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Abstract— End-to-end active network monitoring infers net-
work characteristics by sending and collecting probe packets
from the network edge, while probes traverse the network
through multicast trees or a mesh of unicast paths. Most
reported methods consider given source and receiver locations
and study the path selection and the associated estimation
algorithms. In this paper, we show that appropriately choosing
the number of sources and receivers, as well as their location,
may have a significant effect on the accuracy of the estimation;
we also give guidelines on how to choose the best “points
of view” of a network for link loss monitoring purposes.
Though this observation applies across all monitoring meth-
ods, we consider, in particular, networks where nodes are
equipped with network coding capabilities; our framework
includes as special cases the scenarios of pure multicast and
network coding. We show that, in network-coding enabled
networks, multiple source active monitoring can exploit these
capabilities to estimate link loss rates more efficiently than
purely tomographic methods. To address the complexity of
the estimation problem for large networks, we also propose
efficient algorithms, including the decomposition into smaller
multicast inference problems, belief-propagation, and a MINC-
like algorithm.

I. I NTRODUCTION

Network monitoring is an important component of net-
work engineering. For small-scale networks, local monitor-
ing of link characteristics, such as loss rates, delay and
bandwidth, is feasible. However, for large-scale networks,
as well as for interconnections of diverse networks with
distributed control over them, local monitoring becomes
difficult. Therefore, it is desirable to be able to infer network
characteristics through end-to-end measurements. Over the
past decade, significant progress has been made in inferring
network characteristics using end-to-end measurements, also
known as tomographic techniques. Most of the tomography
work has focused on sending active probes from a single
source node through a multicast network and using the
probes observed at the receivers to estimate the metric of
interest [1]; this work has also been extended to unicast [2]
measurements and to multiple sources [3], [4].

In this paper, we are also interested in estimating link loss
rates using end-to-end measurements. One aspect we explore
is the effect of the placement of sources and receivers on the
link-loss estimation. The placement of sources and receivers
gives us different “views” of the network: we show that
the “points of view” matters in terms of estimation error.
This observation is of course applicable to the tomographic
methods as well. However, we explore this idea specifically

in the context of networks that already havenetwork coding
functionalities deployed. We show that in such networks,
multiple source active monitoring can exploit the network
coding capabilities to better estimate the metric of interest,
which in our case is the link-loss rates.

Our interest in network-coding enabled networks is mo-
tivated by the fact that network coding seems likely to
be included in future networks. The pioneering work in
[5], [6] showed that for multicast networks, if intermediate
nodes can do simple local XOR-operations on incoming
packets, then one can achieve the min-cut throughput of the
network to each receiver. These linearly combined packets
can then be utilized at the end-receivers to recover the
original information symbols by solving a set of linear
equations over a finite field [7]. This breakthrough idea has
spawned a significant effort in applying network coding to
other network topologies, developing practical algorithms
that achieve this performance, as well as quantifying the
throughput benefits of network coding [8]. In terms of
applications, the network coding idea is well-matched to
content distribution over peer-to-peer networks as seen by
several ongoing projects for this application [9], [10]. Ithas
also been shown that network coding can bring benefits in
multihop wireless networks [11].

Motivated by the fact that, in the future, network coding
can be deployed in large scale networks, we explore how we
can utilize it for efficient network monitoring. For example,
this idea is suited for overlay networks [12] or for multihop
wireless networks [11] since (i) performance monitoring is
particular important for the control of such networks [13],
[14] and (ii) network coding could be deployed incremen-
tally on their nodes (unlike legacy routers). In general, our
approach is applicable to any network where network coding
is deployed.

This paper builds on our previous work [15], where we
first introduced the idea of exploiting network coding to
estimate link-loss rates, using a toy example topology. In this
paper, we further demonstrate the benefits of this approach:
when intermediate nodes linearly combine incoming probes
from multiple sources, we can have the benefits of using
multiple sourceswithout increasing the load on the links.
In addition, we investigate the best point of view, i.e.,
the best choice of sources and receivers. Combining the
two, we show that we can obtain faster convergence rates
using multiple sources and appropriately chosen views of



the network than when using multicast probes.
Note that the loss rate can be different on the two

directions of the same link. We show that, both in the
cases of symmetric and asymmetric link-loss rates, we can
estimate the loss rates with much fewer “views” of the
network, by using multiple sources than having a single
source.

The main contributions of this paper are the following.
We observe that the placement of sources and receivers are
an important aspect of the design of a network monitoring
system. We explore this in the context of networks with
network coding functionalities and we develop properties
of estimators. We propose several computationally efficient
algorithms that are suitable for large networks. One method
is based on the belief propagation algorithm [16] which has
had a lot of success in error correcting codes on graphs. An
alternative method is based on decomposing the network
into sub-networks and solving multiple multicast inference
problems. Overall, we show that we can significantly im-
prove link-loss estimation over previous purely tomographic
methods by (i) using multiple sources (ii) appropriately
choosing their location and (iii) exploiting the network
coding capabilities of the underlying network.

The paper is organized as follows. In Section II we define
the problem. In Section III, we study a basic topology,
estimate the loss rate of a single link, and illustrate the
importance of multiple sources and the network view. In
Section IV, we extend these ideas to larger networks and to
estimating loss rates for all links; we also give guidelines
on how to place the sources and receivers. In Section V, we
develop efficient heuristics suitable for large networks and
evaluate their performance via simulation. Sections VI and
VII provide the discussion and conclusion respectively.

II. PROBLEM STATEMENT

A. Motivating Example

The following example illustrates the use of network
coding to infer the loss rate of a single link [15].

Consider the basic topology shown in Fig. 1. In particular
consider Case 1, where nodesA and B send probes and
nodesE and F receive them. Our goal is to measure the
loss rate of the linkCD, using probes fromA, B and
observations atE, F . Node A sends to nodeC a probe
packet with payload that contains the binary stringx1 =
[1 0]. Similarly, the nodeB sends probe packetx2 = [0 1]
to nodeC. If node C receives onlyx1 or only x2 then it
just forwards the received packet to nodeD; if C receives
both packetsx1 andx2, then it creates a new packet, with
payload their linear combinationx3 = [1 1], and forwards
it to nodeD; more generallyx3 = x1 ⊗x2, where⊗ is bit-
wise XOR operation. NodeD sends the incoming packetx3

to both outgoing linksDE and DF . All above operations
happen in one “ time slot”, which is to be defined.

In every time slot, probes(x1, x2) are sent fromA, B

and may reachE, F , depending on a random experiment:
on every link in{AC, BC, CD, DE, DF}, the transmitted
packet is lost with probabilityαlink. The possible outcomes
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Fig. 1. Basic 5-links topology. Four possible cases (choices of sources and
receivers) that allow to calculate the loss rate of linkCD, when neither
C or D are edge nodes, by sending and receiving probe packets from the
edge nodesA, B, E andF .

observed at nodesE andF are summarized in the left two
columns of Table I. The five right columns at the same table
show the combination of loss and success events on the links
that lead to the observed outcome. For example, the outcome
(x1, x1) is due to the event(AC = 1, BC = 0, CD =
1, DE = 1, DF = 1) and happens with probability(1 −
αAC)(αBC)(1 − αCD)(1− αDE)(1 −αDF ). Similarly, we
can write the probability of each of the 10 observed events
as a function of the link loss probabilities. The problem
then becomes how to estimateαCD from the observations
at E, F .

B. Estimation Problem for a General Tree

Consider a networkG = (V, E), with nodesV and logical
links E. Although we demonstrate our ideas using trees
for most of the paper, they are also applicable to general
graphs, as discussed in section VI.A. Let each linke ∈ E

have an associated loss rateαe, which we are interested in
estimating. Note that logical links could consist of several
physical links in cascade, and can thus have a much larger
packet loss rate than physical links.

We assume that probes can be sent in either direction of a
link. Each direction is in general associated with a different
link loss rate. We will call a network “undirectional” if
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Received at Is link ok?
E F AC BC CD DE DF
0 0 Multiple possible events
x1 – 1 0 1 1 0
x2 – 0 1 1 1 0
x3 – 1 1 1 1 0
– x1 1 0 1 0 1
x1 x1 1 0 1 1 1
– x2 0 1 1 0 1
x2 x2 0 1 1 1 1
– x3 1 1 1 0 1
x3 x3 1 1 1 1 1

TABLE I

POSSIBLE OBSERVED PROBES AT NODESE AND F , TOGETHER WITH

THE COMBINATION OF LOSS(0) AND SUCCESS(1) IN ALL FIVE LINKS

THAT LED TO THE OBSERVED OUTCOME.

the loss rate of a link is the same in both directions, and
“directional” if the link loss rates are different in opposite
directions. Undirectional networks may include for example
wireless networks, while directional networks can be due
for example to non-overlapping overlay paths with different
congestion levels. For most of the paper, we focus on
undirectional networks, and address the case of directional
networks in Sec. IV-B.

We injectn probes from each source and make measure-
ments only at the network edge (e.g. at the leaf nodes of the
tree). We denote this set of potential sources or receivers
as L ⊂ V , the sources byS ⊂ L and the receivers by
R ⊂ L. Each set of probes injected, one from every source,
corresponds to one experiment, or one timeslot.

We assume that the internal nodes of the network which
are neither sources or receivers (V \(S ∪R)) are capable of
doing the simplest network coding operation:XOR incoming
probes before forwarding them to all outgoing links. If a
packet is lost, only those packets that arrive at the internal
node within a given time-window are linearly combined.
Nodes that perform suchXOR operations are calledcoding
points. Note that the number of coding points might be quite
small. For example, in a tree topology with two sources,
there exists exactly one coding point, irrespective of the
number of intermediate nodes since the two probe packet
flows from the two sources can meet only once. Generally
in a tree with|S| sources we have at most|S| − 1 coding
points.

With network coding, unlike the multicast trees approach,
using multiple sources does not increase the required band-
width: even though|S| probes are injected into the network,
each link carries only theXOR of the probes it receives,
therefore at most one packet.

Given a certain topology, and choice of sources and
receivers, the goal is to infer the link-loss rates{αe}. The
setsS,R should be chosen to give the “view” of the network
which yields the best estimation of these parameters.

At the receiver setR, we observe the outcome of sending
the probe packets from the source setS. At timeslot (exper-
iment) i, each source sends one probe packet. Each receiver
r ∈ R observesX(i)

r , which can either be∅, i.e., it receives
nothing, or some linear combination of the source packets

that is determined by the topology and the loss pattern. Let
{X

(i)
r } denote the set of outcomes at timei for all receivers

r ∈ R. If we assume that successive probes experience
independent losses after sendingn probes we can write the
probability of observing a set of events as

p({X(1)
r }, . . . , {X(n)

r }; {αe}) =

n
∏

i=1

p({X(i)
r }; {αe}).

This probability can also be related to the counts of the
various linear combinations received. The maximum likeli-
hood estimate (MLE) of the link-loss probabilities aftern

observations is

{α̂e} = argmax L({αe}) =

= arg max log p({X(1)
r }, . . . , {X(n)

r }; {αe}).
(1)

In later sections, we examine the performance of the MLE
as well as of some computationally efficient sub-optimal
estimators. For the rest of this paper we will assume that
losses occur independently across links. This assumption
allows to simplify the expression of our estimator in (1); if
it does not hold, the expressions become more complicated
but the principle of the approach remains the same.

The quality of the estimation for a single linke is captured
by themean-squared errormetric, i.e.,

MSE = E[|α̂e − αe|
2],

whereα̂e is the estimator based on the observations onR

of sourcesS, andαe is the true value of the loss rate one.
In order to get a measure of performance for the set of

estimators across all linkse ∈ E, we need a metric that
summarizes all links. We use an entropy measureENT that
captures the residual uncertainty. Since we expect the scaled
estimation errors to be asymptotically Gaussian (similar to
the case in [1]), we define the quality of the estimation across
all links as

ENT =
∑

e∈E

log
(

E[α̂e − αe]
2
)

, (2)

which is a shifted version of the entropy of independent
Gaussian random variables with the given variances [17]. If
the entire error covariance matrixR is available, then we can
compute the metric asENT = log detR, which captures
also the correlations among the errors on different links. The
metric ENT as defined above captures only the diagonal
elements ofR, i.e., theMSE for each link independently
of the others.

Under mild regularity conditions (see for example Chapter
7 in [18]), the scaled (by sample sizen) asymptotic covari-
ance matrix of the optimal estimator is lower-bounded1 by
the Cramer-Rao boundI−1. The Fisher information matrix
I is a square matrix with elementIp,q defined as

Ip,q({αe}) =

E

[

∂

∂αp

log p({Xr}; {αe})
∂

∂αq

log p({Xr}; {αe})

]

,
(3)

1For symmetric matricesA ≥ B means thatA − B is positive semi-
definite.
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whereαp, αq the loss probabilities of two links. In particular,
under the regularity conditions, the MLE is asymptotically
efficient, i.e., it asymptotically (in sample size) achieves this
lower bound.2 Hence the asymptotic error covariance matrix
of the MLE is approximately1

n
I−1. Therefore, we study

the behavior of the Fisher information matrix for different
topologies and network views as a basis of comparison; we
can then lower bound the asymptotic mean-squared errors
by examining the Fisher information matrix.

III. O PTIMAL ESTIMATION OF A SINGLE L INK

In this section, we are interested in estimating the loss
rate on asingle link, typically in the middle of the network,
by sending and observing probes from the edge. Let us
revisit Fig. 1 and estimate the loss rate on linkCD. Apart
from illustrating our approach this basic 5-links topologyis
important in two ways: (i) it is the basic structure required
for link CD to be identifiable as we discuss in the following
subsection and (ii) any arbitrary topology can be reduced to
this basic topology, if we view all links (except the link of
interestCD) as directed paths from/to edge nodesA, B, E

and F , with the same loss rates as their equivalent links.
For example, a path fromA to C, denoted as(A, C), can
be reduced to linkAC with loss rateαAC the overall path
loss rate.

A. Four Cases of Identifiability

A link e ∈ E is said to beidentifiable if it is possible
to estimate the associated loss-rateαe by sending probing
packets from nodes inS to nodes inR.

Fig. 1 depicts the four cases, i.e. choices of sources and
receivers, that form the basic structures for the identifiability
of the loss rate of linkCD, when neitherC or D are edge
nodes. Notice thatCases 1and3 use network coding with
2 sources and 2 receivers,Case 2uses a multicast tree with
source A, andCase 4uses a reverse multicast tree with sink
F. The necessary and sufficient conditions for identifiability,
first observed in [15], are summarized in the following:

Theorem 1:Given G = (V, E) and setsS andR, a link
CD is identifiable if and only if both conditions1 and 2
hold:
Condition 1: At least one of the following holds:
(a) C ∈ S.
(b) There exist two edge disjoint paths(A, C) and (B, C)
that do not employ edgeCD with A, B ∈ S.
(c) There exists two edge disjoint paths(A, C) and (C, B)
that do not employCD with A ∈ S, B ∈ R.
Condition 2: At least one of the following holds:
(a) D ∈ R.
(b) There exist two edge disjoint paths(D, E) and (D, F )
that do not employ edgeCD with E, F ∈ R.
(c) There exists two edge disjoint paths(E, D) and(D, F )
that do not employCD with E ∈ S, F ∈ R.

2In [1], it has been shown that the asymptotic mean-squared error
converges to this Fisher information bound for the multicast case. We
believe that this should also be true for the multiple sourcecase as well;
so far, we have only numerically verified it so in our simulations.

Sketch of Proof. The proof of Theorem 1 is based on the
observation thatC and D need to be branching points or
edge nodes, otherwise the link loss rate of edgeCD will
be indistinguishable from the loss rate of an ascendent or a
descendant edge. �

In [15] we considered the case where nodesA, B, E

and F were constrained to belong in eitherS or in R,
and showed that use of network coding operations increases
the number of identifiable links. Here, we assume that
A, B, E and F are allowed to act as either sources or
receivers. Our observation is that our choice of sources and
receivers impacts the accuracy of our estimator; i.e., for a
fixed number of probes, each topology leads to a different
estimation accuracy. This implies that to achieve the same
MSE, we may need to use a different number of probes
for each topology.

B. Performance Comparison of the Four Cases

In Fig. 2 we assume that all5 links haveα = 0.3 and we
look at the convergence of the MLE vs. number of probes
for Case 1(using network coding) and forCase 2(multicast
probes with sourceA). Fig. 2(a) shows the estimated value
(for one loss realization). Both estimators converge to the
true value, with the network coding being only slightly faster
in this scenario.

In Fig.2(b) we plot the mean-squared error of the MLE for
Case 1(using network coding) and forCase 2(multicast)
across number of probes. For comparison, we have also plot-
ted the Cramer-Rao bound for linkCD, which is consistent
with the simulation results. For this scenario,Case 1does
slightly better thanCase 2but not by a significant amount.
This motivated us to exhaustively compare all four cases in
Fig. 1, for all combinations of loss rates on the5 links.

Fig. 3 plots the Cramer-Rao bound for the four cases as a
function of the link-loss probability at the middle link. The
left plot assumes thatα is the same for five links, while the
right plot looks at the case where the edge links have fixed
loss rate equal to0.5. We observe thatCase 1shows to
achieve a lowerMSE bound. Interestingly, the curves for
Case 2(multicast) andCase 4(reverse multicast) coincide.
The difference between the performance of different cases
is more evident in the right plot (Fig. 3(b)).

In Fig. 4, we systematically consider possible combi-
nations of loss rates on the 5 links and we show which
case estimates better the middle link. In the left figure,
we assume that all edge links have the same loss rate
and observe that for most combinations of(αmiddle, αedge),
Case 1(shown in “+”) performs better. In the right plot,
we assume that the middle link is fixed atαCD = 0.8 and
that αAC = αBC = αs,αDE = αDF = αr. Considering all
combinations (αs,αr), each one of the four cases dominates
for some scenarios. An interesting observation is, again, the
symmetry betweenCase 2(multicast) andCase 4(reverse
multicast). We prove in the next section that this symmetry
holds over general trees.
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IV. ESTIMATION OF ALL L INKS IN A TREE

So far we studied the basic 5-links topology and focused
on estimating a single link. In this section, we study larger

trees and the estimation of all links. We show that several
observations from the basic 5-links topology extend to
general trees.

5



A. Dual Configurations and Reversibility

Consider a tree withL leave nodes, whereS leaves act
as sources and the remainingR = L\ S act as receivers of
probes, and a given compatible orientation of the links. We
refer as “dual configuration” the configuration that results
from reversing the orientation of all links in the network,
and from having theS sources become receivers, while the
R receivers act as sources. We show that, for the purposes of
parameter estimation, the associated ML estimator function
for a network and its dual is the same.

For example, a multicast tree is the dual configuration
of an inverse multicast tree (Case2 and 4 in Fig. 1). In
Section III , we saw in Fig. 3(a) and Fig. 4(b) that the dual
configurations resulted in the same mean square error bound.
In fact, we observed that their associated ML estimator
functions coincide. The following theorem generalizes this
notion to arbitrary tree-like networks.

Theorem 2:The ML estimator for a tree configuration
and its dual coincide.

Proof: Let G = (V, E) be the original tree, with
|E| = n, and Gd its dual. For every probe trial, there
exist2n possible error events, depending on which links fail.
Observing the outcomes at the receiver nodes corresponds
to observing unions of such events, that occur with the
corresponding probability. For a given configuration, the
ML estimator depends on the observable outcomes at the
receiver nodes. Therefore, it is sufficient to show that a
network and its dual have effectively the same set of
observable outcomes. In particular, we will show that for
every observable outcome, that occurs with probabilityp in
G, there exists exactly one observable outcome that occurs
with the same probability inGd and vice-versa, and thus
establish a bijection.

With every edgee of G, we can associate a set of sources
S(e) ⊂ V that flow through this edge, and a set of receivers
R(e) ⊂ V that observe the flow throughe. Our main
observation is that the pair{S(e), R(e)} uniquely identifies
e, i.e., no other edge has the same pair. In the dual network
Gd, edgee is uniquely identified by the pair{R(e), S(e)}.
If in G edgee fails while all other edges do not, the receivers
R(e) will not receive the contribution in the probe packets of
the sourcesS(e). If in Gd edgee fails while all other edges
do not, the receiversS(e) will not receive the contribution in
the probe packets of the sourcesR(e). Thus there is a one-to-
one mapping between these events. Using this equivalence,
an observable outcome consisting of a union of events can
be mapped to an observable outcome at the reverse tree.

Note that this theorem establishes reversibility only for
the maximum likelihood estimation. The performance of
suboptimal algorithms might differ when applied to a con-
figuration and its dual.

B. Measuring Directional Networks

We now examine the case where the loss rates are
different in the two directions of a link. Our basic obser-
vation is that it is sufficient to send probes over only two
configurations: the original and its dual.

Theorem 3:Consider a tree configuration with|L| leaves.
We are interested in measuring the loss rates in both direc-
tions for all links of the tree. Using network coding saves
a factor of|L| in bandwidth usage by probes, compared to
the multicast tree approach.

Proof: Consider a tree configuration with|L| leaves.
To measure the link loss rates in both directions for all edges
of the tree, using the multicast approach, we need to useL
multicast trees. Indeed, lete = AC be the link adjacent to
leaf A ∈ L, we can measureαAC only if A is the root
of the multicast tree. Using the network coding approach,
for any choice of sources and receivers, we only need to
perform two rounds of measurements: one on the network
G and one on its dualGd.

The previous theorem can also be interpreted as a tradeoff
in directional measurement. We can either|L|-fold increase
the measurement bandwidth (using multicast probes), or
allow intermediate nodes to do linear combinations (network
coding). The former option keeps intermediate nodes simple
at the expense of using extra bandwidth. The latter option
sends exactly one probe per link for each measurement, but
requires some operations from intermediate nodes.

A consequence of the reversibility established in the
previous section is that, if we do not have a-priori knowledge
of the link loss rates, the optimal choice of sources and
receivers apply both to a configuration and its dual. That
is, reversing the configuration, from Theorem 2, does not
affect the estimation function, and thus will not lead to any
performance degradation.

C. Number and Position of Sources

In Section III we observed that the number of sources
and receivers affects the estimation accuracy for the basic
topology in Fig. 1. This idea extends to larger topologies.
In fact, not only the number of sources and receivers, but
also their relative position on the tree (the “viewing point”)
affect the estimation accuracy.

10R4

9R3

6 5

2 S2

4

8R2

3

1 S1

7 R1

α6

α5

α9

α8

α1 α7

α2

α3

α4

Fig. 5. A network topology with 9 links. The link orientations depicted
correspond to nodes1 and2 acting as sources of probes.

To illustrate these concepts we use the tree shown in
Fig. 5. We run simulations for three cases: (1) a multicast
tree with source at node1 (2) a multicast tree with source at
node2 (3) two sources at nodes1 and2 and a coding point

6



at 4.3 The same observations hold in this 9-link topology,
as for the basic topology of Fig. 1. Simulations results are
reported for this 9-link topology (and more extensive for a
larger 45-link topology) in section V.D. Here we just report
our observations and guidelines.

First, adding more than one source improves estimation;
intuitively, this is because coding points partition the tree
into smaller multicast components. Second, the number and
placement of sources matter. Third, between two multicast
trees with the same number of receivers, better performance
is achieved by the tree that is more “balanced” and has the
smallest height.

Elaborating on the first observation, note that in trees,
each intermediate node is a vertex cut set. For the example
of Fig. 5 node4 decomposes the tree into three components.
If node 4 could collect and produce probes, our estimation
problem would be reduced in estimating the link-loss rates
in three smaller multicast trees: the first tree consisting of
sourceS1 and receiversR1 and node4, the second tree with
sourceS2 and receiver nodes4, R3 and R4 and the third
tree with source node4 and receiverR2. Allowing node4
to XOR incoming packets approximates this functionality:
observing whetherR2 receives a packet that depends onx1

or x2, we can conclude on whether node4 received a packet
from S1 or S2 respectively.

The optimal selection of the number of sources and of
the best points of view is quite involved. In general, it is
a function of the network topology, the values of link-loss
rates, and possibly the number of employed probes. From
our simulation experiments, we found that the following
guidelines apply to a tree withL leaf nodes.

1) Select a fraction of sources to receivers that allows to
partition the tree into roughly equal-size4 subcompo-
nents, where each subcomponent should have at least
2 − 3 receivers.

2) Distribute the sources in roughly equal distances along
the periphery of the network.

V. A LGORITHMS AND SIMULATION RESULTS

The general ML estimator is computationally challenging
for large tree topologies. In this section we propose three
low complexity, yet efficient heuristics and evaluate them
through simulation.

A. Subtree Estimation Algorithm

Based on the intuition discussed in Sec. IV, this algo-
rithm partitions the tree into multicast subtrees separated by
coding points. Each coding point virtually acts as a receiver
for incoming flows and as a source for outgoing flows. As
a result, each subtree will either have a coding point as its
source, or will have at least one coding point as a receiver.

3For the configuration in Fig. 5, the probes could also get combined in
node5. That is, although the choice of sources and receivers automatically
determines the orientation of their adjacent links, there may still exist a
choice of coding points and orientation for the intermediate links.

4When links have similar loss rates, then “size” refers the number of
nodes/links. In general “size” also should capture how lossy the links in
the subcomponent are.

In each subtree, we can then use the tomographic method
proposed in [1].

Note that we can only observe packets received at the
edge of the network but not at the coding points. However,
we can still infer that information from the observations
at the receivers downstream from the coding point. The
fact that we infer the coding-points’ observations from the
leaves’ observations is what makes this algorithm subopti-
mal.

Subtree Estimation Algorithm

− Consider a graphG. Given a choice of sourcesS and
receiversR, the coding points are determined andG is
partitioned into|T | ≤ 2S − 1 subtrees.
− Each source sends one probe packet.Each receiver re-
ceives at most one probe packet.
− For each of the|T | subtrees:
If the multicast tree is rooted at a coding point:

• if any of the descendant receivers receives a probe, use
this experiment as a measurement on the subtree,

• otherwise, w.p.p assume a measurement happened
where no node inR received a probe packet, and w.p.
1 − p ignore the experiment.

If the multicast tree is rooted at a sourceSi:
Sequentially consider the descendant coding points that act
as receiver. For coding pointC:

• if no descendant receiversC(R) observed a probe,
assume, w.p.p, that C did receive a packet, and w.p.
1 − p, thatC did not receive a packet.

• otherwise

– if at least one ofC(R) observed a linear combi-
nation ofxi, deduce thatC receivedxi.

The probabilityp attempts to account for the fact that, if
none of the receivers inC(R) receives a packet, this might
be attributed to two distinct events: either the coding point
C itself did not receive a packet, orC did receive a packet,
which then got subsequently lost in the descendent edges.

For example, in Fig.5, consider the tree rooted atS1, if
R2 receivesx1 or x1 + x2 we deduce thatx1 was received
at node4. If R2 receivedx2, we deduce thatx1 was not
received at node4. If R2 does not receive a probe packet,
then, with probability1−p, we assume that4 did not receive
a probe packet. In general, the parameterp depend on the
graph structure and possibly prior information we may have
about the link-loss rates.

B. MINC-like Heuristic Algorithm

For every multicast node, we can use the MINC algorithm
described in [1]. For every coding point, we can use reverse
MINC, exploiting the reversibility property that we estab-
lished in previous section. In order to infer which probes
have been received in interior nodes from observations at
the edge, we use the same procedures as in the subtree
estimation. This heuristic is optimal for multicast and reverse
multicast configurations, and for configurations that are
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concatenations of the two, but suboptimal for any other
configuration.

C. Belief Propagation

(S1, R1) (S1, R2) (S2, R2) (S2, R3) (S2, R4)

x1 x2 x3 x4 x5 x6 x7 x8 x9

Fig. 6. Bipartite graphB corresponding to the 9-links tree in Fig. 5.B
indicates which edges belong to which observable paths.

In [16], it has been observed that linear complexity belief
propagation algorithms can naturally be used to estimate the
link-loss rates in an inverse multicast tree. Our observation
here is that a similar approach can also be applied for tree
configurations with multiple sources and network coding
operations. Moreover, it can also be applied over arbitrary
acyclic graph configurations, with appropriate network cod-
ing operations at intermediate links. We refer the reader
to [16] for the message passing equations and rigorous
description, and we only outline the basic idea in our
context.

Consider a graphG = (V, E), an experiment where one
probe packet is sent from each source and letxe ∈ {0, 1}
denote whether edgee has failed or not. Construct a bipartite
graphB that has|E| variable nodes{xe}, one for each edge
of the graph, and|W | check nodes, where each check node
corresponds to a pathw between a source and a receiver.
Each path is connected to the edges it uses. For example,
Fig. 6 shows the bipartite graph corresponding to the nine-
links configuration of Fig. 5. In the real network, path
(S1, R1) contains edges2 and3; therefore, in the bipartite
graphB, node(S1, R1) is connected to nodesx2 andx3.

Using the observations at the receivers, we allocate1 or 0
to each check node, depending on whether the corresponding
path operated or not. For example, in Fig. 5, ifR2 received
the probe packetx1 +x2, we know that both paths(S1, R2)
and (S2, R2) operate. A path operates if none of its edges
fails, therefore the value for each check node equals the
logical AND of its adjacent edges. Running the belief prop-
agation algorithm on the bipartite graphB, we can calculate
with what probability each variablexe takes value0 or 1 or
0. Repeating the same proceduren times, we collect a set
of n probability values for each edgee, which can be used
to estimateαe.

D. Simulation Results

In this section, we are interested in evaluating the heuris-
tics themselves and in showing that multiple sources (even
with suboptimal estimation) outperform a single source
(even with ML estimation).

Consider the 45-links topology shown in Fig. 7, where
all links have the same loss rateα. We are interested in
estimatingα for all 45 links, and in comparing different
methods in terms of their estimation variance.

C
A

B
D

S1

S2

Fig. 7. Network configuration with45 links.
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two sources, subtree−decomposition, ENT=−314.9. (MSE(45)=0.2425)

Fig. 8. MSE for each link in the 45-links topology.

First, we did simulations forα = 0.3, a large number of
probes, and repeated for many experiments. We then looked
at the mean square error (MSE) in the estimation of each
link. The results are shown in Fig. 8 for three algorithms:

1) a single multicast sourceS1 and maximum likelihood
estimation (top plot)

2) two sourcesS1, S2, network coding at the middle node
C, and the MINC-like heuristic (middle plot)

3) the same two sources and coding point, with the
subtree estimation algorithm (bottom plot).

Notice that in the case of two sources, the 45-links topology
is partitioned into 3 subtrees: one rooted atA (where probe
x1 “flows”), another rooted atD (where probex2 flows)
and a third one rooted atB (where probex1 + x2 flows).

We can make several observations from this graph. First,
using two sources and network coding, even with suboptimal
estimators, performs better than using a single multicast
source and an ML estimator. Indeed the residual entropy
(which is the metric that summarizes theMSE across
all 45 links) is lower for two sources with the MINC-
like (ENT = −317.9) and for the subtree-decomposition
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(ENT = −314.9) heuristics, than it is for the single source
MLE (ENT = −294.5). This illustrates the benefit of
using multiple sources. Second, notice that theMSE for
individual links is smaller in the lower two graphs than in
the top graph, for all links except for links43, 44, 45, for
which it is significantly higher. This is no coincidence: links
43, 44, 45 are the middle ones (CA, CB, CD in Fig. 7.
This is due to the fact that we cannot directly observe the
packets received at the coding point C and we have to infer
them from observations at the leaves of subtree rooted at B.
The performance of the heuristics could further improve by
using the following tweak: we could estimate what probes
are received at C, using observations from leaves not only
in the subtree rooted at B, but also from the subtrees rooted
of A and D.

The above simulations were for a single value ofα = 0.3.
We then exhaustively considered several values ofα (same
on all links) andn (the number of probes). The results are
shown in Fig. 9. We can see that, even with suboptimal
estimation, using two sources consistently outperforms a
single multicast source, even with MLE estimation. This
is apparent in Fig. 9 where theENT metric for the single
source (drawn in bold lines) is consistently above the other
two algorithms.5

Finally, we discuss results for the belief propagation
algorithm. In Fig. 10, we compare the MINC-like and the
message passing algorithms over the 45 link network, with
respect to the ENT measure, and as a function of the number
of probes N . Both algorithms yield better performance
(lower ENT values) as the number of sources increases from
one to five. The MINC-like algorithm performs better for
the multicast tree, in which case it coincides with the ML
estimator, as well as for the two source tree. However, belief
propagation offers significantly better performance for the
case of three and five sources. This trend can be explained by
looking at the number of cycles in the factor graph. A cycle
is created in the factor graph of a network configuration
when (1) two different paths have more than one link in
common and (2) a set ofm paths, sayWm, covers a set
Em of m links, with each of the paths inWm containing at
least two links inEm. As the factor graph becomes more and
more cyclic, the performance of the sum-product algorithm
degrades.

Finally, we compare in Fig. 11 the performance of belief
propagation and ML estimation using a single source, for the
45-link and a randomly generated 200-link multicast tree.
Our performance measure isENTav, defined as theENT

value divided by the number of network links.ENTav for
the 45 link tree is better (lower) than that of the 200 link tree
for a given number of probes. This plot indicates that belief
propagation can closely follow the optimal ML estimator,
for different number of probes, as well as for different
configurations.

5Two notes about theENT metric. First, the differences in the value
of ENT are significant, although this is not visually obvious; recall that
ENT is defined by taking the sum of thelog of the MSE’s. Second,
ENT can be< 0, it is the differential entropy that matters.
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Fig. 9. Comparison of one source with MLE, to two sources with
suboptimal estimation: MINC-like and subtree estimation algorithms. The
comparison is in terms ofENT .

ENT for the 45 link network: mesgae passing and MINC like heuristic
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Fig. 10. ENT vs. number of probes.

VI. D ISCUSSION

A. From Trees to General Topologies

Throughout the paper, we illustrated our ideas using trees.
However, they can naturally be extended to more general
topologies. The only difference is that intermediate nodes
may need to perform slightly more elaborate operations, for
example over finite fields.

As a concrete example, consider the configuration in
Fig. 12, where two sources inject probesx1 andx2. Assume
that intermediate nodes can perform operations over the field
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F4. NodeA combines the probes to create packetx1 + x2.
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Fig. 12. A network configuration that is not a tree.

Node B creates and sends2x1 + x2. Note that we can
directly apply the heuristic algorithms discussed in Sec. V.
E.g., we can decompose the network into parts through
which the same “type” of probe packets flows. Each such
part is a tree, and we can use a different estimator for each
part, in the exact same way as in Sec. V-A. Similarly, we
can use belief-propagation by decomposing the graph into
observable paths and creating a bipartite graph as in Sec. V-
C.

B. Comparison to other Monitoring Techniques

Network-coding enhanced active monitoring offers sev-
eral advantages compared to previous techniques. Compared
to classic tomography, we are able to identify a larger
number of links and improve their estimation accuracy.
Reasons behind this improvement are:

• combining probes using network coding (e.g.x1 + x2

on link C − D) carries more information thanx1, x2

sent separately),
• using multiple sources allows to “decompose” the

graph into smaller components, and
• using XOR to combine different probes results in

exactly one probe per link, thus allowing us to get all
the benefits from multiple sources without any increase
in bandwidth.

Compared to per-link measurements, our approach allows
to keep internal nodes simple (assuming that they already

implement network coding/XOR) and delegate all complex-
ity to special nodes at the edge; furthermore, it can also
be preferable to per-link measurements in dynamic environ-
ments where estimates need to be frequently reported, thus
causing an extra overhead. Finally, appropriate choice of
multiple sources and receivers can evenly distribute probe
traffic across the network.

VII. C ONCLUSION

In this paper, we studied link-loss monitoring using
multiple sources of probes from the edge and network
coding capabilities in the middle of the network. We showed
that is possible to significantly improve link-loss estimation
over previous purely tomographic techniques by combining
three elements (i) multiple sources and receivers (ii) careful
selection of the number and placement of sources at the edge
of the network (“network points of view”) and (iii) network-
coding functionality at intermediate nodes (which eliminates
the bandwidth overhead from multiple sources and also
enriches the information carried by each probe). Overall, in
networks where network coding is already deployed, these
ideas can potentially improve monitoring; this potential can
be fully exploited by using the right points of view and
efficient estimators.
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