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Abstract— Recently, it has been shown that the max flow
capacity can be achieved in a multicast network using network
coding. In this paper, we propose and analyze a more realistic
model for wireless random networks. We prove that the capacity
of network coding for this model is concentrated around the
expected value of its minimum cut. Furthermore, we establish
upper and lower bounds for wireless nodes using Chernoff
bounds. Our experiments show that our theoretical predictions
are well matched by simulation results.

I. INTRODUCTION

Traditionally, the information flow in networks is modeled
as a multi-commodity flow problem by treating the underlying
network as a flow network. Suppose that one source node in
a graph has to transfer some information to one destination
node (i.e., a unicast situation). By Menger’s theorem [3], the
maximum information that can flow is upper bounded by
the value of the minimum cut between the source and the
destination; this well-known result from classical graph theory
is also known as the Max-flow Min-Cut theorem. One can
use max-flow min-cut algorithms to compute the maximum
throughput for instance for unicast, multicast, and multi-source
multicast communications.

Recently, Ahlswede, Cai, Li, and Yeung proposed in the
seminal paper [1] a new paradigm, called network coding.
Their key observation was that traditional store-and-forward
networks cannot always achieve the max-flow value, whereas
one can achieve this value using network coding. The idea is
based on the simple fact that information can be replicated,
mixed together and then transmitted over links to save band-
width. If this is properly done, then the information can be
reliably decoded at the receiver nodes, see e.g. [1], [16]. The
basic idea of network coding is that the intermediate network
nodes can now process, encode, and transmit information.

Since its inception by Ahlswede et al., there has been an
upsurge of interest in network coding, see for example [4]–
[8], [10], [12] and the references therein. Arguably, most
network coding publications model the underlying network
as a directed acyclic graph and are typically concerned with
solving single source multicast or multi-source multicast using
deterministic or randomized encoding and decoding schemes.

In this paper, we discuss a new model for wireless random
networks. In this model, nodes are placed at random locations.

Two nodes u and v are connected with probability 1 if the
distance between them is less than r; the nodes are connected
with probability p < 1 if the distance between them is less
than or equal to R but greater than r; otherwise u and
v are not connected. Thus, the model is a refinement of
geometric random graphs that incorporates the potential loss of
connectivity towards the end of the transmission range, where
interference is more dominant. The main contributions of this
paper are:

• We introduce the quasi random geometric graph model, a
model of wireless network topologies that simulates the
connectivity in mobile ad-hoc networks more realistically
than the random graph model, but is still easy to analyze.

• We derive high-probability bounds for the network coding
capacity of quasi random geometric graphs.

• We provide simulations results that support our bounds
on the network coding capacity.

The rest of this paper is organized as follows. In Section II,
we give an overview of network coding and the previous work
in capacity of network coding. In Section III, we present our
new model. We provide our main results in Sections IV and V.

II. BACKGROUND AND MODEL DESCRIPTION

In this section, we give a short summary of network coding,
focusing on the calculation of the capacity of a min cut in a
weighted random graph. For a more in depth discussion of
basic concepts and methods of network coding, we refer the
reader to the survey paper [4].

A. Network Coding Fundamentals

To illustrate the power of network coding, we provide a
simple example, which is often referred to as the Wheatstone
bridge, due to its electrical circuits origin. It demonstrates that
multicast routing can achieve the maximum possible through-
put in a communication network using a coding scheme con-
sisting of linear operations in finite field, whereas traditional
store-and-forward routing cannot achieve the same throughput.

Consider the example shown in Fig.1(a), where the nodes
X and Y respectively want to send two bits b1 and b2 to each
other. One way of doing this is to let the bit b1 travel on the
path X → A → B → Y at one point of time and to let b2

travel on the path Y → A → B → X on the other. However,



if the network wants to transmit the bits simultaneously, then
there is no way to do so, as there are no disjoint paths between
X and Y .

However, using network coding as shown in Fig. 1(b), one
can save bandwidth. In this case, both X and Y transmit the
bits b1 and b2 (as shown in the figure) and then A XORs
(encodes) them together and the resulting bit b1 ⊕ b2 travels
over the paths A → B → Y and A → B → X . Since node X
already has of b1, it can recover (decode) b2 by the operation
b1 ⊕ (b1 ⊕ b2). Similarly Y can also decode b1.

This example illustrates that the capacity of the minimum
cut (equal to 1 in this example) can be easily achieved by
network coding, whereas two rounds are needed to achieve the
multicast in the uncoded (traditional) routing case, assuming
unit capacity edges. Because of such benefits, network coding
can be used in wireless ad-hoc networks or sensor networks to
help conserve energy and to increase the overall throughput.

Fig. 1. An example of network coding on a Wheatstone Bridge

B. Network Coding in Ad-hoc Wireless Networks
In [15], Ramamoorthy et al. modeled the capacities of the

connected edges in a wireless network as a Weighted Random
Geometric Graph (GWRGG) and considered the single source
multicast problem.

Definition 1 (Single Source Multicast Problem): Let G =
(V,E) be a graph with vertex set V and edge set E rep-
resenting a network. Let S ⊆ V be a set of sources (origins)
and T ⊆ V be a set of terminals (destinations). The multicast
problem is to distribute the messages from the senders s ∈ S
to all terminal nodes t ∈ T , allowing routing along the edges
of G. In network coding, the vertices are allowed to encode the
incoming bits (or packets) and send encoded versions along
the outgoing edges. A single source multicast problem is the
special case where one has a single sender, that is, |S| = 1.

Ramamoorthy et al. extended the results proved by Karger
et al. in [9] and used them to derive bounds for coding capacity
for a single source multicast problem in a network comprised
of a single source s, an intermediate network consisting of
n relay nodes, and l terminal nodes, having independent
and identically distributed link capacities ∼ X between any
two nodes. They showed that the network coding capacity is
concentrated around the value nE[X] in such a network.

In this paper, we extend their work to a more general and
more realistic model that we call the Quasi Random Geometric

Graph model (GQRGG). We derive high-probability bounds for
the network coding capacity of such graphs.

III. MODELING RANDOM WIRELESS NETWORKS

In this section, we present our new model and study the
capacity of a minimum cut in a random wireless network.

Let r be a real number in the range 0 ≤ r ≤ 1. Recall that
a Random Geometric Graph is a graph GRGG = (V,E) with
n nodes selected independently and uniformly at random from
the unit square [0, 1]2 in which any two nodes u and v in V are
connected by an edge (u, v) in E if and only if the Euclidean
distance d(u, v) ≤ r. Such a graph is rough approximation of
wireless networks.

Random geometric graphs have been popular in wireless
mobile ad-hoc networks literature, since it is a theoretical
model of the network topology that is easy to analyze. How-
ever, it does not realistically model the area of transmission,
which is, in general, not a disk of radius r. Recently, a
more realistic model for connectivity was proposed by Kuhn,
Wattenhofer, and Zollinger [11]. In their model, two nodes u
and v may or may not be connected when their Euclidean
distance d(u, v) is within the range r < d(u, v) ≤ r′, see
Fig. 2. We use random instances of such quasi-disk graphs to
model the dynamically changing network topology in wireless
random ad-hoc networks.

Fig. 2. The transmission range and Quasi Disk Graph Representation for a
node

Definition 2 (Quasi Random Geometric Graph (GQRGG)):
Let r and r′ be two real numbers in the range 0 ≤ r < r′ ≤ 1.
Let V be a set of n nodes that are selected independently and
uniformly at random from the unit square [0, 1]2. If u and v
are two nodes in V , then

1) (u, v) ∈ E if d(u, v) ≤ r;
2) (u, v) /∈ E if d(u, v) > r′;
3) (u, v) ∈ E with probability p if r < d(u, v) ≤ r′.

We call GQRGG = (V,E) a quasi random geometric graph.

The difference between quasi random geometric graphs and
random geometric graphs is that nodes at distance d within the
range r < d ≤ r′ may or may not be connected; this models
the connectivity in a more realistic way.

Remark 3: Instead of having a fixed probability p for the
connectivity of nodes within distance d in the range r < d ≤
r′, one can use a function p(d) that associates a probability



that depends on the distance to model the attenuation of the
signal. Such a change is of course straightforward. We give
one example in Section V.

In this paper, we consider the problem of single-source
multicasts in such quasi random geometric graphs. Our main
concern is to provide a lower bound for the capacity of network
coding in this situation. Before defining the capacity, we need
to further detail our model of connectivity.

Definition 4 (Connectivity Graph): Let s be a source node,
T a set of terminal nodes, and R a set of relay nodes. We define
a connectivity graph G = (V,E) as a graph with vertex set
V = {s} ∪ R ∪ T such that G ∈ GQRGG; in particular, the
vertices are located in a unit square. We assume further that
the source node only sends messages and terminal nodes only
receive messages; in particular, the source and terminal nodes
do not relay any messages. Furthermore, we assume that the
source and the terminal nodes do not communicate directly;
thus, any message is routed through at least one relay node.

We assume that the edges in the connectivity graph represent
links with unit capacity. Put differently, we assume that the
capacity Cij for i, j in V is given by

Cij =
{

1 if (i, j) ∈ E,
0 otherwise.

We note that Cij = Cji, since the graph is undirected.
Definition 5 (A Cut and its Capacity): Let G = (V,E) be

a connectivity graph with source node s, a set T of terminal
nodes, and a set R of relay nodes such that V = {s}∪R∪T .
Let t be a terminal node in T . An s-t-cut of size k in the
connectivity graph G is a partition of the set of relay nodes
R into two sets Vk and V k such that

(i) |Vk| = k and |V k| = n− k;
(ii) R = Vk ∪ Vk and Vk ∩ Vk = ∅.

The edges crossing the cut are given by
1) E ∩ {(s, i)|i ∈ V k};
2) E ∩ {(j, t)|j ∈ Vk};
3) E ∩ {(j, i)|j ∈ Vk and i ∈ Vk}.

In other words, the source node s and the relay nodes Vk are
on one side of the cut, whereas the relay nodes Vk and the
terminal node t on the other side of the cut. The total capacity
of an s-t-cut of size k is given by

Ck =
∑
i∈Vk

Csi +
∑
j∈Vk

∑
i∈Vk

Cji +
∑
j∈Vk

Cjt. (1)

IV. BOUNDS AND RESULTS

In this section, we bound the network coding capacity of a
connectivity graph, where the connections of the relay nodes
form an instance of a quasi random geometric graph.

Let G = (V,E) be a connectivity graph such that the vertex
set V consists of a source node s, a set of terminal nodes
T , and a set of relay nodes R, that is, V = {s} ∪ T ∪ R.
Recall that two nodes u and v in G are connected by an
edge with probability 1 if d(u, v) ≤ r, with probability p if
r < d(u, v) ≤ r′, and with probability 0 otherwise. Therefore,

the probability p′ that two nodes u and v are connected can
be bounded by

1
4
(
πr2 + π(r′2 − r2)p

)
≤ p′ ≤ πr2 + π(r′2 − r2)p. (2)

The motivation for the lower bound stems from the fact that
one of the nodes might be located in one of the corners of the
unit square. The upper bound is a straightforward consequence
of our connectivity rules.

These elementary observations allow us to bound the ex-
pected value of the cut Ck. By equation (1), we have

E[Ck] =
∑
i∈Vk

E[Csi] +
∑
j∈Vk

∑
i∈Vk

E[Cji] +
∑
j∈Vk

E[Cjt]

= p′(n + k(n− k)).

In particular, E[Ck] = E[Cn−k] holds for all k in the range
0 ≤ k ≤ n. Furthermore, we have

E[C0] = E[Cn] ≤ E[C1] = E[Cn−1] ≤ · · · ≤ E[Cdn/2e].

Our goal is to prove that the capacity Ck of an s-t-cut is
concentrated around its expected value. A technical difficulty
arises because the edges between relay nodes in the graph G
are in general not mutually independent. Indeed, if two relay
nodes u and v are connected, and u is connected to yet another
relay node w, then there is a good chance that v is connected
to w. Put differently, we have

Pr[(v, w) ∈ E|(u, v) ∈ E, (u, w) ∈ E] > Pr[(v, w) ∈ E],

whence the three events (u, v) ∈ E, (u, w) ∈ E, and (v, w) ∈
E are not independent. In Fig. 3, we sketch different geometric
situations between two nodes; positioning a node w within the
transmission range of u nicely illustrates the intuition behind
this fact.

Fig. 3. Consider two relay nodes u and v of G|R. Subfigure (a) illustrates
the situation when the two nodes are not connected and far apart. The
other subfigures illustrate the following situations: (b) d(u, v) ≤ r, (c)
r < d(u, v) ≤ r′, and (d) 2r < d(u, v) ≤ r + r′.

However, certain edges in a connectivity graph are indepen-
dent. Indeed, all edges that are incident with a fixed (common)
vertex are independent, since the coordinates of the vertices
in the underlying quasi geometric random graph are chosen
independently and uniformly at random. Consequently, the
random variables in the set {Cij | j ∈ I}, where i is fixed,
are independent. We will take advantage of this fact in our



proof of the concentration result. To that end, recall Chernoff’s
bound for sums of independent Bernoulli random variables.

Lemma 6 (Chernoff bound): Let X1, . . . , Xm be indepen-
dent Bernoulli random variables such that Pr[Xk = 1] = p′

and Pr[Xk = 0] = 1 − p′, and let X =
∑m

k=1 Xk. For
0 < ε < 1, we have

Pr[X ≤ (1− ε)E[X]] ≤ exp(−E[X]ε2/2).
Proof: See, for instance, [13, p. 66] for a proof of this

well-known bound.
In the proof of the next result, we are going to take

advantage of the following simple fact. Let Z1, . . . , Zk+1 be
k + 1 random variables. Then the event Z1 + · · ·+ Zk+1 ≤ ε
is contained in the event

⋃k+1
`=1

(
Z` ≤ ε/(k + 1)

)
; hence, the

union bound yields

Pr

[
k+1∑
`=1

Z` ≤ ε

]
≤

k+1∑
`=1

Pr [Z` ≤ ε/(k + 1)] .

Theorem 7: The capacity Ck of a cut of size k in a quasi
random geometric graph satisfies

Pr[Ck ≤ (1− ε)E[Ck]] ≤ exp
(

ln(k + 1)− ε2(n− k)p′

8

)
.

Proof: Recall that the capacity Ck of a cut

({s} ∪ Vk;V k ∪ {t}),

is given by equation (1), which we can rewrite in the form

Ck =
∑
i∈V k

Csi +
∑
j∈Vk

∑
i∈V k∪{t}

Cji. (3)

We split this sum into k + 1 simpler parts. Let

Ys =
∑
i∈V k

Csi and Yj =
∑

i∈V k∪{t}

Cji for j ∈ Vk.

The random variable Y` counts the number of edges that are
incident with the node ` ∈ {s} ∪ Vk. In a quasi random
geometric graph, the edges incident with a fixed vertex ` are
independent; hence, Y` is a sum of the independent Bernoulli
random variables C`i.

Equation (3) can now be written as a sum of the k + 1
random variables Ck =

∑
`∈{s}∪Vk

Y`. It follows that

Pr[Ck −E[Ck] ≤ −εE[Ck]]

≤ Pr

 ⋃
`∈{s}∪Vk

(
Y` −E[Y`] ≤ − ε

k + 1
E[Ck]

)
≤

∑
`∈{s}∪Vk

Pr
[
Y` −E[Y`] ≤ − ε

k + 1
E[Ck]

]
Recall that E[Ys] = p′(n − k) and E[Y`] = p′(n − k + 1),
where ` ∈ Vk. Using the Chernoff bound, we obtain

Pr[Ys −E[Ys] ≤ −εE[Ck]/(k + 1)]
≤ Pr[Ys −E[Ys] ≤ −ε(k + 1)E[Ys]/(k + 1)]

≤ exp(−ε2E[Ys]/2) = exp(−ε(n− k)p′/2)
≤ exp(−ε(n− k)p′/8).

For a cut of size k ≥ 1, we can obtain for the random variables
Y` with ` ∈ Vk the following bound:

Pr[Y` −E[Y`] ≤ −εE[Ck]/(k + 1)]
= Pr[Y` −E[Y`] ≤ −εkE[Y`]/(k + 1)]

≤ exp(−ε2E[Y`]k2/(2(k + 1)2))

≤ exp(−ε2(n− k)p′/8),

where the last inequality follows from the inequalities 1/4 ≤
k2/(k + 1)2 for all k ≥ 1, and E[Y`] = p′(n − k + 1) ≥
p′(n− k).

The claim follows by combining these bounds.
In the next two theorems, we are going to show that when

the number n of relay nodes is large, then the capacity of a
minimum cut is—with high probability—concentrated about
the value np′ = E[C0].

Theorem 8: Let G be a connectivity graph with one source
node s, n relay nodes, and a set T of terminal nodes. Then,
with probability 1 − O(τ/n2), where τ = |T |, the network
coding capacity Cs,T of G is bounded from below by

Cs,T ≥ (1− ε)E[C0], where ε =

√
26 lnn

np′
,

where p′ satisfies (2).
Proof: Let Cmin(s, t) denote the capacity of a minimum

s-t-cut. Let us assume further that this minimum cut has size
k, that is, Cmin(s, t) = Ck. By exchanging the role of s
and t if necessary, we may assume that k is in the range
0 ≤ k ≤ dn/2e. Since E[Ck] ≥ E[C0] holds for all cut sizes
k, we have

Pr[Cmin(s, t) < (1− ε)E[C0]] ≤ Pr[Ck < (1− ε)E[Ck]]
≤ exp(ln(k + 1)− ε2(n− k)p′/8)

where the last inequality follows from the previous theorem.
Substituting the value of ε from the hypothesis yields

Pr[Cmin < (1− ε)E[C0]] = O(1/n2).

Consequently, the probability that the network coding capacity
Cs,T will be below the value (1− ε)E[C0] can be bounded by

Pr[Cs,T < (1− ε)E[C0]]

≤ Pr

[⋃
t∈T

(Cmin(s, t) < (1− ε)E[C0])

]
≤
∑
t∈T

Pr[Cmin(s, t) < (1− ε)E[C0]]

= O(τ/n2),

as claimed.
We complement the above lower bound by a high-

probability upper bound on the network coding capacity.
Theorem 9: Let G be a connectivity graph with one source

node s, n relay nodes, and a set T of terminal nodes. Then,
with probability 1−O(1/n4/3), the network coding capacity
Cs,T of G is bounded from above by

Cs,T ≤ (1 + ε)E[C0], where ε =

√
4 ln n

E[C0]
.



Proof: If the network coding capacity Cs,T exceeds the
value (1 + ε)E[C0], then the capacity of any s-t-cut, for any
t ∈ T , must exceed that value as well; in particular, the cut
({s};R∪T ) must have capacity exceeding (1+ε)E[C0]. Since
we assume that the source node is not directly connected to
any terminal node, we obtain

Pr[Cs,T > (1 + ε)E[C0]]
≤ Pr[

∑
r∈R Csr > (1 + ε)E[C0]]

≤ Pr[|
∑

r∈R Csr −E[C0]| > εE[C0]]

The indicator random variables Csr, with r ∈ R, are mutually
independent, as the location of the relay nodes are indepen-
dently and identically distributed in the unit square. Recall that
one version of the Chernoff bound for independent identically
distributed indicator random variables Xi with Pr[Xi = 1] =
p′ is given by Pr[|

∑n
i=1 Xi − np′| > t] < 2 exp(−t2/3np′).

Applying this bound to the indicator random variables Csr

yields

Pr[|
∑

r∈RCsr −E[C0]| > εE[C0]]
< 2 exp(−ε2E[C0]2/(3E[C0]))

= 2 exp
(
− 4 ln n

E[C0]
E[C0]2

3E[C0]

)
= O(n−4/3),

which proves the claim.
Remark 10: Our results easily generalize to more general

substrates of unit area (not just unit squares), as long as
the assumption holds that the nodes are uniformly distributed
over the area. The concentration results are not affected by
such a change, but the connectivity probability p′ might be
dramatically different. For instance, if the area is a rectangle
that is ε high and 1/ε wide, then p′ approaches 0 as ε
approaches 0.

V. SIMULATIONS AND EXPERIMENTS

We conducted simulations for various instances of GQRGG

using different parameters. Our simulation results support the
high probability bounds on the network coding capacity given
in Theorems 9 and 10.

In a first experiment, we determined the minimum capacity
of an s-t cut for different instances of a connectivity graph
in GQRGG with a fixed number of nodes. Fig. 4 shows the
results of such an experiment with n = 200 relay nodes. The
radio transmission range is chosen such that within a radius
of r = 0.1 the connectivity is guaranteed and up to a radius
of r′ = 0.2 one might get connected. The plot shows that the
capacity of the network is concentrated around the expected
value of 13 which is in agreement with Theorem 9 and 10 for
the above values of n, r and r′.

Fig. 5 shows the result of a second experiment. This time,
the number of relay nodes is once again n = 200, but
the transmission range is higher, namely the inner radius
equals r = 0.13 and outer radius equals r′ = 0.18. We
generated random instances of GQRGG with these parameters
and determined the minimum cut. One can easily see that the
capacity of the network is likely to be higher, as expected.

Fig. 4. n=200, r=0.1, r′ = 0.2

Fig. 5. n=200, r=0.13, r′ = 0.18

For larger n, we could observe that the histograms become
more concentrated around the expected capacity of a minimum
cut, as predicted by our theory.

In a third series of experiments, we simulated the increase
of capacity of the minimum cut for different values of r and
n. In this case, we also modeled the connectivity probability
as a decreasing function of distance, following Remark 3,

p =

(
1−

√
d(i, j)2 − r2

r′2 − r2

)
pconnection,

where d(i, j) is the Euclidean distance between any two
nodes i and j such that r < |d(i, j)| < r′, and pconnection

is a probability that accounts for the interference noise in
communication.

As it can be seen from Fig. 6, the value of the capacity
grows more rapidly for lower values of r. This is intuitive
because in that case not many nodes are connected for small
values of n. As we increase n but keep r constant, the capacity
of the minimum cut must increase, since more and more nodes
are packed in the same area.



Fig. 6. The capacity of s-t minimum cuts with different values of n and r

VI. CONCLUSION

We modeled a wireless network using quasi random geomet-
ric graphs and showed that the capacity of the minimum cut of
network coding is concentrated around the value np′ = E[C0],
where n denotes the number of relay nodes and p′ denotes the
average connection probability. We obtained high probability
bounds for this model without making simplifying assumption
about the independence of the edges. More realistic models
(for example, when the probability of connectivity drops ex-
ponentially with distance to account for signal attenuation) can
be easily incorporated into our framework without changing
the theory in a significant way.
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