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Abstract—In order to fully understand the functions of for mapping the entire interaction network. For example, th
proteins in living organisms we must study their interactims high-throughput yeast two-hybrid assay [5], [6] is estieuato
and construct accurate interaction maps. Each protein can pave 50.67 false negative and @0007 false positive rate [7].
be composed of one or several peptide chains called domainsC| | dat ina techni that ¢ |
and each protein interaction can be seen as a consequence ear y'_any ala processing techniques tha can.ex rtgpoa
of an underlying interaction of two domains, one from each from existing measurements to unmeasured protein pairs and
protein. Since high-throughput methods of measuring proten  deal with noisy results are of great practical interest.
interactions, such as yeast two-hybrid assay, have high esr The most promising approaches are based on the obser-
rates, the structural similarities between proteins can beaxploited vation that similar proteins generally interact with thensa

to detect some of the experimental errors and predict new, t A ticularl ful tool. which il call
unmeasured interactions. In this paper we solve the problem partners. particularly usetul tool, which we will call an

of Bayesian inference of protein and domain interactions by independent domain model (IDM), models the fact that pro-
computing their probabilities conditioned on the measurenent teins are generally composed of smaller, independentijrfgl

results. We formulate the task of calculating these conditinal peptide modules callediomains [7], [8]. Any interaction
probabilities as a functional marginalization problem, where the between two proteins is in fact a consequence of an undgrlyin

multivariate function to be marginalized naturally factor s into . t i ftwo d . f h tein. Sincet
simpler local functions, and we demonstrate how this equivant Interaction of two domains, one irom each protein. Sincetmos

problem can be solved using the sum-product algorithm. We domains appear as part of more than one protein, detecting an
note that this task is structurally similar to decoding low density interaction between one protein pair can be used as evidence

parity check codes using a message passing algorithm. Thejn inferring interactions of other protein pairs sharing game
robustness and accuracy of our approach is demonstrated by qomajn pair. Additionally, knowledge of domain interactio
predicting protein and domain interactions on both real and S h .
artificial measurement data. can alsq be used tq gain |ns!ght into the physical nature or
mechanism of protein interactions.
. INTRODUCTION The practical determination of domain composition of a
q' en protein has been studied thoroughly. Since domains
gl%g independently, it is sufficient to check whether the @amni
ﬂd sequence representing a given domain is a substring of
protein sequence. Databases of both protein sequences

d domain sequences are readily available on the Internet.
rocessed lists of proteins and their component domains are

Progress in genomic technology has made it possible
map entire genomes of numerous organisms, with new spe
being examined on a steady basis. As the nhumber of kno
genes increases, it is the goal of modern systems biolo
to understand the function of and the interrelation betwe
proteins encoded within them [1]-[4]. Of special interest i

establishing protein interaction maps that ultimatelyowll alsso avalllalzle r[19] [1O]Ith t tein int i
us to build a complete interactome for a given organism. everal techniques that use protein interaction measure-

Reaching this goal is crucial to gain a full understanding (5?ents to d(_atermln_e protein and domain interactions have bee
the living processes in a cell, presented in the literature, such as set cover techniqugs [1

Interactions, in which proteins transiently or stably biod and variants of Maximum Likelihood Estimation (MLE) [7],

each other, can be detected by several experimental meth(%%lé These methods first search for domain pairs that aréylike

Since the typical number of proteins in mammals and planp Interact, compute their likelihood score, and then use th

is between 20 and 40 thousand, hundreds of millions @ormaﬂon to obtain the probabilities of protein pairérdc-

protein pairs must be examined for a potential interactioHc.mS' In [1.1]' the authors mte_rpret protein pairs as elame
and domain pairs as sets, with a set containing an element

Unfortunat_ely, te_stlng techniques t_hat can be automated 6}Pthe two domains are part of the two proteins. The search
performed in & high throughput setting produce a large nmmt%gr interacting domain pairs is then treated as a problem of

of measurement errors, while the most accurate techniques

are too complex, time consuming, and costly to be practic%?ve”.ng protein pairs that were mgasgrgd as mter.af:urdg Wi
omain sets. Proposed optimality criteria include miningen

LThis work was supported in part by NSF grants DBI-0450067 @aaf- COVer, minimum exact set_ cover, an_d maximu_m specificity set
0622940. cover (MSSC). The domain interaction score is then computed



as the ratio of the number of measured elements in the setme write

the size of the set for domain pairs in the cover set and zero fo

all other domain pairs. In [7], the domain pairs are assumed Y Sy =) > > fley.za),
to interact randomly, and each domain pair is characterized ~{z} yeYzezqcQ

by its probability of interaction. These probabilities dhen \where ~ {z} indicates that the summation takes place over

estimated using the MLE method, i.e., the values that beRt complete domainy, Z, Q of all arguments off, except
explain the observed interactions are found. The authargle ;. Sums with~ {} are taken over all arguments.

for the MLE solution using the Expectation Maximization

(EM) algorithm [12]. IIl. BAYESIAN INFERENCE AND THE SUM-PRODUCT
In this paper we propose to use the IDM and experimental ALGORITHM

Qata to infer protein and domain interac_ti_ons using Ba_lyesig_ The Sum-Product Algorithm

inference and to use the proper conditional probability of B . inf fd . q tein it .

interaction as a natural measure of the prediction configlenc ayesian inierence of domain and protein interactions

[13]. We demonstrate how this conditional probability folvolves computingPy, ,jm(1im) and Pp,,m(1m), the
measured protein pairs, new protein pairs, and domain par?%stenor probabilities of interaction given the avaitalbhea-
’ : rements. These probabilities, besides directly maasotir

can be computed using the Sum-Product Algorithm (SPRg fid i declari ain d ) el .
[14], an iterative algorithm for computing marginal valuefs confidence in deciaring certain domain or protein pairs as
interacting, can be used to compute any optimal Bayesian

multivariate functions. timator of interaction. In fact, all such estimates rediaca
The necessary notation is introduced in Section 2. Sectiéﬁn' e threslhold'n Io érat'on ’on thl(Je al eIIQi 1
3 states the problem of computing the conditional probigbili 'mp INg operation val i:j‘M( m)
: - : R P, M (1/m), with protein or domain pairs declared
of protein and domain interaction and formulates the SPA, . Z=y MV A1 i
. - as interacting if the probability exceeds the threshold and
Section 4 demonstrates the prediction capabilities of o

7 - . )
technique for different scenarios with real and artificiatad He;lared rqnlnttﬁ ra;tlng o'iherwuse. btai
and Section 5 draws some conclusions. y applying the Bayes formula we obtain

Il. NOTATION AND ASSUMPTIONS Z P(a,b,m) )

In order to precisely state the problem and develop our  p, \(1jm) = i} ’ W
solution, we must first define the necessary concepts and ’ ZP(a,b,m)
variables. The main objects in our problem are protein pairs ~{}
and domain pairs, the interaction of which we measure and
predict. We denote the set of such protein pairs/asnd
domain pairs a$3. For each protein paifi, j) € A we write Z P(a,b,m) b 1
B, ; C B to denote the set of domain paifs,y) such that Py, na(llm) = ~{bay} o @
domainz is present in protein and domainy is present in oy Zp(a’b’m) ’

proteinj. Analogously,A, , C A is a set of protein pairs that ~0
contain the domain paifz, y).

For each protein paifi, j) € A we define an interaction
indicator A; ; such that4, ; = 1 denotes a hypothesis tha

where the sums do not marginaline, a collection of known
1,‘constants. The direct computation of protein and domain
proteinsi and j interact andA; ; = 0 denotes the opposite!nte_raCtion probabilities_ a_u?cording to formglas (1) ang (2
hypothesis. In an analogous way we define an interactilh !N Most cases prohibitively complex., since the.nu.mber
indicator B, for each domain paifz, y) in 5. Also, for each of summands that must be evaluated is exponential in the

(i, ) € A, we useM, , to describe the results of interactionnqmber of protein and domain pa|rs.|nvol_ved. Ins_tead, in
measurements performed on this pair. In genekdl,; can this paper we apply the SPA [14], an iterative algorithm for
include zero. one. or more measurements Y computing marginals of multivariate functions which can be

The indicatorsA; ;, B,.,, and M, for all protein and decomposed into products of simpler “local” functions in a

domain pairs ind and B are grouped into collectiond, B smaller number of variables. The particular function to be

andM., respectively. Furthermord; ; denotes the collection marginalized in our case B(a, b, m), which naturally factors
of all domain pairsB, ,, such that(@y) € Ai;. For each of into P(b)P(a|b)P(m|a). Each of these factors can be further

the above indicators and collections written in capitatiele, decomposed into

we use lower case letters as their values. For exandple, a P(b) = H P(bsy), 3)
refers to the hypothesis that all protein pairs interacbetiag (z9)CB ”
to configurationa and the probability of such a hypothesis is :
denoted byPa (a). Whenever the indicators are clear from the P(ab) = H P(a; ;[bi;), (4)
context, we omit the subscript, simply writing(a). (i.j)€A

We also apply a compact notation for marginalizing sums P(ml|a) = H P(mi jlai ;). (5)

of multivariate functions [14]. For example, fgf(z,y, z, q) (i.)EA



Sincea; ; is a deterministic function of the interaction vari-iterative SPA to estimation problems in communication tigeo
ablesb, ;, the probability P(a; ;|b; ;) takes the form of a have shown its performance is nearly optimal [15].

simple indicator function, In the procedure described by (7)-(13), the messages are
1 if a;; =0 andV, ,cp. bey =0, fﬁnctlt:)ns of al single binary I\:ja;:able. This e_ffec]:uvely mef:;
Plailbis) =4 1 if ai;=1and3, co, boy =1, (6) that the actual message would have to consist of two numbers.

For example, Computin@ff(bm,y) corresponds to calculating
boths;"7(0) andd;/ (1). However, for the purpose of comput-
The decomposition of?(a, b, m) can be illustrated using ing (1) and (2), it is sufficient to track only the ratios of siee
the factor graph presented in Fig. 1. In a factor graph, aaumbers. In particular, the algorithm (7)-(10) can be réemi

variable node is connected by an edge to a function node
if the variable is an argument of the function. Note that

0 otherwise

m;; are not included in the graph, since these variables i @;j(0)  Puyjia,(mag0) (14)
are not marginalized. The SPA computes marginal functions ~*’ "~ «; ;(1) Py, a,, (mi;[1)’
of P(a,b,m) by passing messages between variable and _ B2.4(0) Pg, (0)
function nodes. A message entering or departing a variablefz,, = 3 ’y(l) = Pm’iy(l)v (15)
node is itself a function of this variable. The general folanu “y Bew .,
for the messages and the motivation for the message passing, , ﬁ;—y(o) 14 (E 1 5ij’y 16
operation of the SPA can be found in [14]. When applied to /i-i — ) + (@i, —1) H T (16)
our factor graph, the distinct message types, shown in Rg. 2 ’ S(chy)) i
are computed as follows: N 529(0) _ ’
aijlaij) = P(myjlaij), (7) ’ 6;7(1) @
Boy(bsy) = Pbay), (8) £(i,5)
ey where each message is just a single number. Furthermore, (1)
Vij (bay) = Z P(ai;[bij)aii(ai;) and (2) can be expressed as
"’{br,y}
5.1’.,7;’ bz/ ’ 9 ~ T,y — -1
AL 00 O ey ) = (1 [T+ ) a8
z Yy i,
(@' v )#(2.) o
P naClm) = (145, TT50) (19)
52’;}(1)%2;) = Boylbay) H 'Vzm’:g’ (bzy), (10) (@.4)
(1,5 )E Az y
(¢,5")#(57) Equations (16)-(19) take advantage of the structure of (6)
eiiaij) = Z P(a;;|bi ;) H 55-,7;;(171_’7!)_ (11) and t.he calculation (11) is d_one within (18). The complete
ot (@,9)EBs algorithm performs the following steps.

The marginal functions (1) and (2) can then be expressed ag) 'nitialization: conjpu.tg (14) and (15), and initializg;’,
a product of messages arriving at the node of the variable nof) lterative processing: iteratively compute (16) and {17)

being marginalized, so that 3) Final processing: evaluate (18) and (19).
Z P(a,b,m) = ¢ ;(a;;)a;;(ai;), (12) _
~{ai;} B. Input to the algorithm

Z P(a,b,m) = S, ,(bsy) H iy (bay)- (13) The input information to our sum-product algorithm is
~{bay} (1.7) €Ay provided through the paramete¥s; and g, ,. In general, for
If the factor graph ofP(a,b,m) is free of cycles, it is any protein pair(i, j) of inte_rest, we wi!l have the_ rgsglts of
possible to order the above computations is such way tf&0: One, or several experiments testing for their intevac
every message can be computed from values obtained!nthe case ofi experiments, with statl)sncally |(Q§1ependent
earlier steps. In such a case, (7)-(13) yield the exact margif@lsé positive and false negative ratég;‘-,j, and f,, ;. k =
functions. If, however, the factor graph contains cyclesns 1: - Ka, respectively, the value of the likelihood ratio,;
functions ;¥ and §;"Y must be set to appropriate initial ©2" be expressed as
values, after which computations (9) and (10) are performed
iteratively. In such a case, the final steps of (12) and (18) ar Ko P,
only approximations. Although this iterative processiagot Q= G
guaranteed to converge to the exact solution, applicatidns k=1 PI\@(E”ALJ' (m;.; 1)

(20)
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Fig. 1. Factor graph representation of the joint probabiliistribution functionPagni. The variable nodes; ; andb,, are represented by circles, while
the factors in (3), (4), and (5) are shown as squares, ORgyadols, and diamomds, respectively.
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Fig. 2. Messages computed by the SPA a) before and b) aftesin@ification (14)-(19).

where The parameteﬁw,y represents the a priori probability of
) interaction between domaing,y), i.e., the probability of

PM§§>‘AI,’].(1|1) = 1- fn,i,j’ interaction before the measurememis are observed. If the

p o) = f(k) average probability of randomly picking a domain pair that
M)A 6,37 interacts is denoted by, then 3, , can be set tql — p)/p.

P o, (1]0) = f(k)_’ Also, any additional evidence indicative of the interactio
My 14 P between domaingz,y) that was obtained independently of

Py a,,(00) = 1~ £, m can be provided to the algorithm through.,,.

With appropriate statistical models, the paramétercan also C. Structure of the factor graph and the performance of SPA
be calculated for measurements with correlated errorsand f Ag indicated in Section IllA, the SPA is guaranteed to

other evidence that exhibits a statistical dependence en #bmpute the exact values of conditional interaction prdbab
interaction of proteingi, j), but not on other protein pairs. ties only if the factor graph contains no cycles. If cycles ar
When no direct measurements are available for a protgjresent, the solution generated by the algorithm can deviat
pair (i, j), the value ofa; ; is set tol. This corresponds to from the exact answer, with shorter cycles causing larger
the case of a protein pair for which we would like to detel’mir@eviaﬂons_ The shortest possib|e Cyc|es in the factorl‘gmp
the probability of interaction based on measurements daérotiyycles of length 4. These 4-cycles arise when two proteirspai
pairs. In such a case, inspecting (16) reveals that all rgessaare both connected to the same two domain pairs. A significant
7;; for this protein pair equal independently of all incoming number of 4-cycles is introduced to the graph if two or more
messageﬁz Y. As a consequence, these mcomtif Y need protein pairs are connected to an identical set of domairs pai
not be computed during the iterative evaluation of (16) arfebrtunately, this case can be easily eliminated by dedarin
(17) and only need to be computed right before evaluatisgich protein pairs as equivalent and representing them by
(18). Combined with the fact that the valu,é’” = 1 does only a single variable node in the graph. If each protein
not influence the product in (17), protein pairs with no dire@air has been independently measured, all these measuszmen
measurements can be completely omitted in the iterative pare combined according to (20) as described in the previous
of the SPA. subsection.
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Another common source of 4-cycles are domain pairs 1 ——SPAsg4

are connected to an identical set of protein pairs. In sl 0.9 [ ——MSSCsg 4|
case, it is also possible to represent these domain painse o0sl - _'\SA,EE zg;‘ i
single variable node denoting the interaction of at least@ \ - - -MSSCsg7
the domains, although some preprocessing and post-pnag 0.7 N “S"'I;E :9 Io i
must be performed by the algorithm. If such domain pair o6t |\ o N |e- MSSCgsg 101
denoted aﬁ’f;, k=1,.., Ky, thenﬁmyy for the joint node i MLE sg 10

Sensitivity
o
g

obtained from

K, 0.4+
~ 1T P (D) ,
ﬁm,y = HKb P (1) ) (21 0.3r
_ (k)
F=17 Bay 0.2-
and the conditional probability of interaction is compi ol
according to ‘
Py (1) % o1 02z 03 04 05 06 07 08 09 1
P o) ‘M(1|m) = Inyb Specificity
T,y
1+ (H %I,Jy - 1) H (1 - PBW)(l)) Fig. 3. Performance of prediction algorithms when estintatDDI for
(i,4) k=1 e subgraphs of size 4, 7, and 10.
(22)
Finally, if the factor graph is composed of several disjoint TABLE |
subgraphs, it is possible to perform the SPA for each of them PARAMETERS FOR THE PREDICTION ALGORITHMS

separately. This feature can be important if the total numbe
of prOtein and domain pairs analyzed by the algorithm i’arameter DDI Prediction | PPI prediction | Error Detection [Cross Validation

large, since it can considerably reduce the required amount (Figure 3) (Figure 4) (Figure 5) (Figure 6)
Training set 4/7/10 3000 6000 70%
of memory. Testing set 2 1000 - 30%
fi le-4 Te-4 Te-4 Te-4
IV. PREDICTION ACCURACY ON SIMULATED DATA 7 le-d 065 065 065
Hp L. HE ; DDI prob. 0.05 0.05 0.05 0.05
A. Prediction of domain-domain interactions Graph size 417110 random random random
In order to verify the performance of the algorithm undelerations 70000 8500 3500 10000
i . o Total number of proteins: 12,158
controlled conditions, we developed &n silico framework Total number of domains: 14 314
where, based on the IDM, we generated artificial domain- Interactions from DIP: 50,590

domain interactions (DDI) as well as matching protein-piot
interactions (PPI). A domain interaction rate was assigned

and protein interaction measurements were simulated by pgf 1 otein pairs connected to domain pair nodes. If the facto
turbing the PPI with a fixed rate of false positive§)Xand g oh contains only a single protein pair, then MLE and the
false negativesf,). This approach allowed us to calculate PA produce the same result. For larger subgraphs, Figure 3

guantitative measure of the (_estimatioq p_erforrr_1ance ofrzsuaveshowS how the prediction of DDI can be improved by calcu-
DDI and PPI prediction algorithms. This is particularly iarp

. ; ._lating the marginal probabilities using the SPA. We observe
tant when evaluating the performance of DDI_predlctorsz;esmthat for the case of subgraphs with 4, 7 and 10 protein pairs,
there are no standard methods to test DDI in the laboratopy,ich are commonly encountered in practice, the prediction
Although the interaction patterns in these simulations aﬁ%curacy of the SPA exceeds that of MLE and MSSC for the
artificiall, it is important .to m(_antion that proteins and ﬂ1eientire range of values of the specificity vs. sensitivityveur
respective domain configurations were extracted from re§i|nce higher specificity and sensitivity indicates mor

biological data, specifically from the Pfam_database [9]. paediction, a shift to the right represents better perforcea
The performance of the proposed algorithm was compare

with two current methods of DDI estimation mentioned if8. Prediction of protein-protein interactions

Section I: MLE and MSSC. The results of this comparison Thein silico framework that was discussed in the previous
are presented as specificity vs. sensitivity curves in BIQUr section can also be used to assess the quality of the aigorith
Specificity is defined aSp = % and sensitivity aSn = jn predicting interactions of protein pairs that were never
“T;T', whereP is the set of protein pairs predicted to interaatlirectly measured. Again, the same parameters that were
and T is the set of actually interacting protein pairs. Theliscussed above affect the outcome of the PPI prediction.
plots represent an average over 70000 independently dimalulaFigure 4 presents specificity vs. sensitivity curves fosédal
graphs. Table | contains a summary of the parameters ugegbitive and false negative measurement rgtes- 0.65 and
with experimental and simulated interaction data. fp = 0.001, selected to resemble the estimated experimental
Figure 3 shows the performance for a class of factor grapyalues in [7]. We see that the SPA specificity/sensitivityvey

in Figure 1 whose size is expressed in terms of the numtstrown in blue, demonstrates better protection againstynois
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Fig. 4. Performance of predicting algorithms when estingatPPI in the Fig. 5. False positive and false negative detection caiabilof the MLE,
presence of noisy measurements. MSSC, and SPA algorithms.
1 :

" ——SPA
measurements caused by the false positive and false r 0.9k — MsschH
rates, compared to the MSSC method and MLE usir - MLE
EM algorithm. This provides evidence that Bayesian infe 08
using the SPA provides a stronger predictor in the prese 0.7t .
noisy PPl measurements. 06l i

b .
. . =
C. Detection of incorrect measurements @ 0.5 g
c
We can also evaluate the capability of the PPl pred & |
methods to detect which measurements were in fac
positives or false negatives. This can be done by pret 03¢ i
interactions among protein pairs that were used as tras 0.2 .
for the algorithm. The results are compared with the or oal |
PPI interactions before adding noise to the measure '
Figure 5 shows the error correction capabilities of the 02 o3 o2 o5 06 o7 o8 o9 1
algorithms: MSSC, MLE, and SPA. The results show Specificity

Bayesian inference using the SPA is more effective in distgct _ - _ _ o _
. . Fig. 6. Performance of prediction algorithms in experinaéiiteraction data

errors that occur in the experimental measurements, aréeatil; . b
that helps to improve the quality of the input data and improv
DDI and PPI prediction.
to the MLE and MSSC algorithms. SPA's performance in real
data is mixed: if one is willing to accept a higher rate of

In addition to the simulation environment, we applied thilse positives, and hence lower specificity, SPA is supéoio
new estimation method to a set of real measurements lfth MLE and MSSC. However, with SPA we were not able
interacting protein pairs. The domain structure for thetgins  to reach very high values of specificity. We believe that the
in the interacting data set was retrieved from the Pfam @b reason for this limitation of the SPA algorithm, as compared
version 20 [9]. The experimental PPl measurements weteMLE and MSSC, is higher sensitivity to assumed values of
obtained from the Database of Interacting Proteins (DIB),[1 f,, f,, and a priori DDI probability.

which contains results from laboratory experiments (idaig

high throughput methods) to detect protein interactionsrt V. CONCLUSIONS

der to test the algorithm, a standard method of cross-vididla We have presented a new method to predict domain-
was applied. Here, 30 percent of the measured interactialtamain and protein-protein interactions based on the gunce
were used as testing set and the remaining measurements wéayesian inference and implemented it via the sum-prbduc
used as training set. The performance curves were caldulatégorithm. The contributions of the paper are twofold. We
by averaging over a large number of random partitions pfovide a new representation of DDI and PPI prediction based
available measurements into test and training sets. Figur@n factor graphs, as well as a framework to efficiently and
shows the sensitivity/specificity curves for the SPA coregar accurately predict DDI and PPI based on a message passing

D. Cross validation on real interaction data



algorithm. This framework allows us to build a probabilisti [6]
DDI network and predict new potential PPI interactions ldase
on that information. In addition, the new method is able tq,
detect false positives and false negatives that are common
in the experimental measurements. The present methodol(g%li/
can be l'!se_d to predlct, analyz.e' ?nd underStand (_jom N gomain interactions from databases of interacting prefeiGenome
and protein interaction networks in different organismkisT Bial., vol. 6, no. 10, p. R89, 2005.

knowledge has important implications in the understandinff] A- Bateman, L. Coin, R. Durbin, R. D. Finn, V. Hollich, S.ri@iths-

f the dvnamic behavior of molecular interactions in a cell Jones, A. Khanna, M. Marshall, S. Moxon, E. L. L. Sonnhammer,
or the dy Ic Vi =cular | & ' * D.J. Studholme, C. Yeats, and S. R. Eddy, “The Pfam proteirilifzs
Possible extensions of our technique include inferencePdf P database,Nucleic Acids Res., vol. 32, pp. D138-D141, Jan 2004.
and DDI jointly with estimation of model parameters, as weltCl

I. Xenarios, L. Salwinski, X. J. Duan, P. Higney, S.-M.inK and
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