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Abstract— End-to-end active network monitoring infers net- in the context of networks that already hawetwork coding
work characteristics by sending and collecting probe packs  functionalities deployed. We show that in such networks,
from the network edge, while probes traverse the nework ,tinle source active monitoring can exploit the network

through multicast trees or a mesh of unicast paths. Most . . . .
reported methods consider given source and receiver locams coding capabilities to better estimate the metric of irggre

and study the path selection and the associated estimation Which in our case is the link-loss rates.

algorithms. In this paper, we show that appropriately chooing Our interest in network-coding enabled networks is mo-
the number of sources and receivers, as well as their locatio  tivated by the fact that network coding seems likely to
may have a significant effect on the accuracy of the estimatip be included in future networks. The pioneering work in

we also give guidelines on how to choose the best “points . . .
of view” %f agnetwork for link loss monitoring purpos%s. [5], [6] showed that for multicast networks, if intermediat

Though this observation applies across all monitoring meth hodes can do simple local XOR-operations on incoming
ods, we consider, in particular, networks where nodes are packets, then one can achieve the min-cut throughput of the
equipped with network coding capabilities; our framework network to each receiver. These linearly combined packets
includes as special cases the scenarios of pure multicastdn -5 then be utilized at the end-receivers to recover the
network coding. We show that, in network-coding enabled - . . . .
networks, multiple source active monitoring can exploit these Or'g'nf"‘l |nformat|o.n.syr.nbols by §0IV|ng a set Of linear
capabilities to estimate link loss rates more efficiently tan €quations over a finite field [7]. This breakthrough idea has
purely tomographic methods. To address the complexity of spawned a significant effort in applying network coding to
the estimation problem for large networks, we also propose other network topologies, developing practical algorighm
efficient algorithms, including the decomposition into smiler ot achieve this performance, as well as quantifying the
multicast inference problems, belief-propagation, and a NNC- . .
like algorithm. throgghput benefits of netwqu c_odlng_ [8]. In terms of
applications, the network coding idea is well-matched to
|. INTRODUCTION content distribution over peer-to-peer networks as seen by
Network monitoring is an important component of netseveral ongoing projects for this application [9], [10]h#s
work engineering. For small-scale networks, local monitoalso been shown that network coding can bring benefits in
ing of link characteristics, such as loss rates, delay ambultihop wireless networks [11].
bandwidth, is feasible. However, for large-scale netwprks Motivated by the fact that, in the future, network coding
as well as for interconnections of diverse networks witban be deployed in large scale networks, we explore how we
distributed control over them, local monitoring becomesan utilize it for efficient network monitoring. For example
difficult. Therefore, it is desirable to be able to infer netkv  this idea is suited for overlay networks [12] or for multihop
characteristics through end-to-end measurements. Ower Wireless networks [11] since (i) performance monitoring is
past decade, significant progress has been made in inferfiagticular important for the control of such networks [13],
network characteristics using end-to-end measuremdsts, 414] and (ii) network coding could be deployed incremen-
known as tomographic techniques. Most of the tomographglly on their nodes (unlike legacy routers). In generakl, ou
work has focused on sending active probes from a singgproach is applicable to any network where network coding
source node through a multicast network and using tliedeployed.
probes observed at the receivers to estimate the metric offhis paper builds on our previous work [15], where we
interest [1]; this work has also been extended to unicast [fst introduced the idea of exploiting network coding to
measurements and to multiple sources [3], [4]. estimate link-loss rates, using a toy example topologyhis t
In this paper, we are also interested in estimating link logaper, we further demonstrate the benefits of this approach:
rates using end-to-end measurements. One aspect we exphdren intermediate nodes linearly combine incoming probes
is the effect of the placement of sources and receivers on fhem multiple sources, we can have the benefits of using
link-loss estimation. The placement of sources and receivenultiple sourceswithout increasing the load on the links.
gives us different “views” of the network: we show thatn addition, we investigate the best point of view, i.e.,
the “points of view” matters in terms of estimation errorthe best choice of sources and receivers. Combining the
This observation is of course applicable to the tomographieo, we show that we can obtain faster convergence rates
methods as well. However, we explore this idea specificallysing multiple sources and appropriately chosen views of



the network than when using multicast probes. Case 1

Note that the loss rate can be different on the two G, So
directions of the same link. We show that, both in the
cases of symmetric and asymmetric link-loss rates, we can o
estimate the loss rates with much fewer “views” of the
network, by using multiple sources than having a single
source.

The main contributions of this paper are the following. T1+ T2
We observe that the placement of sources and receivers are
an important aspect of the design of a network monitoringr: + 2 T1 + T2
system. We explore this in the context of networks with
network coding functionalities and we develop properties
of estimators. We propose several computationally efftcien R R
algorithms that are suitable for large networks. One method ~ ! 2
is based on the belief propagation algorithm [16] which has

had a lot of success in error correcting codes on graphs. An Case 3 Case 4
alternative method is based on decomposing the network S Ry Sh So
into sub-networks and solving multiple multicast inferenc

problems. Overall, we show that we can significantly im- 0 9 0 9

prove link-loss estimation over previous purely tomogiaph

T I ZT1 X2

methods by (i) using multiple sources (ii) appropriately G G
choosing their location and (iii) exploiting the network
coding capabilities of the underlying network. o L1t 2

The paper is organized as follows. In Section Il we define
the problem. In Section Ill, we study a basic topology, x2 Q T1+ T2 x3 Q T1+ T2+ 23
estimate the loss rate of a single link, and illustrate the
importance of multiple sources and the network view. In G G G G
Section IV, we extend these ideas to larger networks and to R, S, R,

estimating loss rates for all links; we also give guidelines

on how to place the sources and receivers. In Section V, #g 1. Basic 5-links topology. Four possible cases (choifesources and

develop efficient heuristics suitable for large networks aneceivers) that allow to calculate the loss rate of IifilD, when neither

evaluate their performance via simulation. Sections VI arfd®" [ are edge nodes, by sending and receiving probe packets fiem t
. . . . . edge nodesA, B, E and F'.

VII provide the discussion and conclusion respectively.

observed at nodeB and F' are summarized in the left two

Il PROBLEM STATEMENT columns of Table I. The five right columns at the same table

A. Motivating Example show the combination of loss and success events on the links
The following example illustrates the use of networihat lead to the observed outcome. For example, the outcome
coding to infer the loss rate of a single link [15]. (z1,21) is due to the eventAC = 1,BC = 0,CD =

Consider the basic topology shown in Fig. 1. In particuldr PE = 1, DF' = 1) and happens with probabilityl —
consider Case 1, where noddsand B send probes and ®ac)(@sc)(1 —acp)(l —ape)(l —apr). Similarly, we
nodesE and I receive them. Our goal is to measure th&an write the probability of each of the 10 observed events
loss rate of the linkC'D, using probes from4, B and &S & function of the link loss probabilities. The problem
observations atZ, F. Node A sends to node” a probe then becomes how to estimatg:, from the observations
packet with payload that contains the binary string= atE,F.

[1 0]. Similarly, the nodeB sends probe packet, = [0 1]
to nodeC. If node C receives onlyz; or only z5 then it
just forwards the received packet to nofke if C receives  Consider a network: = (V, E), with nodes/” and logical
both packetsr; andzs, then it creates a new packet, withinks E. Although we demonstrate our ideas using trees
payload their linear combination; = [1 1], and forwards for most of the paper, they are also applicable to general
it to node D; more generallyrs = 77 ® x5, where® is bit- graphs, as discussed in section VI.A. Let each knk E

wise XOR operation. Nod® sends the incoming packet have an associated loss ratg, which we are interested in

to both outgoing linksDE and DF'. All above operations estimating. Note that logical links could consist of severa
happen in one “ time slot”, which is to be defined. physical links in cascade, and can thus have a much larger

In every time slot, probe$z;,z2) are sent from4, B  packet loss rate than physical links.
and may reactt), F', depending on a random experiment: We assume that probes can be sent in either direction of a
on every link in{AC, BC,CD,DE, DF}, the transmitted link. Each direction is in general associated with a diffeere
packet is lost with probabilityy;;,,.. The possible outcomeslink loss rate. We will call a network “undirectional” if

B. Estimation Problem for a General Tree



Received at Is link ok? . .

o F [AC[BC[CD [ DE[DOF that(iis determined by the topology ano_l the loss pat_tern. Let
0 0 Multiple possible events {X;"} denote the set of outcomes at tirhor all receivers

1 - 1 0 1 1160 r € R. If we assume that successive probes experience
L2 — 9 ! L L 0 independent losses after sendimgrobes we can write the

T3 - 1 1 1 1| 0 INdeper . ®

- 1 0 1 0 T 1 probability of observing a set of events as

T1 T1 1 0 1 1 1 n ‘

o T I I 0 I pUXOY, o AX MY {ach) = [T e XD} {ac)).

T2 T2 0 1 1 1 1 i=1

— | a3 1 1 1] 0| 1 . .

73 | 3 1 1 1 1 1 This probability can also be related to the counts of the

various linear combinations received. The maximum likeli-
TABLE | hood estimate (MLE) of the link-loss probabilities after
POSSIBLE OBSERVED PROBES AT NODE& AND F', TOGETHER WITH observations iS

THE COMBINATION OF LOSS(0) AND SUCCESS(1) IN ALL FIVE LINKS {de} = arg maxL({ae}) _
THAT LED TO THE OBSERVED OUTCOME 1) (n) (1)
= argmaxlogp({X, '}, ... . {X;™}; {ac}).
the loss rate of a link is the same in both directions, arlf ater sections, we examine the performance of the MLE
“directional” if the link loss rates are different in opptesi 5 well as of some computationally efficient sub-optimal

directions. Undirectional networks may include for exaenpl€Stimators. For the rest of this paper we will assume that
wireless networks, while directional networks can be dJ@sses occur independently across links. This assumption
for example to non-overlapping overlay paths with diffarerf/lows to simplify the expression of our estimator in (1); if

congestion levels. For most of the paper, we focus dhdoes not hold, the expressions become more complicated

undirectional networks, and address the case of diredtiof4! the principle of the approach remains the same.
networks in Sec. IV-B. The quality of the estimation for a single lirkis captured
We injectn probes from each source and make measufY the mean-squared errometric, i.e.,
ments only at the neMork edge (e.g: at the leaf nodes o_f the MSE = E[|ae — ae|?],
tree). We denote this set of potential sources or receivers
as £ C V, the sources byS ¢ £ and the receivers by Whered. is the estimator based on the observationsion
R C L. Each set of probes injected, one from every sourc@f sourcesS, anda. is the true value of the loss rate en
corresponds to one experiment, or one timeslot. In order to get a measure of performance for the set of
We assume that the internal nodes of the network whi@stimators across all links < F, we need a metric that
are neither sources or receivei$\(S UR)) are capable of summarizes all links. We use an entropy meastifé!” that
doing the 5imp|est network Coding Operatim incoming Cap_ture.s the residual uncertalnty..Slnce we exlpect t.he.($C&|
probes before forwarding them to all outgoing links. If &@stimation errors to be asymptotically Gaussian (simiar t
packet is lost, only those packets that arrive at the interrfge case in [1]), we define the quality of the estimation aros
node within a given time-window are linearly combined@ll links as
Nodes that perform sucKOR operations are calledoding ~ 2
. . . . _ ENT = log (E[de — , 2
points Note that the number of coding points might be quite Z g( [ — ] ) 2)

small. For example, in a tree topology with two sources, = | ) ] )
there exists exactly one coding point, irrespective of tHihich is a shifted version of the entropy of independent

number of intermediate nodes since the two probe pacggussian random variables with the given variances [17]. If

flows from the two sources can meet only once. Genera@e entire error covariance mataXis available, then we can

in a tree with|S| sources we have at mog§| — 1 coding compute the metric a& NT' = logdetR, which captures

points. also the correlations among the errors on different linkee T
With network coding, unlike the multicast trees approachetric ENT' as defined above captures only the diagonal

using multiple sources does not increase the required bafiigments ofR, i.e., theM SE for each link independently

width: even thoughS| probes are injected into the network©f the others. . N
each link carries only th&OR of the probes it receives, Under mild regularity conditions (see for example Chapter

therefore at most one packet. 7 in [18]), the scaled (by sample siz@ asymptotic covari-

Given a certain topology, and choice of sources arft'c® matrix of the optimal estimator is lower-bountibg
receivers, the goal is to infer the link-loss rates.}. The the Cramer-Rao bounfi-!. The Fisher information matrix

setsS, R should be chosen to give the “view” of the network IS @ square matrix with elemetd , defined as

eclk

which yields the best estimation of these parameters. L ({ae}) =
At the receiver seR, we observe the outcome of sending P 3)
the probe packets from the source SetAt timeslot (exper- E Fo logp({X,}; {ae})% logp({ X, }; {ae}) |,
p q

iment) 4, each source sends one probe packet. Each receiver
(4) i i fa i i

re R observesY; k which can_elther bé, i.e. it receives IFor symmetric matricest > B means thatA — B is positive semi-

nothing, or some linear combination of the source packetsinite.



wherea,,, o, the loss probabilities of two links. In particular,

Sketch of ProofThe proof of Theorem 1 is based on the

under the regularity conditions, the MLE is asymptoticallpbservation thaC and D need to be branching points or
efficient,i.e., it asymptotically (in sample size) achieves thiedge nodes, otherwise the link loss rate of edge will

lower bound? Hence the asymptotic error covariance matrike indistinguishable from the loss rate of an ascendent or a
of the MLE is approximately%]*l. Therefore, we study descendant edge. |

the behavior of the Fisher information matrix for different |n [15] we considered the case where nodesB, E
topologies and network views as a basis of comparison; W@d £ were constrained to belong in eithér or in R,

can then lower bound the asymptotic mean-squared errgfi showed that use of network coding operations increases

by examining the Fisher information matrix.

IIl. OPTIMAL ESTIMATION OF A SINGLE LINK

the number of identifiable links. Here, we assume that
A, B, E and F' are allowed to act as either sources or
receivers. Our observation is that our choice of sources and

In this section, we are interested in estimating the logsceivers impacts the accuracy of our estimator; i.e., for a
rate on asingle link typically in the middle of the network, fixed number of probes, each topology leads to a different
by sending and observing probes from the edge. Let astimation accuracy. This implies that to achieve the same

revisit Fig. 1 and estimate the loss rate on lifl0. Apart

MSE, we may need to use a different number of probes

from illustrating our approach this basic 5-links topoldgy for each topology.

important in two ways: (i) it is the basic structure required

for link C'D to be identifiable as we discuss in the following

subsection and (ii) any arbitrary topology can be reduced o Performance Comparison of the Four Cases
this basic topology, if we view all links (except the link of

interestC' D) as directed paths from/to edge nodésB, F

In Fig. 2 we assume that dlllinks havea = 0.3 and we

and F, with the same loss rates as their equivalent link!0K at the convergence of the MLE vs. number of probes
For example, a path froml to C, denoted agA, C), can for Case ;J(usmg networ_k coding) and faCase Z_(mult|cast
be reduced to linkAC' with loss ratea 4 the overall path Probes with sourced). Fig. 2(a) shows the estimated value

loss rate.

A. Four Cases of Identifiability

A link e € E is said to beidentifiableif it is possible

(for one loss realization). Both estimators converge to the
true value, with the network coding being only slightly frst
in this scenario.

In Fig.2(b) we plot the mean-squared error of the MLE for

to estimate the associated loss-rateby sending probing Case 1(using network coding) and fo€ase 2(multicast)

packets from nodes i§ to nodes inRk.

across number of probes. For comparison, we have also plot-

Fig. 1 depicts the four cases, i.e. choices of sources ai§d the Cramer-Rao bound for lifkD, which is consistent
receivers, that form the basic structures for the identlitgb With the simulation results. For this scenaridase 1does
of the loss rate of linkC'D, when neitheiC or D are edge Slightly better tharCase 2but not by a significant amount.
nodes. Notice tha€ases 1and3 use network coding with This motivated us to exhaustively compare all four cases in
2 sources and 2 receive@ase 2uses a multicast tree with Fig- 1, for all combinations of loss rates on thdinks.
source A, andCase 4uses a reverse multicast tree with sink Fig. 3 plots the Cramer-Rao bound for the four cases as a
F. The necessary and sufficient conditions for identifighili function of the link-loss probability at the middle link. &h

first observed in [15], are summarized in the following:
Theorem 1:Given G = (V, E) and setsS andR, a link

CD is identifiable if and only if both condition$ and 2

hold:

Condition 1: At least one of the following holds:

(@) Ces.

(b) There exist two edge disjoint patligl, C) and (B, C)

that do not employ edg€' D with A, B € S.

(c) There exists two edge disjoint pathd, C') and(C, B)

that do not employC'D with A € S, B € R.

Condition 2: At least one of the following holds:

(@) D eR.

(b) There exist two edge disjoint pati®, £') and (D, F)

that do not employ edg€'D with E, F' € R.

(c) There exists two edge disjoint path®&, D) and (D, F)

that do not employC'D with £ € S, F € R.

left plot assumes that is the same for five links, while the
right plot looks at the case where the edge links have fixed
loss rate equal td@.5. We observe thaCase 1shows to
achieve a lowerM SE bound. Interestingly, the curves for
Case 2(multicast) andCase 4(reverse multicast) coincide.
The difference between the performance of different cases
is more evident in the right plot (Fig. 3(b)).

In Fig. 4, we systematically consider possible combi-
nations of loss rates on the 5 links and we show which
case estimates better the middle link. In the left figure,
we assume that all edge links have the same loss rate
and observe that for most combinations(of,,;qaze, Ctedge ).
Case 1(shown in “+") performs better. In the right plot,
we assume that the middle link is fixed @p = 0.8 and
thataac = ape = as,apg = apr = «,.. Considering all
combinations ¢,,.), each one of the four cases dominates
for some scenarios. An interesting observation is, aghi, t

2In [1], it has been shown that the asymptotic mean-squareor e symmetry betweerCase 2(multicast) andCase 4(reverse

converges to this Fisher information bound for the multicease. We
believe that this should also be true for the multiple sowase as well;

so far, we have only numerically verified it so in our simwas.

multicast). We prove in the next section that this symmetry
holds over general trees.



0.5 T T T T T T T T T
— case 1: sources at A,B and network coding
a5t = = case 2: source at A and multicast
0450 actual loss prob. 0.3
0.4r T

estimated loss rate for the middle link

. . . . . . . . .
0 100 200 300 400 500 600 700 800 900 1000
number of probes

(a) Estimator vs. number of probes

T T T T
— Case 2 (multicast) - simulation
—— Case 1 (network coding) - simulation
i - = Case 2 (multicast) — lower bound

— — Case 1(network coding) — lower bound [

MSE in estimating middle link

. . . . . . . . .
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of probes

(b) Estimation variance vs. number of probes

Fig. 2. Convergence of the ML estimator for cases 1,2

all links have the same loss probability

all edge links have the same loss probability = 0.5
35 T T

SO

25f ; '~ \ 1

151

1f | =@~ case l:sources A,B
-0~ case 2: source A
€ case 3: sources AE
‘A case 4: sources AB,E

lower bound for variance (estimating middle link)

. . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
loss probability on middle link (CD)

(b) All edge links have the same,;q. = 0.5.

Fig. 3. Comparing the 4 cases in Fig. 1 in terms of the lowermboloof variance.

200 T
=e—- case 1: sources A,B
-O- case 2: source A 4
1801 < - case 3: sources A.E
z <A case 4: sources A,B,E !
= 1
3 160F B
=}
° 1
E 140t I
g 1
£ 3
g 4
£ 120 h
= [
@ L
L L
@ 100 I
e
8
S sor
8
B oot
S
o
o
o 40F
3
o
20
o A 4 4 4= —
0 01 02 0.3 0.4 05
link loss probability
(a) All links have the samer
case 1: "+ ",case 2: diamond, case 3: square, case 4: "X"
1 T T T T T T T T T
o o+ + 4+ + + o+ o+ 4+ 4+ o+ o+ o+ 4+ o+ o+ o+ +
09F o O + + + + + 4+ + + + + 4+ 4+ + + + + + o
000+ 4+ 4+ + + + o+ o+ + o+ o+t
08F O O O + + + + + + + + + + + + + + + + o
" 00O 0 0O 4+ + + + + + + 4 + + + + o+ o+ o+
07 0 O O O 4 4+ 4 o+ 4 4 4 4+ 4+ 4+ A
3 0o o o o+ 4+ + + + 4+ + + o+ 4+ o+ o+ o+
T 06F 0 o o O o+ 4+ 4+ o+ o+ o+ o+ o+ o+ o+ o+ o+ o+ A
E 000+ 4+ 4+ + + + o+ o+ + o+ o+t
S 05F D O O+ £+ 4+ 4+t o+ o+ o+ o+ 4+ o
% 00 0 + + 4+ + + 4+ 4+ + 4 o+ o+ o+ o+ o+ o+
€ 04F D O O 4+ 4+ 4+ + 4+ + 4+ o+ o+ 4+ o+ o+ o+ 4+ A
[=}
=% oo+ 4+ + 4+ + + 4+ 4+ o+ + o+ 4 o+ o+ o+ o+
§ 03F o o + + + + + + + + + + + 4+ + + + + + o
- 00+ 4+ + 4+ + + + + 4+ 4+ + o+ o+t
02F O + + + + + + + + + + + + + + + + + + o
O+ 4+ + + + + + + + 4+ 4+ o+ o+ o+ o+
01F + + + + + + + + + + o+ 4 o+ o+ A+ o+ o+ o+ o+ o
R T S e S S S S
0 . . . . . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

loss p‘robabllny on mldﬂle link

(@) All edge links have the same.44.. Consider all possible
combinations of ¢cqge,middie)-

middle link has a(CD)=0.8.

1 . case 1. "+" case 2: diamond, case 3:square. case 4: "X ;
X x ox ox x x x x x x x x x x x x + + +
09F x x x x x x x x x x x x x O O + + + + A
x X X X x X X X x X X a o =] =] + + + +
08F *x % x x x x x x x x O O O O O + + + O -+
x x x x x x x x x O O O O O O o o o ¢
07F ¥ x x x x x x x x o o o o o o o o o & A
« X x x x x x x x o B B o @ oo oo o O
Q 06F x x x x x x x x O O O 0o o o oo ag & O A
ji X x x x x x x x 4+ 4+ 4+ @ o o oo o O O
@ 05F * x x x x x x 4+ + 4+ f 3o oo O O
ﬁ X x x x x 4+ 4+ + + + 4+ 0D D0 O O O O O O
C04F X X X X 4+ + + 4+ £ 0 0 0 0 0 O O O O 4
x x 4+ + + + F+ + £ 0 0 0O 0 0 O O 0 O O
03F + + + + + + 4+ + + 0 0 0 0 O O O O O O 4
+ + + + 00000000000
02F + + + + + 4+ + O 0 0O O O 0 O O O 0 O O 4
+ + + + + + + O 0O O O O O O O O 0 O O
01F + + + + + + O 0 0 0 O O 0O O O O O O O A
+ + + + + + 0 0 0 0 0 0 0 0 0 0 0 O O
. . . . . . . . .
0O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

as=a(AC)=a(BC)

(b) asc = apc = as,apg = apr = ar, acp = 0.8.
Consider all combinationsofs,c,)

Fig. 4. We indicate which Case (among the four) performsebdtias the lowest Cramer-Rao bound), for a given combinaifoloss rates on all 5

links.

IV. ESTIMATION OF ALL LINKS IN A TREE

trees and the estimation of all links. We show that several
observations from the basic 5-links topology extend to

So far we studied the basic 5-links topology and focus&neral trees.
on estimating a single link. In this section, we study larger



A. Dual Configurations and Reversibility Theorem 3:Consider a tree configuration witli| leaves.
Consider a tree withC leave nodes. whers leaves act Ve are interested in measuring the loss rates in both direc-

as sources and the remainiy= £\ S act as receivers of tions for all quks of the. tree. Using network coding saves
probes, and a given compatible orientation of the links. Wi factor of|Z[ in bandwidth usage by probes, compared to
refer as “dual configuration” the configuration that resulf§€ multicast tree approach.
from reversing the orientation of all links in the network, ~ Proof: Consider a tree configuration witff| leaves.
and from having theS sources become receivers, while thd® measure the link loss rates in both directions for all sdge
R receivers act as sources. We show that, for the purpose®bthe tree, using the multicast approach, we need toluse
parameter estimation, the associated ML estimator functifiulticast trees. Indeed, let= AC' be the link adjacent to
for a network and its dual is the same. leaf A € L, we can measure 4¢ only if A is the root
For example, a multicast tree is the dual configuratig¥f the multicast tree. Using the network coding approach,
of an inverse multicast tree (Cageand 4 in Fig. 1). In for any choice of sources and receivers, we only need to
Section 11l , we saw in Fig. 3(a) and Fig. 4(b) that the dudyerform two rounds of measurements: one on the network
configurations resulted in the same mean square error boufid@nd one on its duat. u
In fact, we observed that their associated ML estimator The previous theorem can also be interpreted as a tradeoff
functions coincide. The following theorem generalizes thin directional measurement. We can eithéf-fold increase
notion to arbitrary tree-like networks. the measurement bandwidth (using multicast probes), or
Theorem 2:The ML estimator for a tree configurationallow intermediate nodes to do linear combinations (nekwor
and its dual coincide. coding). The former option keeps intermediate nodes simple
Proof: Let G = (V,E) be the original tree, with at the expense of using extra bandwidth. The latter option
|E| = n, and G? its dual. For every probe trial, theresends exactly one probe per link for each measurement, but
exist2" possible error events, depending on which links faifequires some operations from intermediate nodes.
Observing the outcomes at the receiver nodes correspondd consequence of the reversibility established in the
to observing unions of such events, that occur with thgrevious section is that, if we do not have a-priori knowkedg
corresponding probability. For a given configuration, thef the link loss rates, the optimal choice of sources and
ML estimator depends on the observable outcomes at tteseivers apply both to a configuration and its dual. That
receiver nodes. Therefore, it is sufficient to show that i, reversing the configuration, from Theorem 2, does not
network and its dual have effectively the same set @fffect the estimation function, and thus will not lead to any
observable outcomes. In particular, we will show that fgperformance degradation.
every observable outcome, that occurs with probabilitg
G, there exists exactly one observable outcome that occigs
with the same probability irG¢ and vice-versa, and thus
establish a bijection. In Section Il we observed that the number of sources
With every edge: of G, we can associate a set of sourcednd receivers affects the estimation accuracy for the basic
S(e) C V that flow through this edge, and a set of receivetspology in Fig. 1. This idea extends to larger topologies.
R(e) C V that observe the flow through. Our main In fact, not only the number of sources and receivers, but
observation is that the pafiS(e), R(e)} uniquely identifies also their relative position on the tree (the “viewing p&int
e, i.e., no other edge has the same pair. In the dual netw@fkect the estimation accuracy.
G4, edgee is uniquely identified by the paifR(e), S(e)}.
Ifin G edgee fails while all other edges do not, the receivers
R(e) will not receive the contribution in the probe packets of
the sourcesS(e). If in G edgee fails while all other edges
do not, the receiverS(e) will not receive the contribution in
the probe packets of the sourdeg:). Thus there is a one-to-

Ry (s s Ry
[e51 [0%4
4
. . - - a3
one mapping between these events. Using this equivalence, R @ s
an observable outcome consisting of a union of events can 6 . Sh
(O—5) ,,
as
Ry S

Number and Position of Sources

be mapped to an observable outcome at the reverse wee.

Note that this theorem establishes reversibility only for
the maximum likelihood estimation. The performance of
suboptimal algorithms might differ when applied to a con-

figuration and its dual. Fig. 5. A network topology with 9 links. The link orientatisrdepicted
. . . correspond to nodek and 2 acting as sources of probes.
B. Measuring Directional Networks

We now examine the case where the loss rates arerg jllustrate these concepts we use the tree shown in
different in the two directions of a link. Our basic ObserFig_ 5. We run simulations for three cases: (1) a multicast
vation is that it is sufficient to send probes over only twgee with source at node(2) a multicast tree with source at
configurations: the original and its dual. node2 (3) two sources at noddsand?2 and a coding point



at 4.3 The same observations hold in this 9-link topologyn each subtree, we can then use the tomographic method

as for the basic topology of Fig. 1. Simulations results agroposed in [1].

reported for this 9-link topology (and more extensive for a Note that we can only observe packets received at the

larger 45-link topology) in section V.D. Here we just reporédge of the network but not at the coding points. However,

our observations and guidelines. we can still infer that information from the observations
First, adding more than one source improves estimaticat; the receivers downstream from the coding point. The

intuitively, this is because coding points partition theetr fact that we infer the coding-points’ observations from the

into smaller multicast components. Second, the number dedves’ observations is what makes this algorithm subopti-

placement of sources matter. Third, between two multicasial.

trees with the same number of receivers, better performance

is achieved by the tree that is more “balanced” and has the Subtree Estimation Algorithm

smallest height. — Consider a graph. Given a choice of sourceS and

Elaborating on the first observation, note that in treeg,ceivers?. the coding points are determined antl is
each intermediate node is a vertex cut set. For the exampleiioned ,into|T| <95 — 1 subtrees.

of Fig. 5 nodet decomposes the tree into three components. £5-h source sends one probe packet.Each receiver re-
If node 4 could collect and produce probes, our estimatio.iyes at most one probe packet.

problem would be reduced in estimating the link-loss rates o, each of theT | subtrees:

in three smaller multicast trees: the first tree consisting @ the multicast tree is rooted at a coding point:

sourceS; and receiverg?; and nodet, the second tree with
sourceS; and receiver nodes$, R; and R4, and the third
tree with source nodé and receiverRk,. Allowing node 4

to XOR incoming packets approximates this functionality:
observing whetheR, receives a packet that dependsagn

or x2, we can conclude on whether notleeceived a packet ) ]
from S, or S, respectively. If the multicast tree is rooted at a sourcg:

The optimal selection of the number of sources and §pquen_tial|y considgr the (_jescendant coding points that ac
the best points of view is quite involved. In general, it i&S receiver. For coding poiit
a function of the network topology, the values of link-loss  if no descendant receiver§(R) observed a probe,
rates, and possibly the number of employed probes. From assume, w.pp, thatC did receive a packet, and w.p.
our simulation experiments, we found that the following 1 — . thatC did not receive a packet.

« if any of the descendant receivers receives a probe, use
this experiment as a measurement on the subtree,

« otherwise, w.p.p assume a measurement happened
where no node irR received a probe packet, and w.p.
1 — p ignore the experiment.

guidelines apply to a tree with leaf nodes. « otherwise
1) Select a fraction of sources to receivers that allows to ~ — if at least one ofC(R) observed a linear combi-
partition the tree into roughly equal-sfzeubcompo- nation ofz;, deduce that receivedz;.
nents, where each subcomponent should have at least
2 — 3 receivers. . . The probabilityp attempts to account for the fact that, if
2) Dlstrlbqte the sources in roughly equal distances alopg e of the receivers i6’(R) receives a packet, this might
the periphery of the network. be attributed to two distinct events: either the coding poin

C itself did not receive a packet, @ did receive a packet,

i ) ) _ which then got subsequently lost in the descendent edges.
The general ML estimator is computationally challenging g, example, in Fig5, consider the tree rooted &%, if

for large tree topologies. In this section we propose thrqg2 receivesz; or z; + z» we deduce that; was received
low complexity, yet efficient heuristics and evaluate therg oqe4. If R, receivedz,, we deduce that; was not

through simulation. received at node. If R, does not receive a probe packet,
then, with probabilityl —p, we assume thatt did not receive
a probe packet. In general, the parametetepend on the

_Based on the intuition discussed in Sec. IV, this algQjranh structure and possibly prior information we may have
rithm partitions the tree into multicast subtrees separbte ,pout the link-loss rates

coding points. Each coding point virtually acts as a reaeive
for incoming flows and as a source for outgoing flows. AB. MINC-like Heuristic Algorithm

a result, each subtree will either have a coding point as itsg, every multicast node, we can use the MINC algorithm
source, or will have at least one coding point as a receiVgescribed in [1]. For every coding point, we can use reverse

SFor the configuration in Fig. 5, the probes could also get doetbin MINC’ .explom.ng the re.verSIb”Ity property that \.Ne estab
node5. That is, although the choice of sources and receivers aitcaty  liShed in previous section. In order to infer which probes
determines the orientation of their adjacent links, thewmy rstill exist a have been received in interior nodes from observations at
choice of coding points and orientation for the intermesliatks. the edge, we use the same procedures as in the subtree

When links have similar loss rates, then “size” refers thenber of . - . - . .
nodes/links. In general “size” also should capture howyldbe links in estimation. This heuristic is optlmal for multicast andewese
the subcomponent are. multicast configurations, and for configurations that are

V. ALGORITHMS AND SIMULATION RESULTS

A. Subtree Estimation Algorithm



concatenations of the two, but suboptimal for any other
configuration.

C. Belief Propagation

Z1 X2 X3 T4 x5 T6 X7 zs T9

(S1,R1)  (S1,R2) (S2,R2) (S2,R3) (S2,R4)

Fig. 6. Bipartite graphB corresponding to the 9-links tree in Fig. B.
indicates which edges belong to which observable paths.

In [16], it has been observed that linear complexity belief Fig. 7. Network configuration with5 links.
propagation algorithms can naturally be used to estimate th
link-loss rates in an inverse multicast tree. Our obseovati
here is that a similar approach can also be applied for tr o1 | sinnge Sourc?’ maxirnum Iik‘elihood‘, ENT:‘—294_5‘
configurations with multiple sources and network codin '
operations. Moreover, it can also be applied over arbitra 0.05F .

acyclic graph configurations, with appropriate network-coc ol-—-mmumnnREEaanERnEE. n AR ANEEE Bt

MSE

ing operations at intermediate links. We refer the read 5 10 15 20 25 30 35 40 45

to [16] for the message passing equations and rigora o1 MO‘SOUTCE‘S’ mi“CT'ink hﬁmistia FNT=—?17-9

description, and we only outline the basic idea in ot '

context. ”g 0.05F <
Consider a grapli; = (V, E), an experiment where one i . — III

probe packet is sent from each source andelet {0,1} 0 5 10 15 20 25 30 35 40 45

denote whether edgehas failed or not. Construct a bipartite Otvlvo sources, subtree-decomposition, ENT=-314.9. (MSE(45)=0.2425)

graphB that hag F| variable nodegz. }, one for each edge

of the graph, and| check nodes, where each check nod § 0.05}

corresponds to a patlty between a source and a receivel - ~

Each path is connected to the edges it uses. For exam| 0 5 10 15 20 25 30 35 40 45
Fig. 6 shows the bipartite graph corresponding to the nin link 1D

links configuration of Fig. 5. In the real network, path

(S1, R1) contains edgeg and 3; therefore, in the bipartite Fig. 8. MSE for each link in the 45-links topology.

graphB, node(S1, R1) is connected to nodes, andxs.
Using the observations at the receivers, we allotaie0 First, we did simulations for = 0.3, a large number of

to each check node, depending on whether the correspondipghes and repeated for many experiments. We then looked

path operated or not. For example, in Fig. Sfif received at the mean square errab/(SE) in the estimation of each
the probe packet, + 2, we know that both pathS1, R2) - |ink. The results are shown in Fig. 8 for three algorithms:

and (S, R2) operate. A path operates if none of its edges . . . -

fails,( theref)orep the valug for eF;ch check node equalsgthel) a S_'”g"? multicast sourcg; and maximum likelihood

logical AND of its adjacent edges. Running the belief prop- estimation (top plot) . .

agation algorithm on the bipartite graph we can calculate 2) two sources, Sz, r_1etw0rk <_30(_j|ng ".ﬂ the middle node

with what probability each variable. takes valué or 1 or C, and the MINC-like heuristic (m!ddle p!ot) )

0. Repeating the same procedurdimes, we collect a set 3) the same .tWO .sources.and coding point, with the
subtree estimation algorithm (bottom plot).

of n probability values for each edge which can be used

to estimaten. Notice that in the case of two sources, the 45-links topology
) ) is partitioned into 3 subtrees: one rooteddatwhere probe
D. Simulation Results x1 “flows”), another rooted atD (where prober, flows)

In this section, we are interested in evaluating the heuriand a third one rooted d@ (where prober; + z2 flows).
tics themselves and in showing that multiple sources (evenWe can make several observations from this graph. First,
with suboptimal estimation) outperform a single sourcesing two sources and network coding, even with suboptimal
(even with ML estimation). estimators, performs better than using a single multicast

Consider the 45-links topology shown in Fig. 7, whereource and an ML estimator. Indeed the residual entropy
all links have the same loss rate We are interested in (which is the metric that summarizes the SE across
estimatinga for all 45 links, and in comparing differentall 45 links) is lower for two sources with the MINC-
methods in terms of their estimation variance. like (ENT = —317.9) and for the subtree-decomposition



Same loss prob. a=0.3 on all links.

(ENT = —314.9) heuristics, than it is for the single source 20— B o e
MLE (ENT = -294.5). This illustrates the benefit of "5 twp sourees + bt docomposs
using multiple sources. Second, notice that e E for T ]
individual links is smaller in the lower two graphs than in ol
the top graph, for all links except for links3, 44, 45, for
which it is significantly higher. This is ho coincidence:Km
43, 44, 45 are the middle ones (CA, CB, CD in Fig. 7.
This is due to the fact that we cannot directly observe the
packets received at the coding point C and we have to infer 500} .
them from observations at the leaves of subtree rooted at B. -
The performance of the heuristics could further improve by 0,500 000 1500 2000 2500 3000 3500 4000 4500 5000
using the following tweak: we could estimate what probes e
are received at C, using observations from leaves not only
in the subtree rooted at B, but also from the subtrees rooted
of A and D.

The above simulations were for a single valuexof 0.3. 200
We then exhaustively considered several values ¢éame
on all links) andn (the number of probes). The results are
shown in Fig. 9. We can see that, even with suboptimal
estimation, using two sources consistently outperforms a
single multicast source, even with MLE estimation. This 500/
is apparent in Fig. 9 where thBNT metric for the single
source (drawn in bold lines) is consistently above the other

ENT

-400F

—450

(a) ENT vs. number of probes

Bold line: single source + MLE.
Dashed lines: two sources + suboptimal algorithms

N=250 probes

300

ENT

-a00-

600l «” N=5000 probes

two algorithms> o T
Finally, we discuss results for the belief propagation ' foss prob. (apha) ~same onalinks
algorithm. In Fig. 10, we compare the MINC-like and the (b) ENT vs. loss probability

message passing algorithms over the 45 link network, with
respect to the ENT measure, and as a function of the numbB@r 9.  Comparison of one source with MLE, to two sources with

of probesN Both algorithms yield better perforr.r.'éu,]Céuboptimal estimation: MINC-like and subtree estimatidgoathms. The
) comparison is in terms o NT'.

(lower ENT values) as the number of sources increases from

one to five. The MINC-like a|gOI’ithm perfOfmS better for ENT for the 45 link network: mesgae passing and MINC like heuristic
the multicast tree, in which case it coincides with the ML

. . =100 T T T = = 1 source message passing
estimator, as well as for the two source tree. However, belie - - 2 sourcesimessage passing
propagation offers significantly better performance fog th w3 oo i

=1 source’ MINC like heuristi
—— 2 S0UrcesIMINC like heuristi

3 sources:MINC like heuristi
=iy —+— 5 SOUICes:MINC like heuristi

case of three and five sources. This trend can be explained by
looking at the number of cycles in the factor graph. A cycle

is created in the factor graph of a network configuration o SR
when (1) two different paths have more than one link in & s
common and (2) a set oh paths, sayiV,,, covers a set ey s N T

E,, of m links, with each of the paths ifi/,,, containing at a0} 3

least two links in&,,,. As the factor graph becomes more and ax o

more cyclic, the performance of the sum-product algorithm - B ‘T

degrades. e
Finally, we compare in Fig. 11 the performance of belief Ll

propagation and ML estimation using a single source, for the Fig. 10. ENT vs. number of probes.

45-link and a randomly generated 200-link multicast tree.

Our performance measure I8N Ty, defined as théd/NT

value divided by the number of network linkE.NT,,, for VI. DIscussION
the 45 link tree is better (lower) than that of the 200 linletreA. From Trees to General Topologies

for a given number of probes. This plot indicates that belief Throughout the paper, we illustrated our ideas using trees.

propagation can closely follow the optimal ML estimatorygyever, they can naturally be extended to more general

for different number of probes, as well as for differengynoiogies. The only difference is that intermediate nodes

configurations. may need to perform slightly more elaborate operations, for
example over finite fields.

Two notes gb(_)t_]t the@ NT metrlc.‘ F_|rst, thg dlfference_s in the value As a concrete examme, consider the conﬁguratlon in
of ENT are significant, although this is not visually obvious; tetaat Fia. 12. wh tw iniect d A
ENT is defined by taking the sum of theg of the M SE’s. Second, 1g. ,» Where two sources Injec prob@san ZT2. ASSUME

ENT can be< 0, it is the differential entropy that matters. that intermediate nodes can perform operations over th fiel



Average (per link) ENT for the 45 link and 200 link multicast trees
ML estimator and message passing (alpha = 0.7)

implement network coding/XOR) and delegate all complex-

NDER . _ ity to special nodes at the edge; furthermore, it can also

SN o ao kL estimator . be preferable to per-link measurements in dynamic environ-

RO ——45 link:message passing | _| ments where estimates need to be frequently reported, thus
‘\\ - * - 200 link:message passing

causing an extra overhead. Finally, appropriate choice of
multiple sources and receivers can evenly distribute probe
traffic across the network.

average ENT

VII. CONCLUSION

In this paper, we studied link-loss monitoring using
multiple sources of probes from the edge and network
coding capabilities in the middle of the network. We showed
08 ao 100 1m0 200 70 3000 00 a0 400 5000 that is possible to significantly improve link-loss estifoat

sample size (N) over previous purely tomographic techniques by combining
three elements (i) multiple sources and receivers (i) fahre
selection of the number and placement of sources at the edge
of the network (“network points of view”") and (iii) network-
F1. Node A combines the probes to create packet+ z,. coding functionality at intermediate nodes (which elintes
the bandwidth overhead from multiple sources and also
Z1 T2 enriches the information carried by each probe). Ovenall, i

Fig. 11. Average ENT: multicast estimator in 45 link, 20klitopologies.

O——— S
S ; Q 5 networks where network coding is already deployed, these
- R ! :;I\Jr - ideas can potentially improve monitoring; this potentiahc
RENCTRN be fully exploited by using the right points of view and
O — e N Za efficient estimators.
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