Code Construction for Two-Source
Interference Networks

Elona Erez and Meir Feder
Dept. of Electrical Engineering-Systems, Tel Aviv University, Tel Aviv, 69978, Israel, E-feddna, mei} @eng.tau.ac.il

I. INTRODUCTION solution for some particular settings. The computational com-
plexity, however, is high in comparison to multicommodity.
Most literature on network coding focuses on the multicashis approach was solved in a decentralized way in [8],[9].
case where performance bounds and codes that achieve thes this paper we present a different approach based on
bounds were found. The general case seems to be Mugfdifying the multicommodity solution and thus improving,
more complicated to analyze. Koetter an@diard [1] gave an i certain settings, the achievable rate region. Specifically, we
algebraic formulation of linear network codes in the generfdcus on the interference network for the unicast problem with
communication problem with multiple sources. However, thg,q users(sy,t1) and (s2,t2). We start by a special case,
complexity of finding the coding coefficients of the code ighere one of the sources, say, transmits information at
NP-complete. Furthermore, their procedure finds the solvahis maximal min-cut max-flow rate and find a possible rate
ity of a given set of rates required at certain sinks, but it dogsy s1. We show that this rate of, is better than the best
not provide, in general, the optimal rate region. Yeung [Znulticommodity flow rate. Building on this special case, we
Chapter 15] gave information-theoretic inner and outer bounggneralize it as follows. Suppose we are given a certain point
to the rate region in the general case of acyclic networks wigh the border of the rate region of the multicommodity flow
multiple sources. The inner and outer bounds in [2] are ”PRl,Rg). That is, whens, transmits at rateR,, sources;
explicit as in the multicast case, and are exponential in tRgnnot transmit at a rate higher thBn using multicommodity.
graph size. This result is extended in [3] for the case of Zerfe show how our method, that uses network codes, can im-
error network codes. A different framework for formulating th%rove R;. We formulate our method as a linear programming
general network coding problem uses a graph theoretic mogehplem that is closely related to the flow problem. It is often
[4]. In this model, the conflict hypergraph of the network igjesjrable for network algorithms to be localized, such that
defined and it was shown that a network coding is solvablge topology need not be globally known to the designer.
over a given alphabet and a class of codes if the conflighe similarity to the flow problem allows our method to
hypergraph has a stable set. Unfortunately, the size of the jmplemented distributively, analogously to the distributive
conflict graph might grow exponentially with the field sizemy|ticommodity algorithm in [6]. For both the non-distributive
since the number of possible codes grows exponentially, afgke and the distributive case, the computational complexity

also, in general, the problem of finding the stable set might our algorithms for network coding are comparable to those
be difficult. A constructive mulit-source network coding isf the parallel multicommodity problems.

presented in [5]. The construction is based on the observation
that random mixing is asymptotically optimal for a pollution-
free multi-source network coding problem, where no receiverIn this section we present a code construction algorithm
can be reached by a source it does not need. Here too, fitiethe special case where one of the sources transmits at
computational cost might be prohibitively high. its maximal rate, and the other source tries to simultaneously
In the problem of multiple unicast fod users transmitter transmit data at a certain, as high as possible, rate.
s; has to transmit information to termina) at rateh;. The  Consider a directed acyclic, unit capacity netwakk =
d sources are simultaneous and independent. When no codéd?) where parallel edges are allowed. There are two sources
are employed in the network, then the data can be treatedsas®nd sz and two sinkst; andt,. Sources; is required to
flow. The problem of multiple sources and multiple sinks ifleliver data tot; and s, is required to deliver data te,.
the network is termed in network optimization as the multFor edgee, denote ad’;(e) the set of edges enteringand
commodity flow problem. The multicommodity flow can bd o(e) the set of edges outgoing fromThe coding coefficient
found using linear programming. In [6] it was shown how thBetween edge and edgee’ is denoted asn(e,e’). That is,
multicommodity problem can be implemented distributively.the symboly(e) on edgee is given by:
In [7], which considers the multiple unicast problem, the . / /
operations of the network codes are restricted to binary XOR. yle) = Z m(e, e)y(') (3
The problem is formulated as a linear program or an integer
program. This constitutes a suboptimal, yet practical schemdn the first stage of our code construction we perform
to construct network codes, that improves the multicommodin algorithm similar to the polynomial time algorithm in
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the multicast case [10]. The algorithm starts by finding theoise from the source intended to the other sink.

maximal flow G; of rate hy from s; to ¢; and the maximal  Note that similarly to the multicast case [11], by using

flow G2 of rate ho from sy to t5. In the sequel we will be a sufficiently large field size, the coding coefficients can be

interested only in the subgraph; U G5, so we can assumechosen in a randomized, distributive manner.

that our original network is7 = G; U G,. The algorithm At this point it is natural to examine how the interference

steps through the edges @ in topological order. For each noise can be canceled. We are targeting at finding a possible

edgee a coding vector of dimensioh,; + ho is assigned, rate R; of s;, conditioned that the rate 6§ is Ry = hs. For

where the firsth; coordinates are associated with and the example in Figure 1 we notice that whBp = h, = 1, the

the lasthy coordinates are associated with. We restrict largest possiblé?; using multicommodity flow without coding

ourselves to edges that participate bothGn and G,. For is zero. So the natural question is whether this "bottleneck

edge e that participates in eithe€; or G, but not both, effect” of the pairsy — ¢ can be relieved by coding.

we assignm(e’,e) = 1 for the edgee’ that precedect in At the set of theh, coding vectord’, currently on the edges

the flow. For edge: that participates in botli; and G, the entering intai,, there is interference noise from. The sinki,

algorithm determines the coefficienige;, ), m(ez, ¢) where is required to receive the maximal ral® = h,, and therefore

e precedes in the flow G, andes in Gs. it is not allowed to reduce its rate. However, it is allowed to
The invariant maintained for the network is that for sink reduce the rate of,. The sink¢, will be able to decode the

there is a set of; edge<’; such that the global coding vectorsnformation intended to it if all the interference noise fram

Vi1 = {v(e) : e € C1} have the property that their firdt; is canceled. Consider the subset of the firsicoordinates of

coordinates spaf’[D]" . Likewise, for sinkt, there is a set of each of the vectors iif,. Denote ad’y = {v/(e) : e € C5} the

ho edgesCs such that the global coding vectovs = {v(e) : corresponding set of vectors of dimensibn The dimension

e € Co} have the property that their lagt coordinates span Ri2 of the vector space spanned by

F[D}h2. The setC;,l = {1,2} contains one edge from each .

path inG;,1 = {1,2}, the edge whose global coding vector Ry < minfhy, Crz, ha} @

was defined most recently. The coding coefficiente’, e) is  whereC, is the capacity from source, to sink ¢,. We can

drawn from a certain algebraic field (or a ring). Similarly ta¢hoose a subset df] of size Ry, that is the basis of/j.
the proof in [10], for field size two or larger, we are ensurepenote the basis of; as:

that at least a single:(e’,e) maintains the invariant. At the . . .
end of the construction the edgesdn are incoming intot; By ={v'(e1),...,V'(ers,)} 3)

and the edges ig are incoming inta’,. Denote the edges whose vectors are3inasCy.

In the example network in Figure 1, we haktg, < ho = 1.
Since the symbol received 8y is a; +as + a3 + by, the vector

in V5 is:

Va = {v(es)} = {(1,1,1,1)"} 4)
The vector inVy is in fact the first three coordinates of the
vector inV,

Vi ={v'(es)} ={(1,1,1)"} Q)
and so the basis dfy is,

By ={v'(es)} ={(1,1,1)"} (6)
andCh = {es}.

Fig. 1. Example Code In order fort, to achieve raté, = 1 and reconstrudi; we

force the symbol at; to depend only orb,. This is possible
An example of the resulting code is given in Figure 1, wheilgy setting the constraint; + a2 + a3 = 0.

in the graphGG only the coding edges, e5, e3 are shown. The  In general, the cancelation of the interference is possible
code is over the binary field. As seen from the example, eali forcing the symbols transmitted on the edge<jnto be
of the sources tries to transmit at its maximal rate. If souréenctions of the source; only. By canceling the interference
s is silent, then sinkt; is able to reconstruct its intendednoise froms; on Cj, the noise on the other edgesdt will
information, since wherb; = 0 the edges incoming inte; also be canceled. This is because the noise on the other edges
carry the symbol&,, a1 +as, a; +as+as. Likewise, if source are linear combinations of the noise 6f. Each edge irC}
sy is silent, then sinki, is able to reconstruct its intendedwould add at most a constraint on the symbols transmitted by
information, since when; = a> = a3z = 0 the edge incoming sy, in order to ensure that the resulting symbol on the edge is
into ¢, carries the symbob,. However, when both sources’clean” of sources;. Each such constraint reduces the rate of
transmit information, then for each sink there is interferencg by a single bit. Therefore rat€, > h; —min{hs, C12, h1}



would be transmitted froms;. For the caséi; > ho, rateh)
would be strictly positive. The sink, has to informs; by
feedback the required constraints on the source;pfsuch
thatt, can reconstruct the data es.

Similarly, define for the sink; the set of the coding vectors
V; of the edges inC;, which at this stage are entering.
Specifically, consider the subset of the lastcoordinates of
each of these vectors. Denote Bs = {v'(e) : e € C;} the
corresponding set of vectors of dimension The dimension
Ry, of the vector space spanned by

Ry < min{hy, Ca1, hy} (7)
whereCs; is the capacity from source to sink¢;. Therefore Fig. 2. Final Code
we can choose a subset Bf of size Ry, that is the basis of
V. Denote the basis df] as:
By = {V'(e1),...,V'(ery)} (8)  The rate region for the network in Figure 1 is shown

in Figure 3 for both the multicommodity case, and for the
coding scheme described above. Note that for this example
this scheme is optimal since it achieves the min-cut bound,
which is 3. Also note that the rate region has an angjé

with the negativer axis. This, however, turns out not to be

Denote the nodes whose vectors aréshas(C;.

In the example network in Figure 1, we haltg; < hy = 1.
The dimension o7 is 1 and the vectors iV} are in fact the
last coordinate of the vectors i :

1 1 1 the general case for networks using this coding scheme.
0 1 1

= (vl vie) vl =1 o || o | ] 1 [} © R
1 1 1 network coding

Vi ={v'(e1),v'(e2),v'(e3)} = {(1). (1), (D}  (10) mticommedty
and so we can choos¥ = {e;} and o
By ={v'(e3)} = {(}- (11) TN
In the general case, sink finds which additional con- 2 3 R,
straints to set on the souree such that the symbols on the
edges irC; are functions of the soureg only. Sink¢; informs Fig. 3. Rate Region for Example Network

sources; of these additional constraints. Since the symbols in The coding scheme we have suggested guarantees that if
C; are forced to be functions of, only, sink¢; knows the s; is willing to reduce its ratéh; by a certain amount A
projection of sources on the symbols of}. The noise on the bits, thens, will be able to transmit information of at least
other edges entering are linear combinations of the symbolsA bits, as long as the min-cut condition is not violated. This
on C;. Thus sink¢; could use the symbols off in order to is because each increase in the bit rate.oforces at most
cancel the interference noise, and would be able to reconstrived additional constraints o : the first to cancel the noise
the information intended to it from,. Each node irC; adds at ¢; and the second at. This indicates that the angle of
at most a single constraint on the symbols transmitted by the slope of the boundary of the rate region will be between
in order to ensure that the resulting symbol on the node 28.5° < © < 67.5° (2:1 ratio to 1:2 ratio). In the example
"clean” of sources;. Each such constraint reduces the rate ofetwork in Figure 1, the slope i&°, which is 1:1 ratio.
s1 by a single bit. Since the rate was already reduced to atUnfortunately, the 1:1 tradeoff is not always possible, even
leasth; > h; —min{hsy, C12, h1 }, the final rate of; is at least with network codes, as the following example shows. Consider
hy > hy —min{hs, C12, h1} —min{hg, Co1,h1} > hy —2hy. Figure 4. A possible code is given, prior to the constraints
For the caséi; > 2h,, rateh) would be strictly positive. setting. In this networlk; = 3. If a ratio 1:1 is possible, then
Returning to the example in Figure 1, we note that sinage expect the rate paitr; = 1, ho = 2 to be achievable. It is
we already have the constraint + as + a3 = 0, t; is already necessary to s€tconstraints o, in order fort, to be able to
able to decodé;, which is the interference noise of sink If receive bothb; andb,. In order to cancel the interference noise
this is not the case, it would be necessary to set an additioaais, the constraints sets atig+as = 0 anda; +as+az = 0.
constraint on the source &§. The final rate at; is h} = Thatisa; +as = 0 andas = 0. With this constraints the rate
hi1 — min{hg, C12,h1} = 3 — 1 = 2, which is larger than of s; is already not larger thah. The sink¢; receives on its
the boundh| > hy —min{hs, Ci2, h1} —min{hg, Co1,h1} > incoming edgesi; + b1,b1 + ba,b1 + ba. It cannot recoveb,,
hy — 2ho = 1. The final code is shown in Figure 2. and therefore achieves zero bit rate. It can be shown that the



rate pairh; = 1, ho = 2 is in fact not achievable by any code.and D, that have to be maintained. For that we define four

a,+a,+a,+h +b,

4. Final Code

F
Il. | MPROVING THEMULTICOMMODITY FLow

commodities. The two commodities andx? are transmitted
by s; and received by;. The two commodities:? and 2
are transmitted by, and received by,. The flowsz! and
22 defineG) and D, respectively. Thus we can define them

by the following conditions:
Z xl = Z x Z — Z x3 (15)
e’ely(e) e’elo(e

e’elr(e) e’elo(e)

zl+ad <cle) Ve, zl>0, 22>0 (16)

Likewise the flowsz? andz? defineG) and D,, respectively
and satisfy the following conditions:
> 1:4 (17)

}: 2 _ 2: E: 4 _
Le = xe7 LTe =
e’elp(e

e’'elr(e) e’elo(e) e’elr(e)

22+t <cle) Ve, 22>0, x>0 (18)

In this section we show how to improve a general point ifihe flowsz; andz? constitute together the multicommodity
the rate region of the multicommodity flow. Suppose we aféow. Therefore they have to maintain the usual conditions for

given a multicommodity solutiofihq, h2). Denote the flow of
sources; at edgee asz. and the flow of source, at edgee
asz2. At each edge from the law of conversion of flow for
each commodity it follows that:

BIRTED SEFCUD SEFTED DI cL)
e’el'r(e) e’elo(e) e’elr(e) e’elo(e)
The capacity constraints are:
zt+ 22 <cle) Ve, x>0, 22>0 (13)

where for edge = (u,v), the capacity:(e) is the multiplicity
of the unit capacity edges betweerandv. If rate (hq, hs) is
achieved by the multicommodity flow, then:

1

_ 1 2
s =2y = ha,

x 22 =27 = hy (14)

where z! is the flow leavings; and z} is the flow of
source s; reachingt;. Any multicommodity flow solution

has to maintain conditions (12)-(14). The solution to thwe likewise consider:!,

multicommodity problem defines flow; from s; to ¢; and
flow G5 from ss to to. If we considerG] it is not necessarily

multicommodity flows the conditions:

< c(e) Ve (19)

1 2
T, +

Note that row:z:}i is allowed to overlap with flowt?. Likewise
for flows x2 andz3.

Def|n|t|on 3.1 Denote the setl, 22 23 2} Ve € E that
maintain conditions (15)-(19) as quasn‘lcm
The computational complexity of finding the quasiflai
is similar to the complexity of finding the multicommodity
flow, since both involve linear programming with a similar
number of variables and inequalities. Givelh we can take
the following procedure to find the code. At the first stage
consider the flowse!, z2, 23. We know from the conditions
that 2 does not intersect:2, z3. The data transmitted on
edges inz! is uncoded and behaves as flow. On the other
hand, the data on?, z2 is coded according to the method we

have introduced in the prewous section. In the second stage
4

IV. LocALIZED CODE CONSTRUCTION

the maximal flow froms; to ¢;. It might be a subgraph of a A- A Distributed Quasiflow Construction
larger flowGY from s; to ¢;, which again is not necessarily The quasiflowZ can be found by linear programming, but

the maximal flow. Therefore, givei| we add additional paths the algorithm is not localized and the topology has to be fully
from s, tot; in order to composé&’/. We denote the additional known to the designer. For the multicommaodity problem, the
paths inG/ \ G} as D,. Likewise, we can construdDd, a set algorithm presented in [6] can be operated in a localized,
of paths added td-/, which together composg’,. distributed manner using bounded queues and local control
Due to construction, in the union network Bf= D; UGY, at each node. The algorithm is an efficient practical approxi-
if s, transmits flowG,, at rate hy, then s; cannot receive mation and has lower complexity than linear programming. In
data without coding. Using the coding scheme in the previotlss section we show how to modify the algorithm in order to
section, howevers; can transmit data at a certain rate. Thund the quasiflowZ. Once Z is found, network coding can
in the total network, s; transmits data at a rate higher thame constructed fo#, as will be shown in Section IV-B.
hy ands, transmits data at ratk,, which improves the rates We briefly summarize the algorithm in [6], with minor
of the multicommaodity poin{h, k). modifications for quasiflow. The algorithm injects into the
In case we are not given an initial multicommodity flonnetwork rate(1 + ¢)d; per commodity: = 1,2, 3,4, per unit
solution, we can formulate the conditions @¥, D;, G, time, provided that there exists feasible quasiflow with demand



(1 4 2¢)d; per commodityi. The algorithm finds a feasible B. Incorporating Network Codes

solution with demands; for commodity:. It is assumed that  gjnce the quasifiow is obtained rounds, we can interpret
for each source there is a single outgoing edge and for e3gh network as a time slotted network [12], [13].

sink a single incoming edge. If this is not the case, we canpgginition 4.1: Given a network(, and positive integeR,
add a dummy source(sink) with a single outgoing(incomingle 4ssociated time slotted network denoted&s includes
edge with infinite capacity. There is a regular queue for eaﬁ'&des,sl, s, and all nodes of type” wherez is a non-source
commodity at the head and tail of each directed edge. WhﬁSde inG: andr ranges through integers 1 atl. The edges

a unit of flow traverses an edge, it is removed from the tg}} yhe network, belong to one of the three types listed below.
queue and added to the head queue. A potential functionds, any non-source nodesandy in G:

associated with each queue. The potential of a regular queue . .
of size ¢ for commoditys is defined as: « for r < R the capacity of the edge fromy,i = 1,2 to

x", is the same as that of the edge framto x in the

i(q) = el 20 network G.
9ila) =€ (20) « for » < R the capacity of the edge from” to y"+! is

wherea; = ¢/8ld; andl is the length of the longest flow path ~ the capacity of the edge fromto y in G.

in G. The size of the source queue (regular queue at the tair for 7 < R the capacity of the edge from’ to x

of the edge leading from the soursg) for each commaodity infinity. _ o
i is bounded byQ; , whereQ; = @(ldil”l(l/d). The excess N the quasiflowZ, consider the flowsrg,: = 1,2,3,4. If

) : . .
of commodityi is placed in a special overflow queue at eaci® consider a single flow,, Ve € E, the corresponding (un-

source. The potential function associated with the overfiggPded) transmission of symbols is performed as the following:

s

queue of size for commodityi is defined as: « A symbol sent froms; to =" corresponds to the symbol
sent on edgés;, =) during roundr.
oi(b) = b (Q;) = baze™i % (21) « Asymbol sent fromx™ to y" ! corresponds to the symbol

sent on edge (x,y) during round
The algorithm proceeds in rounds, where each unit-timee A symbol sent fromz" to 2"*! corresponds to the
round consists of the following four phases: accumulation of a symbol in the queue offrom round

« For each source; add (1 + €)d; units of flow to the r to roundr + 1.

Overﬂow queue Of Commodity and move as much ﬂOW FOI’Z = 1, e ,4 the edges II’GR that participate in the ﬂOW
as possible from the overflow queue to the source quede; Ve € E form a subgraph with capaciti®d;. Therefore,

« For each edge push flow across it (from the tail queue &ter the algorithm finds the quasiflow, we can take the
the head queue) so as to minimize the sum of potentialsR#rs =2, z¢ or zZ,x? and construct the network code for
the queues in it subject to constraints (16), (18) and (1g)etwork G according to the algorithm in Section Il. That

This optimization problem, can be solved by standaid: the information is coded whenever the flows z in the
calculus methods. quasiflowZ overlap on the same portion of the capacity. The

« For each commodity empty the sink queue. data onz?2 will remain uncoded and will add to the rate of
« For each commodityi and for each node rebalance achieved by the network code. In order for the algorithm to
commodityi within nodev so that the head queues ofP€ distributed we will use random coding, where each node

the incoming edges and the tail queues of the outgoif§ooses locally the coding coefficients from some field. The
edges for commodity are of equal size. total number of coding edges in the networkssg:. For field

sizeF, the probability of success i8,... = (1—%)**, as can
It r(]:an _tt)e (thO\t'.Vn tt.hat aT”h butla p;)hundgd amoutnt of ﬂO\B’e seen from an analysis similar to the multicast case given in
reaches 1ts destination. the algorithm does no guaranﬁﬁ]. Therefore the field size will be chosen@$E R) and the

that each unit of flow will get eventually to its destinationblock size as0(log(ER)). Since the delay of the scheme is
However, the amount of undelivered flow stays bounded ov leastR rounds, the addition of the delay due to the coding

the time as can shown by upper bounding the size of t S of logarithmic order and is relatively negligible.

regulgr queues gnd overflow queues. The a_naIyS|s for t he algorithm does not guarantee that all the flow will arrive
quasﬁlpw is similar apd can b.e directly derived from th?o the sinks, and therefore some packet will be lost. The fact
gr)aly5|s in [6] for mylt|commod|ty f.IOW.' OveR rount;is W€ that the network is assumed to be constant helps to deal with
|nject_R(1 + €)d; units of commodlf[y l. If we require the this problem, but we omit here the details. The choice of the
undelivered flow _to.be at mogted; , it will ensure thatRd; coding coefficients is performed randomly. There are a number
umt; _of commodity; arrive at_smktl-. It can be shown that a of ways to set up the coding scheme, and we briefly present
sufficient number of rounds is: here a possible set up. We denote a séR @bunds as a stage.
El(1+In(1/¢)) We assume that at the first stage no information is conveyed
k=0 (2) (22) 1o the sinks. In the first stage the quasifléivis determined.
After the first stage, the flows in all future stages will
The rated; is obtained by averaging the flows ovBrrounds. behave the same as in the first stage, since we assume that

€



the network does not change over time and the algorithm fisrmaximized and then a packet for this commodity is routed
determining the flow is deterministic. After the first stage, alicross the edge, assuming th@ta:; > Di heaa + 2. If there

the nodes draw the randomized coding coefficients requirisdstill excess capacity remaining, the queue sizes are updated
for the coding and store them in their memory for future usand another packet is selected by the same measure. In the
The block size iscER. It can be larger than the capacitycase when the capacity of the edge is smaller than the size of
of each edge. We therefore change the time scale, so ttha packet, then as much of the packet as the capacity allows
each edge can carry at least a single symbol in each roursdrouted during this round. In the next round, the routing of
Since a block is treated as an inseparable unit that has tothis packet either continues or it is interrupted because some
completely transmitted in a single round, some capacity migbther commaodity has become more desirable in the meantime.
be lost since the capacity of each edge has to be divisible byin order to minimize the computing costs, the queue sizes
the block length after the time scaling. If it is not divisibleare updated at either end of an edge when the final piece of
the remainder is disregarded and its capacity is not used.eAch packet has been delivered or when the delivery of the
solution to this problem appears in Section V. At this poinpacket has been interrupted. In the case that the delivery of a
we assume that the capacity are given as integers, where a paitket is interrupted the true queue sizes are updated at either
capacity can transmit a single symbol in a single time unit.end of the edge. The approximate packetized queue size and

In the second stage; transmits a unit matrix while all the new measure in (25) are updated only if the true queue
the nodes perform network coding. As explained in [14kize has changed by more than one packet worth since the last
Section 1.5.1., this enableg to inform each sink of the time the approximate packetized queue size was updated. In
coding coefficients fronms; to the sink. Then this procedure[6] the computation complexity of the algorithm is computed.
is repeated fos,. The coding coefficients are made known to The problem that arises is how to incorporate network
the sinks in order to set the coding constraints, as explaineolding into the packetized quasiflow construction. As we have
in Section Il, and in order to decode the information in futuraoted earlier in Section IV-B, in block network coding each
stages. Since the source has to set the coding constraints,sirabol is treated as an inseparable unit. However, in this
coding coefficients are sent from the sinks to the sourcalorithm the transmission of a packet can be interrupted, and
by means of feedback. The sources determine the codintdl not necessary continue in the next round. Moreover, the
constraints and set them on the symbols they transmit.  packet size might be smaller than the block lengi(cER).

If at some point the requirements of the rates chandéseems that convolutional network codes are more natural in
then as long as the change can be achieved by other codimg case of packetized quasiflow, since the symbols are treated
constraints, no new setup is required for the entire netwodequentially and do not require inseparable packets. As in [15],
The sources need only to find again the new coding constraints restrict ourselves to binary convolutional network codes.
and make them known to the sinks. This is in contrary tbhe memory in each node in the network, for each coding
regular multicommodity, where each change in the data ratgsefficient islog(cER). The polynomial coding coefficients

requires a totally new setup. are randomly drawn, just as in the case of block network codes.
The decoding delay is also analyzed in [15]. The decoding
V. PACKETIZED CODE CONSTRUCTION delay is bounded byERlog(cER), whereas the decoding

We return to the quasiflow construction in Section IV-A. Atlelay for the uncoded case i&
each round each edge needs to optimize the flow that passes
through it. As in [6], the computation requirements can be
reduced by partitioning the flow into packets. We briefly repeat We have showed that our new construction improves the
the basic idea of [6]. The flow for commaodiiyis partitioned rates of the multicommodity solution. A more precise analysis
into packets of size1 + €)d;. The approximate packetizedof the performance seems to be complicated for deterministic
gueue size at the tail of each edge is defined as the integeding. As usual in these cases, random codes facilitate the
number of packetp such that analysis. For the case of random codes, we achieved upper and

lower bounds on the performance of our construction [16]. The
q—2(1+e)d; <p(l+e)=<gq (23)  yvalues of the bounds depend on the topology of the network.

where ¢ is the true queue size. The approximate packetiz&$ €xpected, the lower bound improves the multicommodity.
queue size at the head of each edge is defined as the intddi® upper bound of the rates is below the trivial min-cut
number of packetg such that bound.

VI. FURTHER RESEARCH
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