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Abstract— One of the simplest sensor network models has
one single underlying Gaussian source of interest, observed by
many sensors, subject to independent Gaussian observation noise.
The sensors communicate over a standard Gaussian multiple-
access channel to a fusion center whose goal is to estimate the
underlying source with respect to mean-squared error. In this
note, a theorem of Witsenhausen is shown to imply that an
optimal communication strategy is uncoded transmission, i.e.,
each sensors’ channel input is merely a scaled version of its
noisy observation.

I. I NTRODUCTION

In this note, we show how a result of Witsenhausen can be
used to close a small gap in an argument that we presented
earlier concerning a certain simple Gaussian “sensor” network:
a single underlying Gaussian “source,” i.e., a sequence of in-
dependent and identically distributed (i.i.d.) Gaussian random
variables, is observed in a memoryless fashion byM sensors,
subject to white Gaussian noise. The sensors are connected
to a fusion center via a standard Gaussian multiple access
channel. The fusion center needs to recover the underlying
source sequence to within the smallest mean squared error
possible.

The interesting insight concerning this network is that the
standard digital communication approach leads to an expo-
nentially suboptimal performance. To put this in context, it is
well known that digital communication (in the information-
theoretic sense) does not lead to optimal performance in
general network problems, see e.g. [1], [2]. One may be
tempted to suspect that the performance gap due to digital
communication strategies is negligible. However, the above
simple sensor network example has shown that the gap may
be of scaling-law relevance,more precisely, it isexponential
in the number of users.

The key question, then, is ow to design more general
communication strategies, beyond the well studied digital
algorithms. Unfortunately, the tools to develop and analyze
optimal strategies for such networks are largely non-existent.
As a matter of fact, the “coding” scheme used to show
that digital communication is suboptimal in a scaling sense
is uncoded transmission,meaning that each sensor merely
transmits a signalproportional to its observations, without
any further coding. Not only could this scheme be shown to
perform exponentially superior to the best digital communica-
tion scheme, it could also be shown to performoptimally in a
scaling-law sense [3], [4], [5].
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Fig. 1. For this simple Gaussian “sensor” network, uncoded transmission is
shown to be exactly optimal: The fusion center (F. C.) needs to reconstructS,
i.e., the underlying source (SRC). Each sensor must satisfy a transmit power
constraint ofP.

In this sense, the crown jewels are gone, but the previous
work left open the question whether uncoded transmission is
strictly optimal rather than only in a scaling-law sense. In this
note, we show how a result of Witsenhausen can be used to
answer this question in the affirmative, at least for some cases.

II. T HE SENSORNETWORK MODEL

The “sensor” network considered in this paper is illustrated
in Figure 2, and the special case for which we establish the
exact optimality is illustrated in Figure 1. The underlying
source{S[n]}n>0 is a sequence of independent and identically
distributed (i.i.d.) real-valued Gaussian random variables of
mean zero and varianceσ2

S . Sensorm observes a sequence
{Um[n]}n>0 defined as

Um[n] = αmS[n] + Wm[n], (1)

where αm ≥ 0 are fixed and known constants (for the
purpose of this note; more general cases are analyzed in [5]),
and {Wm[n]}n>0 is a sequence of i.i.d. Gaussian random
variables of mean zero and varianceσ2

W . Note that therefore,
the assumptionαm ≥ 0 is without loss of generality. Sensor
m can apply anarbitrary coding function to the observation
sequence such as to generate a sequence of channel inputs,
{Xm[n]}n>0 = fm({Um[n]}n>0). The only constraint is that
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Fig. 2. The considered sensor network: The data collection point (D. C. P.)
needs to reconstructS, i.e., the underlying source (SRC).

the functionfm(·) be chosen to ensure that

lim
N→∞

1
N

N∑
n=1

E
[
(Xm[n])2

]
≤ Pm. (2)

The channel output is then given as

Y [n] = Z[n] +
M∑

m=1

δmXm[n], (3)

whereδm ≥ 0 are fixed and known constants (for the purpose
of this note; more general cases are analyzed in [5]), and
{Z[n]}n>0 is an i.i.d. sequence of Gaussian random variables
of mean zero and varianceσ2

Z . Note that the assumption
δm ≥ 0 is without loss of generality. Upon observing the
channel output sequence{Y [n]}n>0, the decoder (or fusion
center) must produce a sequence{Ŝ[n]}n>0 = g({Y [n]}n>0),
and we consider the distortion

D = lim
N→∞

1
N

N∑
n=1

E
[
(S[n]− Ŝ[n])2

]
. (4)

This note concerns the determination of the smallest attainable
distortion D, for fixed power constraintsP = P1 = P2 =
· · · = PM , over all possible encoding and decoding functions,
fm(·) andg(·).

III. U NCODED TRANSMISSION

In this section, we merely quote the results obtained previ-
ously in [3], [4], [5]. Specifically, one simple strategy is for
each sensor to transmit

Xm[n] =

√
Pm

αmσ2
S + σ2

W

Um[n]. (5)

It is easily verified that this satisfies the power constraint
(Equation (2)). We refer to this communication strategy as
uncoded transmission.The performance of this simple scheme
can be evaluated by straightforward calculations. We summa-
rize the result in the following theorem.
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Fig. 3. The CEO source.

Theorem 1:For the Gaussian “sensor” network withαm =
δm = 1 for m = 1, 2, . . . ,M, using uncoded transmission
leads to the following distortion:

D =
σ2

Sσ2
W

Mσ2
S + σ2

W

1 +
M(σ2

Sσ2
Z/σ2

W )
Mσ2

S+σ2
W

σ2
S+σ2

W
Ptot + σ2

Z

 . (6)

For a proof, see [3], [4], [5].

IV. D IGITAL COMMUNICATION

Although this is somewhat tangential to the main result pre-
sented in this note, we also briefly quote the best performance
attainable via a digital strategy. More precisely, such a strategy
enforces a strict separation between source compression and
channel coding in the sense that the channel code merely
transmits bits without making errors (in the limit of long block
length). The maximum number of bits that can be transported
by the considered multiple-access channel is upper bounded
by

Rtot ≤ 1
2

log2

(
1 +

MPtot

σ2
Z

)
. (7)

Moreover, if we have a total rate ofRtot available to the
M sensors, then the smallest distortion we can attain follows
from the so-calledCEO problem. This problem was introduced
in [6], [7] and the quadratic Gaussian version described above
was solved by Oohama [8], with some recent refinements [9].
From this work, thesum rate (i.e., the total rate over all
M encoders) in order to achieve a certain distortionD is
determined as

R(D) = log+
2

(
σ2

S

D

(
Dσ2

SM

Dσ2
SM − σ2

Sσ2
W + Dσ2

W

)M
)

. (8)

For the purpose of this paper, we use Oohama’s simpler lower
bound, which can be obtained easily from the above, noting
that σ2

S/D ≥ 1,

R(D) ≥ M log+
2

(
Dσ2

SM

Dσ2
SM − σ2

Sσ2
W + Dσ2

W

)
. (9)



Conversely, the smallest achievable distortion satisfies

D(R) ≥ σ2
Sσ2

W

σ2
SM

(
1− 2−R/M

)
+ σ2

W

. (10)

By noting that1 − 2−R/M ≤ R/M , this implies the lower
bound

D(R) ≥ σ2
Sσ2

W

σ2
SR + σ2

W

. (11)

Combining this with Equation (7) leads to the following
theorem.

Theorem 2:For the Gaussian “sensor” network withαm =
δm = 1 for m = 1, 2, . . . ,M, using digital communication
incurs a distortion of at least

D ≥ σ2
Sσ2

W

σ2
S log2

(
1 + MPtot

σ2
Z

)
+ σ2

W

. (12)

The scaling-law insight referred to in the introduction is
precisely the difference between Equation (6) and Equation
(12): The former gives a distortion that decays like1/M while
the latter gives one that decays like1/ log(M).

V. A SIMPLE CUT-SET BOUND

In this section, we merely quote the simple bound used
previously in [3], [4], [5]. This lower bound to the distortion
is slightly better than what uncoded transmission (Theorem 1)
shows to be achievable, and therefore leaves open the question
of whether uncoded transmission performs exactly optimally.
We state the result in the following theorem, and then provide
a proof outline merely in preparation for the main result of
this note.

Theorem 3:For the Gaussian “sensor” network withαm =
δm = 1 for m = 1, 2, . . . ,M, usingany scheme, the incurred
distortion must satisfy

D ≥ σ2
Sσ2

W

Mσ2
S + σ2

W

(
1 +

M(σ2
Sσ2

Z/σ2
W )

MPtot + σ2
Z

)
. (13)

Proof outline:We outline the key steps of the proof in order
to explain the contrast to the tighter bound presented below
in Theorem 5.

Considerany mapping that attains an average distortion
D (in the sense of Equation (4)) and uses average powers
P1, P2, . . . , PM (in the sense of Equation (2)). Clearly, we
must have (by the data processing inequality)

I(UN
1 , UN

2 , . . . , UN
M ; ŜN ) ≤ I(XN

1 , XN
2 , . . . , XN

M ;Y N ), (14)

where we use the notational shorthandUN
m =

(Um[1], Um[2], . . . , Um[N ]) (and likewise for XN
m , ŜN ,

and Y N ) for sequences of random variables. Since our
mapping attains an average distortionD, the converse to the
rate-distortion theorem implies that

1
N

I(UN
1 , UN

2 , . . . , UN
M ; ŜN )

≥ min I(U1, U2, . . . , UM ; ŜN ), (15)

where the minimum is over all conditional distributions
p(ŝ|u1, . . . , uM ) satisfyingE[(S − Ŝ)2] ≤ D. For our simple
case, the minimum can be evaluated in closed form as

1
2

log
σ2

S

D
+

1
2

log
Mσ2

S

Mσ2
S + σ2

W − σ2
S

D σ2
W

. (16)

The goal is now to upper bound the right hand side. By the
fact that the channel is memoryless, we find along standard
arguments that

I(XN
1 , XN

2 , . . . , XN
M ;Y N )

≤
N∑

n=1

I(X1[n], X2[n], . . . , XM [n];Y [n]). (17)

Since the considered mapping uses average powers
P1, P2, . . . , PM , we can further bound

N∑
n=1

I(X1[n], X2[n], . . . , XM [n];Y [n])

≤ max
N∑

n=1

I(X1[n], X2[n], . . . , XM [n];Y [n]), (18)

where the maximum is over all joint distributions such that
1
n

∑N
n=1 Pm,n ≤ Pm, where we define

Pm,n
def= E[(Xm[n])2]. (19)

Now, we can relax this and maximize over all distributions for
which

M∑
m=1

1
n

N∑
n=1

Pm,n ≤
M∑

m=1

Pm
def= Ptot. (20)

The latter maximum is easily found to be

N∑
n=1

I(X1[n], . . . , XM [n];Y [n]) ≤ 1
2

log2

(
1 +

MPtot

σ2
Z

)
,

which implies the bound.

VI. W ITSENHAUSEN’ S BOUND

Prior art, as summarized in Theorems 1 and 3, establishes
upper and lower bounds that match in a scaling-law sense, but
leave open a small gap. The contribution of this note is to close
this gap by tightening the lower bound to the distortion, i.e.,
Theorem 3. In other words, this note establishes that uncoded
transmission isexactly optimal for the considered simplistic
Gaussian sensor network.

The key result is the following lemma, due to Witsen-
hausen [10].

Lemma 4:Consider two sequencesU1[n] and U2[n] sam-
pled i.i.d. from the joint distributionp(u1, u2), and two
arbitrary real-valued functionsf1(·) andg1(·) satisfying

E[f1(U1)] = E[g1(U2)] = 0, (21)

E[f2
1 (U1)] = E[g2

1(U2)] = 1. (22)



Define

ρ∗ = sup
f1,g1

E[f1(U1)g1(U2)]. (23)

Then, for any real-valued functionsfN (·) andgN (·) satisfying

E[fN (UN
1 )] = E[gN (UN

2 )] = 0, (24)

E[f2
N (UN

1 )] = E[g2
N (UN

2 )] = 1, (25)

we have that

sup
fN ,gN

E[fN (UN
1 )gN (UN

2 )] ≤ ρ∗. (26)

Remark 1:The quantityρ∗ is also known as the “maximum
correlation coefficient” of the random variablesU1 andU2 in
the literature.

This lemma can be used to establish the converse bound
given in the following theorem.

Theorem 5:For the Gaussian “sensor” network withαm =
δm = 1 and Pm = Ptot/M for m = 1, 2, . . . ,M, using any
scheme, the incurred distortion must satisfy

D ≥ σ2
Sσ2

W

Mσ2
S + σ2

W

1 +
M(σ2

Sσ2
Z/σ2

W )
Mσ2

S+σ2
W

σ2
S+σ2

W
Ptot + σ2

Z

 . (27)

The proof of this theorem is outlined in the appendix.
Remark 2:Hence, the main conclusion of this note is that

for the simple Gaussian “sensor” network shown in Figure 1,
“uncoded transmission” by the sensors, as characterized in
Theorem 1, isexactlyoptimal.

VII. E XTENSIONS

To keep things as simple and insightful as possible, we have
concentrated on the simplest possible configuration, shown in
Figure 1. The obvious next question concerns the scenario
illustrated in Figure 2: Some sensor measurements are more
valuable than others, and some sensors have a stronger channel
to the fusion center than others. The simple cut-set approach
discussed above is particularly weak in this setting due to its
inability to take into account cases where good measurements
are not aligned with the strong channels.

The following distortion can be shown to be achievable:
Theorem 6:For the single-source Gaussian sensor network

discussed in this section and illustrated in Figure 2, the
following distortion is achievable:

D =
σ2

Sσ2
W

σ2
W +

∑M
m=1 |αm|2σ2

S

·

(
1 +

(σ2
Sσ2

Z/σ2
W )
∑M

m=1 |αm|2

σ2
Z + Ptot(M)b(M)

)
, (28)

where

b(M) =

(
σ2

W +
∑M

m=1 |αm|2σ2
S

)∑M
m=1 |αm|2∑M

m=1(|αm|2σ2
S + σ2

W )|αm|2/|δm|2
, (29)

and σ2
S is the variance of the underlying source,σ2

W is the
variance of the observation noise,σ2

Z is the variance of the

noise in the multi-access channel, andPtot(M) is the total
sensor transmit power for theM involved sensors.

A proof of this theorem is given in [5].
By contrast, the simple cut-set approach derived in Sec-

tion V above yields the following upper bound on performance
(and thus, lower bound to the distortion).

Theorem 7:For the single-source Gaussian sensor network
discussed in this section and illustrated in Figure 2, the
achievable distortion is lower bounded by

D ≥ σ2
Sσ2

W

σ2
W +

∑M
m=1 |αm|2σ2

S

·

(
1 +

(σ2
Sσ2

Z/σ2
W )
∑M

m=1 |αm|2

σ2
Z + Ptot(M)

∑M
m=1 |δm|2

)
, (30)

whereσ2
S is the variance of the underlying source,σ2

W is the
variance of the observation noise,σ2

Z is the variance of the
noise in the multi-access channel, andPtot(M) is the total
sensor transmit power for theM involved sensors.

A proof of this theorem is given in [5].
Again, we note that the difference between the two is rather

small. The Witsenhausen bound can be used to tighten the gap
somewhat, and a general bound is given in Equation (49) in
the appendix. Note, however, that this bound is not sufficient
to prove that uncoded transmission is “exactly” optimal in the
case of generalαm, δm andPm, for m = 1, 2, . . . ,M.

VIII. R ECEIVED-POWERCONSTRAINTS

Let us reconsider the model of Figure 2, as defined in
Section II. We are now removing the transmit power constraint,
i.e., Condition (2). Instead, the only constraint is that the
functions fm(·), for m = 1, 2, . . . ,M, be chosen to ensure
that

lim
N→∞

1
N

N∑
n=1

E
[
(Y [n])2

]
≤ Q. (31)

This is a received-power constraint, as considered in [11]. For
this setting, uncoded transmission can be shown to be exactly
optimal for more general choices of parameters. Specifically,
the following theorem is proved in [11].

Theorem 8:For the Gaussian “sensor” network withαm =
1 for m = 1, 2, . . . ,M, and received-power constraint (as in
Equation (31)) usingany scheme, the smallest distortion is
attained by uncoded transmission and is given by

D =
σ2

Sσ2
W

Mσ2
S + σ2

W

1 +
Mσ2

S

σ2
W

(
1 + Q

σ2
Z

)
 . (32)

It is also interesting to note that this theorem continues to
hold even if arbitrary causal feedback is available at some
or all of the transmitters, and under arbitrary models of
transmitter cooperation (i.e., arbitrary “free” additional links
between sensors). This is explained in more detail in [11].



IX. SOME CONCLUDING REMARKS

In this note, we have closed a small gap in our previous
arguments, using an insight due to Witsenhausen. This con-
cerns a joint source-channel coding problem in a Gaussian
“sensor” network. The improved upper bound shows that
uncoded transmission is not only scaling-law optimal; it is
exactly optimal.

Clearly, it will be interesting to investigate the significance
of the Witsenhausen bound for more general source-channel
communication networks. A partial account of this was given
by Kang and Ulukus in [12]. As shown in the proof of
Theorem 5, one way of using the bound is in the shape of an
“enhanced” cut-set bound: To bound the mutual information
across the channel, in the regular cut-set bound,all joint
distributions of the channel input signals must be considered.
The Witsenhausen argument permits to limit the class of
joint distributions in a non-trivial way: The maximum amount
of correlation between the channel inputs can be bounded
in terms of the “maximum correlation coefficient” of the
underlying source signals. In the Gaussian case considered in
this paper, this is a simple matter as the maximum correlation
coefficient is merely the standard correlation coefficient. More
generally, finding the maximum correlation coefficient is a
non-trivial issue for which algorithms have been devised (see
e.g. the ACE algorithm in [13]).

It is perhaps interesting to point out a connection to another
method of understanding the (“exact”) optimality of uncoded
transmission, as proposed in [14], [15] and sometimes referred
to as “measure-matching.” In this perspective, wefix the
encoder to be uncoded transmission (as in Equation (5)), and
the decoder to be the corresponding minimum mean-squared
error estimate. The measure-matching approach then deter-
mines the channel input cost function as well as the distortion
measure for which the considered encoder and decoder are
information-theoretically optimal. Straightforward evaluation
of the measure-matching conditions as given in [14], [15]
leads, not surprisingly, to the mean-squared error distortion
measure. Slightly less trivially, the cost function is found to
be the received-power constraint discussed in Section VIII,
i.e., Equation (31).
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APPENDIX

Proof: [Proof of Theorem 5] For the purpose of this proof,
we will first consider the case of general values ofαm, δm and
Pm, and then specialize our results to the claimed scenario.
We considerany mapping of lengthN that attains an average
distortion D (in the sense of Equation (4)) and uses average
powersP1, P2, . . . , PM (in the sense of Equation (2)). Clearly,
we must have (by the data processing inequality)

I(UN
1 , UN

2 , . . . , UN
M ; ŜN ) ≤ I(XN

1 , XN
2 , . . . , XN

M ;Y N ). (33)

As shown in the proof of Theorem 3, the left hand side can
be lower bounded by the remote rate-distortion function (see
e.g. [17])

I(UN
1 , UN

2 , . . . , UN
M ; ŜN )

≥ 1
2

log
σ2

S

D
+

1
2

log
Aσ2

S

Aσ2
S + σ2

W − σ2
S

D σ2
W

, (34)

whereA =
∑M

m=1 α2
m. The new argument is used to bound

the right hand side of Equation (33) more tightly. We start as
in the proof of Theorem 3 by arguing that

I(XN
1 , XN

2 , . . . , XN
M ;Y N )

≤ max
N∑

n=1

I(X1[n], X2[n], . . . , XM [n];Y [n]), (35)

where the maximum is over all joint distributions such that
1
n

∑N
n=1 Pm,n ≤ Pm, wherePm,n is as defined in Equation

(19). The maximizing distribution is Gaussian, therefore,

N∑
n=1

I(X1[n], X2[n], . . . , XM [n];Y [n])

=
N∑

n=1

1
2

log(1 +
1

σ2
Z

δT Σnδ), (36)

whereδ = (δ1, . . . , δM )T andΣn is a matrix whose entry in
row m and columnm′ is given by

{Σn}m,m′ = E [Xm[n]Xm′ [n]] . (37)

Now, we note that

Xm[n] = fm,n(UN
m ) (38)

for any functionfm,n(·) satisfying

E[fm,n(UN
m )] = 0 and E[f2

m,n(UN
m )] = Pm,n,

where the sufficiency of mappings satisfying the first condition
can be shown by standard arguments, and the second condition
is merely the definition ofPm,n as in Equation (19). By
Lemma 4, we have that

E[fm,n(UN
m )fm′,n(UN

m′)] ≤ ρ∗m,m′

√
Pm,nPm′,n, (39)

where

ρ∗m,m′
def= sup

f1,g1

E[f1(Um)g1(Um′)]. (40)

It can be shown that whenUm andUm′ are jointly Gaussian,
the supremum in the above expression is attained by choosing

f1(Um) =
Um√

αmσ2
S + σ2

W

and (41)

g1(Um′) =
Um′√

αm′σ2
S + σ2

W

. (42)

A proof of this well-known fact can be found, e.g., in [18].
It is perhaps important to point out that beyond the Gaussian
case, the optimal functionsf1(·) and g1(·) are not always as



simple. This has been studied in much detail, see e.g. the ACE
algorithm in [13]. For our scenario, we now find

ρ∗m,m′ =
E[UmUm′ ]√
E[U2

m]E[U2
m′ ]

(43)

=
E[(αmS + Wm)(αm′S + Wm′)]√

E[(αmS + Wm)2]E[(αm′S + Wm′)2]

=
αmαm′σ2

S√
(αmσ2

S + σ2
W )(αm′σ2

S + σ2
W )

. (44)

To continue, we defineΣ = 1
N

∑N
n=1 Σn, and note thatΣ

also has its correlation coefficients bounded byρ∗m,m′ . The
concavity of the logarithm implies that

N∑
n=1

I(X1[n], X2[n], . . . , XM [n];Y [n])

≤ 1
2

log(1 +
1

σ2
Z

δT Σδ) ≤ max
1
2

log(1 +
1

σ2
Z

δT Σδ),

(45)

where the maximum is over all covariance matricesΣ satis-
fying

{Σ}m,m ≤ 1
N

N∑
n=1

Pm,n ≤ Pm (46)

{Σ}m,m′ ≤ ρ∗m,m′
1
N

N∑
n=1

√
Pm,nPm′,n

≤ ρ∗m,m′

√
PmPm′ , for m 6= m′. (47)

Since the expression inside the logarithm in Equation (45)
is merely a weighted sum (with non-negative coefficients) of
the entries of the matrixΣ, it is clear that the maximizing
covariance matrix is simply the one that attains these two
constraints with equality. Hence, we find the following rate
upper bound:

I(XN
1 , XN

2 , . . . , XN
M ;Y N )

≤ 1
2

log

(
1 +

1
σ2

Z

(
M∑

m=1

δ2
mPm

+2
M∑

m=1

M∑
m′=m+1

ρ∗m,m′δmδm′

√
PmPm′

))
(48)

To conclude the proof, let us denoteR =
I(UN

1 , UN
2 , . . . , UN

M ; ŜN ) and invert the relationship (34) to
obtain

D ≥ σ2
S

1 + Aσ2
S

σ2
W

+
σ2

S2−2R

1 + σ2
W

Aσ2
S

. (49)

However,R is upper bounded by Equation (48). Combining
this with Equation (49) gives a general lower bound onD.

For reasons of space and insight, we will not write out the
general bound here. Instead, let us now specialize to the case
αm = δm = 1 andPm = P = Ptot/M. Then, we find

ρ∗m,m′ = ρ∗
def=

σ2
S

σ2
S + σ2

W

, (50)

and thus, Equation (48) evaluates to

I(XN
1 , XN

2 , . . . , XN
M ;Y N )

≤ 1
2

log

1 +
Ptot

Mσ2
S+σ2

W

σ2
S+σ2

W

σ2
Z

 . (51)

Substituting this expression forR in Equation (49), noting that
A = M, and rearranging terms gives the claimed lower bound.
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