protein pair for which we would like to determine
the probability of interaction based on measurements of other
pairs. In such a case, inspecting (16) reveals that all messages
γ̃x,y

i,j for this protein pair equal1 independently of all incoming

messages̃δx,y
i,j . As a consequence, these incomingδ̃x,y

i,j need
not be computed during the iterative evaluation of (16) and
(17) and only need to be computed right before evaluating
(18). Combined with the fact that the valuẽγx,y

i,j = 1 does
not influence the product in (17), protein pairs with no direct
measurements can be completely omitted in the iterative part
of the SPA.

The parameter̃βx,y represents the a priori probability of
interaction between domains(x, y), i.e., the probability of
interaction before the measurementsm are observed. If the
average probability of randomly picking a domain pair that
interacts is denoted byρ, then β̃x,y can be set to(1 − ρ)/ρ.
Also, any additional evidence indicative of the interaction
between domains(x, y) that was obtained independently of
m can be provided to the algorithm through̃βx,y.

C. Structure of the factor graph and the performance of SPA

As indicated in Section IIIA, the SPA is guaranteed to
compute the exact values of conditional interaction probabili-
ties only if the factor graph contains no cycles. If cycles are
present, the solution generated by the algorithm can deviate
from the exact answer, with shorter cycles causing larger
deviations. The shortest possible cycles in the factor graph are
cycles of length 4. These 4-cycles arise when two protein pairs
are both connected to the same two domain pairs. A significant
number of 4-cycles is introduced to the graph if two or more
protein pairs are connected to an identical set of domain pairs.
Fortunately, this case can be easily eliminated by declaring
such protein pairs as equivalent and representing them by
only a single variable node in the graph. If each protein
pair has been independently measured, all these measurements
are combined according to (20) as described in the previous
subsection.



Another common source of 4-cycles are domain pairs that
are connected to an identical set of protein pairs. In such a
case, it is also possible to represent these domain pairs with a
single variable node denoting the interaction of at least one of
the domains, although some preprocessing and post-processing
must be performed by the algorithm. If such domain pairs are
denoted asb(k)

x,y, k = 1, ..., Kb, thenβ̃x,y for the joint node is
obtained from

β̃x,y =
1 −

∏Kb

k=1 P
B

(k)
x,y

(1)
∏Kb

k=1 P
B

(k)
x,y

(1)
, (21)

and the conditional probability of interaction is computed
according to

P
b
(k)
x,y|M

(1|m) =
P

B
(k)
x,y

(1)

1 +
(∏

(i,j)

γ̃x,y
i,j − 1

) Kb∏

k′=1

(1 − P
B

(k′)
x,y

(1))

.

(22)
Finally, if the factor graph is composed of several disjoint

subgraphs, it is possible to perform the SPA for each of them
separately. This feature can be important if the total number
of protein and domain pairs analyzed by the algorithm is
large, since it can considerably reduce the required amount
of memory.

IV. PREDICTION ACCURACY ON SIMULATED DATA

A. Prediction of domain-domain interactions

In order to verify the performance of the algorithm under
controlled conditions, we developed anin silico framework
where, based on the IDM, we generated artificial domain-
domain interactions (DDI) as well as matching protein-protein
interactions (PPI). A domain interaction rate was assigned
and protein interaction measurements were simulated by per-
turbing the PPI with a fixed rate of false positives (fp) and
false negatives (fn). This approach allowed us to calculate a
quantitative measure of the estimation performance of several
DDI and PPI prediction algorithms. This is particularly impor-
tant when evaluating the performance of DDI predictors, since
there are no standard methods to test DDI in the laboratory.
Although the interaction patterns in these simulations are
artificial, it is important to mention that proteins and their
respective domain configurations were extracted from real
biological data, specifically from the Pfam database [9].

The performance of the proposed algorithm was compared
with two current methods of DDI estimation mentioned in
Section I: MLE and MSSC. The results of this comparison
are presented as specificity vs. sensitivity curves in Figure 3.

Specificity is defined asSp = |P∩T |
|P | and sensitivity asSn =

|P∩T |
|T | , whereP is the set of protein pairs predicted to interact

and T is the set of actually interacting protein pairs. The
plots represent an average over 70000 independently simulated
graphs. Table I contains a summary of the parameters used
with experimental and simulated interaction data.

Figure 3 shows the performance for a class of factor graphs
in Figure 1 whose size is expressed in terms of the number
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Fig. 3. Performance of prediction algorithms when estimating DDI for
subgraphs of size 4, 7, and 10.

TABLE I

PARAMETERS FOR THE PREDICTION ALGORITHMS.

Parameter DDI Prediction PPI prediction Error Detection Cross Validation
(Figure 3) (Figure 4) (Figure 5) (Figure 6)

Training set 4 / 7 / 10 3000 6000 70%
Testing set 2 1000 – 30%
fp 1e-4 7e-4 7e-4 7e-4
fn 1e-4 0.65 0.65 0.65
DDI prob. 0.05 0.05 0.05 0.05
Graph size 4 / 7 / 10 random random random
Iterations 70000 8500 3500 10000

Total number of proteins: 12,158
Total number of domains: 14,314

Interactions from DIP: 50,590

of protein pairs connected to domain pair nodes. If the factor
graph contains only a single protein pair, then MLE and the
SPA produce the same result. For larger subgraphs, Figure 3
shows how the prediction of DDI can be improved by calcu-
lating the marginal probabilities using the SPA. We observe
that for the case of subgraphs with 4, 7 and 10 protein pairs,
which are commonly encountered in practice, the prediction
accuracy of the SPA exceeds that of MLE and MSSC for the
entire range of values of the specificity vs. sensitivity curve.
Since higher specificity and sensitivity indicates more accurate
prediction, a shift to the right represents better performance.

B. Prediction of protein-protein interactions

The in silico framework that was discussed in the previous
section can also be used to assess the quality of the algorithm
in predicting interactions of protein pairs that were never
directly measured. Again, the same parameters that were
discussed above affect the outcome of the PPI prediction.
Figure 4 presents specificity vs. sensitivity curves for false
positive and false negative measurement ratesfn = 0.65 and
fp = 0.001, selected to resemble the estimated experimental
values in [7]. We see that the SPA specificity/sensitivity curve,
shown in blue, demonstrates better protection against noisy
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Fig. 4. Performance of predicting algorithms when estimating PPI in the
presence of noisy measurements.

measurements caused by the false positive and false negative
rates, compared to the MSSC method and MLE using the
EM algorithm. This provides evidence that Bayesian inference
using the SPA provides a stronger predictor in the presence of
noisy PPI measurements.

C. Detection of incorrect measurements

We can also evaluate the capability of the PPI prediction
methods to detect which measurements were in fact false
positives or false negatives. This can be done by predicting
interactions among protein pairs that were used as trainingset
for the algorithm. The results are compared with the original
PPI interactions before adding noise to the measurements.
Figure 5 shows the error correction capabilities of the three
algorithms: MSSC, MLE, and SPA. The results show that
Bayesian inference using the SPA is more effective in detecting
errors that occur in the experimental measurements, a feature
that helps to improve the quality of the input data and improve
DDI and PPI prediction.

D. Cross validation on real interaction data

In addition to the simulation environment, we applied the
new estimation method to a set of real measurements of
interacting protein pairs. The domain structure for the proteins
in the interacting data set was retrieved from the Pfam database
version 20 [9]. The experimental PPI measurements were
obtained from the Database of Interacting Proteins (DIP) [10],
which contains results from laboratory experiments (including
high throughput methods) to detect protein interactions. In or-
der to test the algorithm, a standard method of cross-validation
was applied. Here, 30 percent of the measured interactions
were used as testing set and the remaining measurements were
used as training set. The performance curves were calculated
by averaging over a large number of random partitions of
available measurements into test and training sets. Figure6
shows the sensitivity/specificity curves for the SPA compared
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Fig. 5. False positive and false negative detection capabilities of the MLE,
MSSC, and SPA algorithms.
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Fig. 6. Performance of prediction algorithms in experimental interaction data
from DIP.

to the MLE and MSSC algorithms. SPA’s performance in real
data is mixed: if one is willing to accept a higher rate of
false positives, and hence lower specificity, SPA is superior to
both MLE and MSSC. However, with SPA we were not able
to reach very high values of specificity. We believe that the
reason for this limitation of the SPA algorithm, as compared
to MLE and MSSC, is higher sensitivity to assumed values of
fn, fp, and a priori DDI probability.

V. CONCLUSIONS

We have presented a new method to predict domain-
domain and protein-protein interactions based on the concept
of Bayesian inference and implemented it via the sum-product
algorithm. The contributions of the paper are twofold. We
provide a new representation of DDI and PPI prediction based
on factor graphs, as well as a framework to efficiently and
accurately predict DDI and PPI based on a message passing



algorithm. This framework allows us to build a probabilistic
DDI network and predict new potential PPI interactions based
on that information. In addition, the new method is able to
detect false positives and false negatives that are common
in the experimental measurements. The present methodology
can be used to predict, analyze, and understand domain
and protein interaction networks in different organisms. This
knowledge has important implications in the understanding
of the dynamic behavior of molecular interactions in a cell.
Possible extensions of our technique include inference of PPI
and DDI jointly with estimation of model parameters, as well
as application of short cycle reduction techniques to the factor
graph.
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