
Code Construction for Two-Source
Interference Networks

Elona Erez and Meir Feder
Dept. of Electrical Engineering-Systems, Tel Aviv University, Tel Aviv, 69978, Israel, E-mail:{elona, meir}@eng.tau.ac.il

I. I NTRODUCTION

Most literature on network coding focuses on the multicast
case where performance bounds and codes that achieve these
bounds were found. The general case seems to be much
more complicated to analyze. Koetter and Médard [1] gave an
algebraic formulation of linear network codes in the general
communication problem with multiple sources. However, the
complexity of finding the coding coefficients of the code is
NP-complete. Furthermore, their procedure finds the solvabil-
ity of a given set of rates required at certain sinks, but it does
not provide, in general, the optimal rate region. Yeung [2,
Chapter 15] gave information-theoretic inner and outer bounds
to the rate region in the general case of acyclic networks with
multiple sources. The inner and outer bounds in [2] are not
explicit as in the multicast case, and are exponential in the
graph size. This result is extended in [3] for the case of zero-
error network codes. A different framework for formulating the
general network coding problem uses a graph theoretic model
[4]. In this model, the conflict hypergraph of the network is
defined and it was shown that a network coding is solvable
over a given alphabet and a class of codes if the conflict
hypergraph has a stable set. Unfortunately, the size of the
conflict graph might grow exponentially with the field size,
since the number of possible codes grows exponentially, and
also, in general, the problem of finding the stable set might
be difficult. A constructive mulit-source network coding is
presented in [5]. The construction is based on the observation
that random mixing is asymptotically optimal for a pollution-
free multi-source network coding problem, where no receiver
can be reached by a source it does not need. Here too, the
computational cost might be prohibitively high.

In the problem of multiple unicast ford users transmitter
si has to transmit information to terminalti at ratehi. The
d sources are simultaneous and independent. When no codes
are employed in the network, then the data can be treated as
flow. The problem of multiple sources and multiple sinks in
the network is termed in network optimization as the multi-
commodity flow problem. The multicommodity flow can be
found using linear programming. In [6] it was shown how the
multicommodity problem can be implemented distributively.

In [7], which considers the multiple unicast problem, the
operations of the network codes are restricted to binary XOR.
The problem is formulated as a linear program or an integer
program. This constitutes a suboptimal, yet practical scheme
to construct network codes, that improves the multicommodity

solution for some particular settings. The computational com-
plexity, however, is high in comparison to multicommodity.
This approach was solved in a decentralized way in [8],[9].

In this paper we present a different approach based on
modifying the multicommodity solution and thus improving,
in certain settings, the achievable rate region. Specifically, we
focus on the interference network for the unicast problem with
two users(s1, t1) and (s2, t2). We start by a special case,
where one of the sources, says2, transmits information at
its maximal min-cut max-flow rate and find a possible rate
for s1. We show that this rate ofs1 is better than the best
multicommodity flow rate. Building on this special case, we
generalize it as follows. Suppose we are given a certain point
on the border of the rate region of the multicommodity flow
(R1, R2). That is, whens2 transmits at rateR2, sources1

cannot transmit at a rate higher thanR1 using multicommodity.
We show how our method, that uses network codes, can im-
proveR1. We formulate our method as a linear programming
problem that is closely related to the flow problem. It is often
desirable for network algorithms to be localized, such that
the topology need not be globally known to the designer.
The similarity to the flow problem allows our method to
be implemented distributively, analogously to the distributive
multicommodity algorithm in [6]. For both the non-distributive
case and the distributive case, the computational complexity
of our algorithms for network coding are comparable to those
of the parallel multicommodity problems.

II. CODE CONSTRUCTION FORSPECIAL CASE

In this section we present a code construction algorithm
for the special case where one of the sources transmits at
its maximal rate, and the other source tries to simultaneously
transmit data at a certain, as high as possible, rate.

Consider a directed acyclic, unit capacity networkG =
(V, E) where parallel edges are allowed. There are two sources
s1 and s2 and two sinkst1 and t2. Sources1 is required to
deliver data tot1 and s2 is required to deliver data tot2.
For edgee, denote asΓI(e) the set of edges enteringe and
ΓO(e) the set of edges outgoing frome. The coding coefficient
between edgee and edgee′ is denoted asm(e, e′). That is,
the symboly(e) on edgee is given by:

y(e) =
∑

e′∈ΓI(e)

m(e, e′)y(e′) (1)

In the first stage of our code construction we perform
an algorithm similar to the polynomial time algorithm in

the multicast case [10]. The algorithm starts by finding the
maximal flow G1 of rate h1 from s1 to t1 and the maximal
flow G2 of rate h2 from s2 to t2. In the sequel we will be
interested only in the subgraphG1 ∪ G2, so we can assume
that our original network isG = G1 ∪ G2. The algorithm
steps through the edges inG in topological order. For each
edge e a coding vector of dimensionh1 + h2 is assigned,
where the firsth1 coordinates are associated withs1 and
the last h2 coordinates are associated withs2. We restrict
ourselves to edges that participate both inG1 and G2. For
edge e that participates in eitherG1 or G2, but not both,
we assignm(e′, e) = 1 for the edgee′ that precedede in
the flow. For edgee that participates in bothG1 andG2, the
algorithm determines the coefficientsm(e1, e), m(e2, e) where
e1 precedese in the flow G1 ande2 in G2.

The invariant maintained for the network is that for sinkt1
there is a set ofh1 edgesC1 such that the global coding vectors
V1 = {v(e) : e ∈ C1} have the property that their firsth1

coordinates spanF [D]h1 . Likewise, for sinkt2 there is a set of
h2 edgesC2 such that the global coding vectorsV2 = {v(e) :
e ∈ C2} have the property that their lasth2 coordinates span
F [D]h2 . The setCl, l = {1, 2} contains one edge from each
path in Gl, l = {1, 2}, the edge whose global coding vector
was defined most recently. The coding coefficientm(e′, e) is
drawn from a certain algebraic field (or a ring). Similarly to
the proof in [10], for field size two or larger, we are ensured
that at least a singlem(e′, e) maintains the invariant. At the
end of the construction the edges inC1 are incoming intot1
and the edges inC2 are incoming intot2.

1s

1t

2t

2s

3e

1b 2a 3a

11 ba +

1321 baaa +++

121 baa ++

1a

2e

1e

Fig. 1. Example Code

An example of the resulting code is given in Figure 1, where
in the graphG only the coding edgese1, e2, e3 are shown. The
code is over the binary field. As seen from the example, each
of the sources tries to transmit at its maximal rate. If source
s2 is silent, then sinkt1 is able to reconstruct its intended
information, since whenb1 = 0 the edges incoming intot1
carry the symbolsa1, a1+a2, a1+a2+a3. Likewise, if source
s1 is silent, then sinkt2 is able to reconstruct its intended
information, since whena1 = a2 = a3 = 0 the edge incoming
into t1 carries the symbolb1. However, when both sources
transmit information, then for each sink there is interference

noise from the source intended to the other sink.
Note that similarly to the multicast case [11], by using

a sufficiently large field size, the coding coefficients can be
chosen in a randomized, distributive manner.

At this point it is natural to examine how the interference
noise can be canceled. We are targeting at finding a possible
rateR1 of s1, conditioned that the rate ofs2 is R2 = h2. For
the example in Figure 1 we notice that whenR2 = h2 = 1, the
largest possibleR1 using multicommodity flow without coding
is zero. So the natural question is whether this ”bottleneck
effect” of the pairs2 − t2 can be relieved by coding.

At the set of theh2 coding vectorsV2, currently on the edges
entering intot2, there is interference noise froms1. The sinkt2
is required to receive the maximal rateR2 = h2, and therefore
it is not allowed to reduce its rate. However, it is allowed to
reduce the rate ofs1. The sinkt2 will be able to decode the
information intended to it if all the interference noise froms1

is canceled. Consider the subset of the firsth1 coordinates of
each of the vectors inV2. Denote asV ′

2 = {v′(e) : e ∈ C2} the
corresponding set of vectors of dimensionh1. The dimension
R12 of the vector space spanned byV ′

2

R12 ≤ min{h1, C12, h2} (2)

whereC12 is the capacity from sources1 to sink t2. We can
choose a subset ofV ′

2 of size R12 that is the basis ofV ′
2 .

Denote the basis ofV ′
2 as:

B′
2 = {v′(e1), . . . ,v′(eR12)} (3)

Denote the edges whose vectors are inB′
2 asC′2.

In the example network in Figure 1, we haveR12 ≤ h2 = 1.
Since the symbol received byt2 is a1+a2+a3+b1, the vector
in V2 is:

V2 = {v(e3)} = {(1, 1, 1, 1)T } (4)

The vector inV ′
2 is in fact the first three coordinates of the

vector inV2

V ′
2 = {v′(e3)} = {(1, 1, 1)T } (5)

and so the basis ofV ′
2 is,

B′
2 = {v′(e3)} = {(1, 1, 1)T } (6)

andC′2 = {e3}.
In order fort2 to achieve rateh2 = 1 and reconstructb1 we

force the symbol ate3 to depend only onb1. This is possible
by setting the constrainta1 + a2 + a3 = 0.

In general, the cancelation of the interference is possible
by forcing the symbols transmitted on the edges inC′2 to be
functions of the sources2 only. By canceling the interference
noise froms1 on C′2, the noise on the other edges atC2 will
also be canceled. This is because the noise on the other edges
are linear combinations of the noise onC′2. Each edge inC′2
would add at most a constraint on the symbols transmitted by
s1, in order to ensure that the resulting symbol on the edge is
”clean” of sources1. Each such constraint reduces the rate of
s1 by a single bit. Therefore rateh′1 ≥ h1−min{h2, C12, h1}

would be transmitted froms1. For the caseh1 > h2, rateh′1
would be strictly positive. The sinkt2 has to informs1 by
feedback the required constraints on the source ofs1, such
that t2 can reconstruct the data ofs2.

Similarly, define for the sinkt1 the set of the coding vectors
V1 of the edges inC1, which at this stage are enteringt1.
Specifically, consider the subset of the lasth2 coordinates of
each of these vectors. Denote asV ′

1 = {v′(e) : e ∈ C1} the
corresponding set of vectors of dimensionh2. The dimension
R21 of the vector space spanned byV ′

1

R21 ≤ min{h2, C21, h1} (7)

whereC21 is the capacity from sources2 to sink t1. Therefore
we can choose a subset ofV ′

1 of sizeR21 that is the basis of
V ′

1 . Denote the basis ofV ′
1 as:

B′
1 = {v′(e1), . . . ,v′(eR21)} (8)

Denote the nodes whose vectors are inB′
1 asC′1.

In the example network in Figure 1, we haveR21 ≤ h2 = 1.
The dimension ofV ′

1 is 1 and the vectors inV ′
1 are in fact the

last coordinate of the vectors inV1:

V1 = {v(e1),v(e2),v(e3)} = {

1
0
0
1

 ,

1
1
0
1

 ,

1
1
1
1

} (9)

V ′
1 = {v′(e1),v′(e2),v′(e3)} = {(1), (1), (1)} (10)

and so we can chooseC′1 = {e3} and

B′
1 = {v′(e3)} = {(1)}. (11)

In the general case, sinkt1 finds which additional con-
straints to set on the sources1 such that the symbols on the
edges inC′1 are functions of the sources2 only. Sinkt1 informs
sources1 of these additional constraints. Since the symbols in
C′1 are forced to be functions ofs2 only, sink t1 knows the
projection of sources2 on the symbols onC′1. The noise on the
other edges enteringt1 are linear combinations of the symbols
on C′1. Thus sinkt1 could use the symbols onC′1 in order to
cancel the interference noise, and would be able to reconstruct
the information intended to it froms1. Each node inC′1 adds
at most a single constraint on the symbols transmitted bys1,
in order to ensure that the resulting symbol on the node is
”clean” of sources1. Each such constraint reduces the rate of
s1 by a single bit. Since the rate was already reduced to at
leasth′1 ≥ h1−min{h2, C12, h1}, the final rate oft1 is at least
h′1 ≥ h1−min{h2, C12, h1}−min{h2, C21, h1} ≥ h1− 2h2.
For the caseh1 > 2h2, rateh′1 would be strictly positive.

Returning to the example in Figure 1, we note that since
we already have the constrainta1 +a2 +a3 = 0, t1 is already
able to decodeb1, which is the interference noise of sinkt1. If
this is not the case, it would be necessary to set an additional
constraint on the source ats1. The final rate att1 is h′1 =
h1 − min{h2, C12, h1} = 3 − 1 = 2, which is larger than
the boundh′1 ≥ h1−min{h2, C12, h1}−min{h2, C21, h1} ≥
h1 − 2h2 = 1. The final code is shown in Figure 2.

1s

1t

2t

2s

3e

1b 2a
21 aa +

11 ba +

1b

121 baa ++

1a

2e

1e

Fig. 2. Final Code

The rate region for the network in Figure 1 is shown
in Figure 3 for both the multicommodity case, and for the
coding scheme described above. Note that for this example
this scheme is optimal since it achieves the min-cut bound,
which is 3. Also note that the rate region has an angle45o

with the negativex axis. This, however, turns out not to be
the general case for networks using this coding scheme.

2R

1R

3

1

2

ditymulticommo

codingnetwork

Fig. 3. Rate Region for Example Network
The coding scheme we have suggested guarantees that if

s1 is willing to reduce its rateh1 by a certain amount of2∆
bits, thens2 will be able to transmit information of at least
∆ bits, as long as the min-cut condition is not violated. This
is because each increase in the bit rate oft2 forces at most
two additional constraints ons1: the first to cancel the noise
at t1 and the second att2. This indicates that the angle of
the slope of the boundary of the rate region will be between
22.50 < Θ < 67.50 (2:1 ratio to 1:2 ratio). In the example
network in Figure 1, the slope is45o, which is 1:1 ratio.

Unfortunately, the 1:1 tradeoff is not always possible, even
with network codes, as the following example shows. Consider
Figure 4. A possible code is given, prior to the constraints
setting. In this networkh1 = 3. If a ratio 1:1 is possible, then
we expect the rate pairh1 = 1, h2 = 2 to be achievable. It is
necessary to set2 constraints ons1, in order fort2 to be able to
receive bothb1 andb2. In order to cancel the interference noise
at t2, the constraints sets area1+a2 = 0 anda1+a2+a3 = 0.
That isa1 + a2 = 0 anda3 = 0. With this constraints the rate
of s1 is already not larger than1. The sinkt1 receives on its
incoming edgesa1 + b1,b1 + b2,b1 + b2. It cannot recoverb1,
and therefore achieves zero bit rate. It can be shown that the

rate pairh1 = 1, h2 = 2 is in fact not achievable by any code.

1s

1t

2t

2s

3e

1b 2a
3a

11 ba +

121 baa ++

1a

2e

1e

4e

2b

2121 bbaa +++
21321 bbaaa ++++

Fig. 4. Final Code
III. I MPROVING THE MULTICOMMODITY FLOW

In this section we show how to improve a general point in
the rate region of the multicommodity flow. Suppose we are
given a multicommodity solution(h1, h2). Denote the flow of
sources1 at edgee asx1

e and the flow of sources2 at edgee
asx2

e. At each edgee from the law of conversion of flow for
each commodity it follows that:

∑

e′∈ΓI(e)

x1
e =

∑

e′∈ΓO(e)

x1
e,

∑

e′∈ΓI(e)

x2
e =

∑

e′∈ΓO(e)

x2
e (12)

The capacity constraints are:

x1
e + x2

e ≤ c(e) ∀e, x1
e ≥ 0, x2

e ≥ 0 (13)

where for edgee = (u, v), the capacityc(e) is the multiplicity
of the unit capacity edges betweenu andv. If rate (h1, h2) is
achieved by the multicommodity flow, then:

x1
s = x1

t = h1, x2
s = x2

t = h2 (14)

where x1
s is the flow leaving s1 and x1

t is the flow of
source s1 reaching t1. Any multicommodity flow solution
has to maintain conditions (12)-(14). The solution to the
multicommodity problem defines flowG′1 from s1 to t1 and
flow G′2 from s2 to t2. If we considerG′1 it is not necessarily
the maximal flow froms1 to t1. It might be a subgraph of a
larger flowG′′1 from s1 to t1, which again is not necessarily
the maximal flow. Therefore, givenG′1 we add additional paths
from s1 to t1 in order to composeG′′1 . We denote the additional
paths inG′′1 \G′1 asD1. Likewise, we can constructD2 a set
of paths added toG′2, which together composeG′′2 .

Due to construction, in the union network ofU = D1∪G′2,
if s2 transmits flowG′2 at rateh2, then s1 cannot receive
data without coding. Using the coding scheme in the previous
section, however,s1 can transmit data at a certain rate. Thus
in the total networkG, s1 transmits data at a rate higher than
h1 ands2 transmits data at rateh2, which improves the rates
of the multicommodity point(h1, h2).

In case we are not given an initial multicommodity flow
solution, we can formulate the conditions onG′1, D1, G′2

and D2 that have to be maintained. For that we define four
commodities. The two commoditiesx1

e andx3
e are transmitted

by s1 and received byt1. The two commoditiesx2
e and x4

e

are transmitted bys2 and received byt2. The flowsx1
e and

x3
e defineG′1 andD1, respectively. Thus we can define them

by the following conditions:
∑

e′∈ΓI(e)

x1
e =

∑

e′∈ΓO(e)

x1
e,

∑

e′∈ΓI(e)

x3
e =

∑

e′∈ΓO(e)

x3
e (15)

x1
e + x3

e ≤ c(e) ∀e, x1
e ≥ 0, x3

e ≥ 0 (16)

Likewise the flowsx2
e andx4

e defineG′2 andD2, respectively
and satisfy the following conditions:

∑

e′∈ΓI(e)

x2
e =

∑

e′∈ΓO(e)

x2
e,

∑

e′∈ΓI(e)

x4
e =

∑

e′∈ΓO(e)

x4
e (17)

x2
e + x4

e ≤ c(e) ∀e, x2
e ≥ 0, x4

e ≥ 0 (18)

The flowsx1
e andx2

e constitute together the multicommodity
flow. Therefore they have to maintain the usual conditions for
multicommodity flows the conditions:

x1
e + x2

e ≤ c(e) ∀e (19)

Note that flowx1
e is allowed to overlap with flowx4

e. Likewise
for flows x2

e andx3
e.

Definition 3.1: Denote the setx1
e, x

2
e, x

3
e, x

4
e, ∀e ∈ E that

maintain conditions (15)-(19) as quasiflowZ.
The computational complexity of finding the quasiflowZ
is similar to the complexity of finding the multicommodity
flow, since both involve linear programming with a similar
number of variables and inequalities. GivenZ, we can take
the following procedure to find the code. At the first stage
consider the flowsx1

e, x
2
e, x

3
e. We know from the conditions

that x1
e does not intersectx2

e, x
3
e. The data transmitted on

edges inx1
e is uncoded and behaves as flow. On the other

hand, the data onx2
e, x

3
e is coded according to the method we

have introduced in the previous section. In the second stage
we likewise considerx1

e, x
2
e, x

4
e.

IV. L OCALIZED CODE CONSTRUCTION

A. A Distributed Quasiflow Construction

The quasiflowZ can be found by linear programming, but
the algorithm is not localized and the topology has to be fully
known to the designer. For the multicommodity problem, the
algorithm presented in [6] can be operated in a localized,
distributed manner using bounded queues and local control
at each node. The algorithm is an efficient practical approxi-
mation and has lower complexity than linear programming. In
this section we show how to modify the algorithm in order to
find the quasiflowZ. OnceZ is found, network coding can
be constructed forZ, as will be shown in Section IV-B.

We briefly summarize the algorithm in [6], with minor
modifications for quasiflow. The algorithm injects into the
network rate(1 + ε)di per commodityi = 1, 2, 3, 4, per unit
time, provided that there exists feasible quasiflow with demand

(1 + 2ε)di per commodityi. The algorithm finds a feasible
solution with demandsdi for commodityi. It is assumed that
for each source there is a single outgoing edge and for each
sink a single incoming edge. If this is not the case, we can
add a dummy source(sink) with a single outgoing(incoming)
edge with infinite capacity. There is a regular queue for each
commodity at the head and tail of each directed edge. When
a unit of flow traverses an edge, it is removed from the tail
queue and added to the head queue. A potential function is
associated with each queue. The potential of a regular queue
of sizeq for commodityi is defined as:

φi(q) = eαiq (20)

whereαi = ε/8ldi andl is the length of the longest flow path
in G. The size of the source queue (regular queue at the tail
of the edge leading from the sourcesi) for each commodity
i is bounded byQi , whereQi = Θ(ldiln(1/ε)

ε). The excess
of commodityi is placed in a special overflow queue at each
source. The potential function associated with the overflow
queue of sizeb for commodityi is defined as:

σi(b) = bφ′i(Qi) = bαie
αiQi (21)

The algorithm proceeds in rounds, where each unit-time
round consists of the following four phases:

• For each sourcesi add (1 + ε)di units of flow to the
overflow queue of commodityi and move as much flow
as possible from the overflow queue to the source queue.

• For each edge push flow across it (from the tail queue to
the head queue) so as to minimize the sum of potentials of
the queues in it subject to constraints (16), (18) and (19).
This optimization problem, can be solved by standard
calculus methods.

• For each commodityi empty the sink queue.
• For each commodityi and for each nodev rebalance

commodity i within nodev so that the head queues of
the incoming edges and the tail queues of the outgoing
edges for commodityi are of equal size.

It can be shown that all but a bounded amount of flow
reaches its destination. The algorithm does not guarantee
that each unit of flow will get eventually to its destination.
However, the amount of undelivered flow stays bounded over
the time as can shown by upper bounding the size of the
regular queues and overflow queues. The analysis for the
quasiflow is similar and can be directly derived from the
analysis in [6] for multicommodity flow. OverR rounds we
inject R(1 + ε)di units of commodity i. If we require the
undelivered flow to be at mostRεdi , it will ensure thatRdi

units of commodityi arrive at sinkti. It can be shown that a
sufficient number of rounds is:

R = O

(
El(1 + ln(1/ε))

ε2

)
(22)

The ratedi is obtained by averaging the flows overR rounds.

B. Incorporating Network Codes

Since the quasiflow is obtained inR rounds, we can interpret
the network as a time slotted network [12], [13].

Definition 4.1: Given a networkG, and positive integerR,
the associated time slotted network denoted asGR includes
nodess1, s2 and all nodes of typexr wherex is a non-source
node inG andr ranges through integers 1 andR . The edges
in the network, belong to one of the three types listed below.
For any non-source nodesx andy in G:

• for r ≤ R the capacity of the edge fromsi, i = 1, 2 to
xr, is the same as that of the edge fromsi to x in the
networkG.

• for r < R the capacity of the edge fromxr to yr+1 is
the capacity of the edge fromx to y in G.

• for r < R the capacity of the edge fromxr to xr+1 is
infinity.

In the quasiflowZ, consider the flowsxi
e, i = 1, 2, 3, 4. If

we consider a single flowx1
e, ∀e ∈ E, the corresponding (un-

coded) transmission of symbols is performed as the following:

• A symbol sent fromsi to xr corresponds to the symbol
sent on edge(si, x) during roundr.

• A symbol sent fromxr to yr+1 corresponds to the symbol
sent on edge (x,y) during roundr.

• A symbol sent fromxr to xr+1 corresponds to the
accumulation of a symbol in the queue ofx from round
r to roundr + 1.

For i = 1, . . . , 4 the edges inGR that participate in the flow
xi

e,∀e ∈ E form a subgraph with capacityRdi. Therefore,
after the algorithm finds the quasiflowZ, we can take the
pairs x1

e, x
4
e or x2

e, x
3
e and construct the network code for

network GR according to the algorithm in Section II. That
is, the information is coded whenever the flowsx1

e, x
4
e in the

quasiflowZ overlap on the same portion of the capacity. The
data onx2

e will remain uncoded and will add to the rate ofs2

achieved by the network code. In order for the algorithm to
be distributed we will use random coding, where each node
chooses locally the coding coefficients from some field. The
total number of coding edges in the network isER. For field
sizeF , the probability of success isPsucc = (1− 2

F)ER, as can
be seen from an analysis similar to the multicast case given in
[11]. Therefore the field size will be chosen asO(ER) and the
block size asO(log(ER)). Since the delay of the scheme is
at leastR rounds, the addition of the delay due to the coding
is of logarithmic order and is relatively negligible.

The algorithm does not guarantee that all the flow will arrive
to the sinks, and therefore some packet will be lost. The fact
that the network is assumed to be constant helps to deal with
this problem, but we omit here the details. The choice of the
coding coefficients is performed randomly. There are a number
of ways to set up the coding scheme, and we briefly present
here a possible set up. We denote a set ofR rounds as a stage.
We assume that at the first stage no information is conveyed
to the sinks. In the first stage the quasiflowZ is determined.

After the first stage, the flows in all future stages will
behave the same as in the first stage, since we assume that

the network does not change over time and the algorithm for
determining the flow is deterministic. After the first stage, all
the nodes draw the randomized coding coefficients required
for the coding and store them in their memory for future use.
The block size iscER. It can be larger than the capacity
of each edge. We therefore change the time scale, so that
each edge can carry at least a single symbol in each round.
Since a block is treated as an inseparable unit that has to be
completely transmitted in a single round, some capacity might
be lost since the capacity of each edge has to be divisible by
the block length after the time scaling. If it is not divisible,
the remainder is disregarded and its capacity is not used. A
solution to this problem appears in Section V. At this point,
we assume that the capacity are given as integers, where a unit
capacity can transmit a single symbol in a single time unit.

In the second stages1 transmits a unit matrix while all
the nodes perform network coding. As explained in [14],
Section 1.5.1., this enabless1 to inform each sink of the
coding coefficients froms1 to the sink. Then this procedure
is repeated fors2. The coding coefficients are made known to
the sinks in order to set the coding constraints, as explained
in Section II, and in order to decode the information in future
stages. Since the source has to set the coding constraints, the
coding coefficients are sent from the sinks to the sources
by means of feedback. The sources determine the coding
constraints and set them on the symbols they transmit.

If at some point the requirements of the rates change,
then as long as the change can be achieved by other coding
constraints, no new setup is required for the entire network.
The sources need only to find again the new coding constraints
and make them known to the sinks. This is in contrary to
regular multicommodity, where each change in the data rates
requires a totally new setup.

V. PACKETIZED CODE CONSTRUCTION

We return to the quasiflow construction in Section IV-A. At
each round each edge needs to optimize the flow that passes
through it. As in [6], the computation requirements can be
reduced by partitioning the flow into packets. We briefly repeat
the basic idea of [6]. The flow for commodityi is partitioned
into packets of size(1 + ε)di. The approximate packetized
queue size at the tail of each edge is defined as the integer
number of packetsp such that

q − 2(1 + ε)di ≤ p(1 + ε) ≤ q (23)

where q is the true queue size. The approximate packetized
queue size at the head of each edge is defined as the integer
number of packetsp such that

q ≤ p(1 + ε) ≤ q + 2(1 + ε)di (24)

During each round, one packet will be added to the source
for each commodity. Packets will be routed across edges
according to the following protocol. Each edge finds the
commodityi for which

φ′i(pi,tail(1 + ε)di)− φ′i(pi,head(1 + ε)di) (25)

is maximized and then a packet for this commodity is routed
across the edge, assuming thatpi,tail ≥ pi,head + 2. If there
is still excess capacity remaining, the queue sizes are updated
and another packet is selected by the same measure. In the
case when the capacity of the edge is smaller than the size of
the packet, then as much of the packet as the capacity allows
is routed during this round. In the next round, the routing of
this packet either continues or it is interrupted because some
other commodity has become more desirable in the meantime.

In order to minimize the computing costs, the queue sizes
are updated at either end of an edge when the final piece of
each packet has been delivered or when the delivery of the
packet has been interrupted. In the case that the delivery of a
packet is interrupted the true queue sizes are updated at either
end of the edge. The approximate packetized queue size and
the new measure in (25) are updated only if the true queue
size has changed by more than one packet worth since the last
time the approximate packetized queue size was updated. In
[6] the computation complexity of the algorithm is computed.

The problem that arises is how to incorporate network
coding into the packetized quasiflow construction. As we have
noted earlier in Section IV-B, in block network coding each
symbol is treated as an inseparable unit. However, in this
algorithm the transmission of a packet can be interrupted, and
will not necessary continue in the next round. Moreover, the
packet size might be smaller than the block lengthlog(cER).
It seems that convolutional network codes are more natural in
the case of packetized quasiflow, since the symbols are treated
sequentially and do not require inseparable packets. As in [15],
we restrict ourselves to binary convolutional network codes.
The memory in each node in the network, for each coding
coefficient is log(cER). The polynomial coding coefficients
are randomly drawn, just as in the case of block network codes.
The decoding delay is also analyzed in [15]. The decoding
delay is bounded byER log(cER), whereas the decoding
delay for the uncoded case isR.

VI. FURTHER RESEARCH

We have showed that our new construction improves the
rates of the multicommodity solution. A more precise analysis
of the performance seems to be complicated for deterministic
coding. As usual in these cases, random codes facilitate the
analysis. For the case of random codes, we achieved upper and
lower bounds on the performance of our construction [16]. The
values of the bounds depend on the topology of the network.
As expected, the lower bound improves the multicommodity.
The upper bound of the rates is below the trivial min-cut
bound.

REFERENCES

[1] R. Koetter and M. Ḿedard, “Beyond routing: An algebraic approach to
network coding,,”IEEE/ACM Trans. on Networking, vol. 11, no. 5, pp.
782–796, Oct. 2003.

[2] R. W. Yeung, A First Course in Information Theory, Kluwer Aca-
demic/Plenum Publishers, March 2002.

[3] L. Song, R.W. Yeung, and N. Cai, “Zero-error network coding for
acyclic networks,” IEEE Trans. Inform. Theory, vol. 49, no. 12, pp.
3129 – 3139, Dec. 2003.

[4] J. K. Sundararajan, M. Ḿedard, R. Koetter, and E. Erez, “A systematic
approach to network coding problems using conflict graphs,”UCSD
Information Theory and Applications Inaugural Workshop, February
2006.

[5] Y. Wu, “On constructive multi-source network coding,”Proc. Int. Symp.
Inform. Theory, Seattle, July 2006.

[6] B. Awerbuch and T. Leighton, “Improved approximation algorithms
for the multicommodity flow problem and local competitive routing
in dynamic networks,” Proc. of the 26th ACM Symp. on Theory of
Computing, pp. 487–496, 1994.

[7] D. Traskov, N. Ratnakar, D. S. Lun, R. Koetter, and M. Médard,
“Network coding for multiple unicasts: An approach based on linear
optimization,” Proc. Int. Symp. Inform. Theory, Seattle, July 2006.

[8] T. C. Ho, Y-H Chang, and K. J. Han, “On constructive network coding
for multiple unicasts,”44th Allerton Conf. on Commun., Control, and
Comupting, Sept. 2006.

[9] A. Eryilmaz and D.S. Lun, “Control for inter-session network coding,”
Tech. Rep. 2722, MIT LIDS, August 2006.

[10] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, and
L. Tolhuizen, “Polynomial time algorithms for multicast network code
construction,”IEEE Trans. on Inform. Theory, vol. 51, no. 6, pp. 1973–
1982, June 2005.

[11] T. Ho, M. Médard, M. Effros, and D. Karger, “On randomized network
coding,” 41th Allerton Conf. on Commun., Control, and Comupting,
Oct. 2003.

[12] R. Ahlswede, N. Cai, S.-Y. R. Li, and R.W. Yeung, “Network informa-
tion flow,” IEEE Trans. on Inform. Theory, vol. 46, no. 4, pp. 1204–1216,
July 2000.

[13] S-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding.,”IEEE
Trans. on Inform. Theory, vol. 49, no. 2, pp. 371–381, Feb. 2003.

[14] E. Erez and M. Feder, “On codes for network multicast,”42th Allerton
Conf. on Commun., Control and Computing, Oct. 2003.

[15] E. Erez and M. Feder, “Convolutional network codes,”IEEE Int. Symp.
on Inform. Theory, Chicago, 2004.

[16] E. Erez, Topics in Network Coding, Ph.D. thesis, Tel Aviv University,
in preparation.

