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Abstract—One of the simplest sensor network models has

one single underlying Gaussian source of interest, observed by e
many sensors, subject to independent Gaussian observation noise. é U1 X1
The sensors communicate over a standard Gaussian multiple- SENSOR 1| w
access channel to a fusion center whose goal is to estimate the Wa
underlying source with respect to mean-squared error. In this s Us X % g
note, a theorem of Witsenhausen is shown to imply that an SRC »(+ SENSOR 2 | F.C. >
optimal communication strategy is uncoded transmission, i.e.,
each sensors’ channel input is merely a scaled version of its
noisy observation.
I. INTRODUCTION Wy

In this note, we show how a result of Witsenhausen can be Ur X s

used to close a small gap in an argument that we presented SENSORM |

earlier concerning a certain simple Gaussian “sensor” network:

a single underlying Gaussian “source,” i.e., a sequence of El]-. 1. For this simple Gaussian “sensor” network, uncoded transmission is

dependent and identically distributed (i.i.d.) Gaussian randosfﬁ%wn to be exactly optimal: The fusion centerd.) needs to reconstrud,
variables, is observed in a memoryless fashionbysensors, i.e., the underlying sourceskc). Each sensor must satisfy a transmit power

subject to white Gaussian noise. The sensors are connedtraint ofF.
to a fusion center via a standard Gaussian multiple access

channel. The fusion center needs to recover the underlyin

source sequence to within the smallest mean squared err(g)lrn this sense, the crown jewels are gone, but the previous
possible. work left open the question whether uncoded transmission is

The interesting insight concerning this network is that th%trICtIy optimal rather than only in gscalmg-law sense. In this
te, we show how a result of Witsenhausen can be used to

standard digital communication approach leads to an expﬂ)o . L . .
nentially suboptimal performance. To put this in context, it janswer this question in the affirmative, at least for some cases.
well known that digital communication (in the information-

theoretic sense) does not lead to optimal performance in

general network problems, see e.g. [1], [2]. One may beThe “sensor’ network considered in this paper is illustrated
tempted to suspect that the performance gap due to digii@lrigure 2, and the special case for which we establish the
communication strategies is negligible. However, the abowgact optimality is illustrated in Figure 1. The underlying

simple sensor network example has shown that the gap m@yrce{S[n|},-, is a sequence of independent and identically
be of scaling-law relevancemore precisely, it ixponential istributed (i.i.d.) real-valued Gaussian random variables of

in the number of users. _ _ mean zero and variance?. Sensorm observes a sequence
The key question, then, is ow to design more generﬁ]m[n]}wo defined as

communication strategies, beyond the well studied digital

algorithms. Unfortunately, the tools to develop and analyze Unln] = amSn]+ Wpnl, 1)
optimal strategies for such networks are largely non-existent.

As a matter of fact, the “coding” scheme used to showhere «,,, > 0 are fixed and known constants (for the
that digital communication is suboptimal in a scaling sengmirpose of this note; more general cases are analyzed in [5]),
is uncoded transmissiormeaning that each sensor mereland {W,,[n]},~0 iS a sequence of i.i.d. Gaussian random
transmits a signaproportional to its observations, without variables of mean zero and varianeg.. Note that therefore,
any further coding. Not only could this scheme be shown the assumptiony,, > 0 is without loss of generality. Sensor
perform exponentially superior to the best digital communicas can apply ararbitrary coding function to the observation
tion scheme, it could also be shown to perfopptimallyin a sequence such as to generate a sequence of channel inputs,
scaling-law sense [3], [4], [5]. {Xm[n]}ns0 = fm({Un[n]}n>0). The only constraint is that

Il. THE SENSORNETWORK MODEL
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Fig. 2. The considered sensor network: The data collection ppint.(r.) Fig. 3. The CEO source.
needs to reconstrud, i.e., the underlying sourcesRc).

Theorem 1:For the Gaussian “sensor” network with, =

the functionf,,,(-) be chosen to ensure that 6m = 1 for m = 1,2,..., M, using uncoded transmission
N leads to the following distortion:
Jn G E)] £ P @) » e
n=1 _ 050w M(OSOZ/OW) (6)
; - - Mo? + o3 Mog+o} 2
The channel output is then given as s w WOQWWPM +oz

For a proof, see [3], [4], [Sf.

M
Y[n] = Zn]+ Z:l‘smxm[”]’ @) IV. DIGITAL COMMUNICATION

Although this is somewhat tangential to the main result pre-

of this note: more general cases are analyzed in [5]), af n'Fed in th_is not_e,_ we also briefly quote t_he best performance
{Z|n]}n>o0 is an i.i.d. sequence of Gaussian random variabld ainable via a digital strgtegy. More precisely, such a st.rategy
of mean zero and variance?. Note that the assumption err:forcels agltnct .sei)haratlon be:\r/]vete?hsourr]ce colmprgssmn a:qd
o0, > 0 is without loss of generality. Upon observing th%C anne Ct? N9 ;1n € skgnse at ehc I‘?‘”T‘effo eb:nelr(ey
channel output sequend@’ [n]},,~o, the decoder (or fusion ransmits bits without making errors (in the limit of long bloc

length). The maximum number of bits that can be transported
center) must produce a sequedcdn|},~o = g({Y[n]}n>0), : . :
and we consider the distortion by the considered multiple-access channel is upper bounded

whered,, > 0 are fixed and known constants (for the purpose

by
1 & .
D = Jim > B[S - SW)?]. @) Rin < gloms (14205, ™
n=1 2 0y

This note concerns the determination of the smallest attainable

distortion D, for fixed power constrainty® = P, = P, = Moreover, if we have a total rate d®,,; available to the

... = Py, over all possible encoding and decoding functiond/ sensors, then the smallest distortion we can attain follows

fm(:) andg(-). from the so-calle€EO problemThis problem was introduced
in [6], [7] and the quadratic Gaussian version described above

I1l. UNCODED TRANSMISSION was solved by Oohama [8], with some recent refinements [9].

In this section, we merely quote the results obtained pre\ﬁ-rom this Wor!<, thesum rate _(|.e., the tot_al “’?‘te over all
encoders) in order to achieve a certain distortibnis

ously in [3], [4], [5]. Specifically, one simple strategy is fo .
each sensor to transmit determined as

2 Do2M M
P, R(D) = log? | 28 ( 5 ) . @
Xmln] = P +U€VUm[n]. g [P =los (D Do%M — 0202, + Do?, ®

It is easily verified that this satisfies the power constrair"n:tOr the purpose of this paper, we use Oohama's simpler lower

(Equation (2)). We refer to this communication strategy ﬁoutndQ, Vl\;hfhl can be obtained easily from the above, noting
uncoded transmissioMhe performance of this simple schem atog/D = 1,

can be evaluated by straightforward calculations. We summa- .
rize the result in the following theorem. R(D) = M log, <

Do M ) ©

2 2 2 2
DocM — ogoiy, + Doy,



Conversely, the smallest achievable distortion satisfies where the minimum is over all conditional distributions

o o p(8us, ..., uy) satisfying E[(S — 5)2] < D. For our simple
D(R) > 959w ) (10) case, the minimum can be evaluated in closed form as
- J%M (1 — Z*R/M) + 0‘24,
71 ——1—710 Mog (16)
By noting thatl — 2= %/ < R/M, this implies the lower %D & Mo2 & o2, — %842
bound soow prw
9 9 The goal is now to upper bound the right hand side. By the
D(R) > % (11) fact that the channel is memoryless, we find along standard
ogh + oy arguments that
Combining this with Equation (7) leads to the following 1N, XN, XNy
theorem. N
Theorem 2:For the Gaussian “sensor” network with,, = < ZI(XI[ ], X2[n] Xu[nl;Yn]). (A7)

0m = 1 for m = 1,2,..., M, using digital communication

incurs a distortion of at least ) ) )
Since the considered mapping uses average powers

D> U?QU%V ) (12) P, P, ..., Py, we can further bound
B 0% log, 1+MP“" + 03, N
The scaling-law insight referred to in the introduction is ZI(Xl[n],Xz[n],...7XM[n];Y[n])
precisely the difference between Equation (6) and Equation n=1

(12): The former gives a distortion that decays like// while N
the latter gives one that decays likglog(M). < max »_I(Xi[n], Xa[nl,..., Xu(n]; Yn]), (18)
n=1
V. A SIMPLE CUT-SETBOUND where the maximum is over all joint distributions such that
In this section, we merely quote the simple bound uset>_n=1 P < Pm, where we define
previously in [3], [4], [5]. This lower bound to the distortion def )
is slightly better than what uncoded transmission (Theorem 1) Pon = El(Xmn[n])7]. (19)

shows to be achievable, and therefore leaves open the quesig), \ve can relax this and maximize over all distributions for
of whether uncoded transmission performs exactly Opt'mall)Ohrch

We state the result in the following theorem, and then provide Y N "

a proof outline merely in preparation for the main result of 1 def

this note. Z n Z Pn < Z Py = Pior (20)
Theorem 3:For the Gaussian “sensor” network with,, = = _ " _ o

6m =1 for m=1,2,..., M, usingany scheme, the incurred The latter maximum is easily found to be

distortion must satisfy

1

2 9 2 9 9 I(Xi[n],..., Xm[n];Yn]) < =log, <1—|—

D > 050w 1 M(USGZ/UW) ] (13) 7; 2
Mo 2 + 2 -Z\/[Ptot + O'

Proof outline: We outllne the key steps of the proof in ordervhich implies the bound.

to explain the contrast to the tighter bound presented below
in Theorem 5. VI. WITSENHAUSEN S BOUND

Considerany mapping that attains an average distortion Prior art, as summarized in Theorems 1 and 3, establishes
D (in the sense of Equation (4)) and uses average powefsper and lower bounds that match in a scaling-law sense, but
Py, Py, ..., Py (in the sense of Equation (2)). Clearly, weeave open a small gap. The contribution of this note is to close
must have (by the data processing inequality) this gap by tightening the lower bound to the distortion, i.e.,
Theorem 3. In other words, this note establishes that uncoded
transmission isexactly optimal for the considered simplistic
where we use the notational shorthan@y = Gaussian sensor network. _
(Um[1],Unl2], ..., Un[N]) (and likewise for XN SN, The key result is the following lemma, due to Witsen-
and YY) for sequences of random variables. "Since offausen [10]. _
mapping attains an average distortibh the converse to the L-emma 4:Consider two sequencd$, [n] and Uy[n| sam-

rate-distortion theorem implies that pled i.i.d. from the joint distributionp(u,us), and two
arbitrary real-valued functiong,; (-) and g; (-) satisfying
1 N N N. QN
N0 Ui 57) E[f(U1)] = Elg: (U)] = 0, (21)
> minI(Uy,Us, ..., Un; SY), (15) E[ff(Uh)] = E[gi(Us)] = 1. (22)

M-Ptot
o2 ’

HON, Uy, U SNy < 1(x L XYL XA YY), (14)



Define noise in the multi-access channel, afg,.(M) is the total
. sensor transmit power for th&/ involved sensors.
Pz Elf1(U1)g1(U2)]- (23) A proof of this theorem is given in [5].

By contrast, the simple cut-set approach derived in Sec-
tion V above yields the following upper bound on performance
E[fn(UN)] = Elgy(UM)] = 0, (24) (and thus, lower bound to the distortion).

Theorem 7:For the single-source Gaussian sensor network

Then, for any real-valued functionfs; (-) andgy (-) satisfying

2 N\l _ 2 N\
Blfxy U] = Bloy (U2)] = 1, (25) " giscussed in this section and illustrated in Figure 2, the
we have that achievable distortion is lower bounded by
s Blfx(UNon (U] < " (26) D > o3y
N-gN - M
Remark 1:The quantityp* is also known as the “maximum Ty + Dt om0
tcr:)errﬁtlggaotrllrc(:eoefficient“ of the random variablés and U, in ( (0202 /02)) Z%:l |t | ) (30)
: ' . 2 4 Po(M)SM 16,2)
This lemma can be used to establish the converse bound 07+ Prot(M) 2y [0

given in the following theorem.

Theorem 5:For the Gaussian “sensor” network with,, =
dm =1 and P,, = Pyoy/M for m = 1,2,..., M, using any
scheme, the incurred distortion must satisfy

whereo? is the variance of the underlying soureg, is the
variance of the observation noise, is the variance of the
noise in the multi-access channel, afy,.(M) is the total
sensor transmit power for th&l involved sensors.

A proof of this theorem is given in [5].

2 2 M 2 2 2
D> Mgf% 1+ - gﬁgZ/gW) (27)  Again, we note that the difference between the two is rather
75 T ow 2507 Lrot + 0% small. The Witsenhausen bound can be used to tighten the gap

The proof of this theorem is outlined in the appendix. somewhat, and a general bound is given in Equation (49) in
Remark 2:Hence, the main conclusion of this note is thathe appendix. Note, however, that this bound is not sufficient
for the simple Gaussian “sensor” network shown in Figure 1 prove that uncoded transmission is “exactly” optimal in the
“uncoded transmission” by the sensors, as characterizedcase of generak,,, d,, and B, for m =1,2,..., M.
Theorem 1, isexactlyoptimal.

VIIl. RECEIVED-POWERCONSTRAINT
VIl. EXTENSIONS c ) CoNs S

To keep things as simple and insightful as possible, we have-et us reconsider the model of Figure 2, as defined in
concentrated on the simplest possible configuration, shownSgction Il. We are now removing the transmit power constraint,
Figure 1. The obvious next question concerns the scenakr®, Condition (2). Instead, the only constraint is that the
illustrated in Figure 2: Some sensor measurements are mbractions f,,,(-), for m = 1,2,..., M, be chosen to ensure
valuable than others, and some sensors have a stronger chalfvaél
to the fusion center than others. The simple cut-set approach
_dlSCL_J_ssed abov_e is particularly weak in this setting due to its lim 1 Z E [(Y[n])ﬂ < Q. (31)
inability to take into account cases where good measurements N—oo N
are not aligned with the strong channels.

The following distortion can be shown to be achievable: This is a received-power constraint, as considered in [11]. For

Theorem 6:For the single-source Gaussian sensor netwolkis setting, uncoded transmission can be shown to be exactly
discussed in this section and illustrated in Figure 2, th@otimal for more general choices of parameters. Specifically,

following distortion is achievable: the following theorem is proved in [11].
9 o Theorem 8:For the Gaussian “sensor” network with,, =
D = 959w 1 for m =1,2,..., M, and received-power constraint (as in
o+ 3o o |20% Equation (31)) usingany scheme, the smallest distortion is

o : o L
(i (020222/0‘24/) SMam? (28 attained by uncoded transmission and is given by
UZ + Ptot(M)b(M)

2 2 2
oS0y Moy
— W 32
where Mo? + o3, o2 <1 n %) (32
2 M 2 2 M 2 . . . w .9z .
() Oy + Dt lam[?0E ) D —y lovm| 29) It is also interesting to note that this theorem continues to
= y ) hold even if arbitrary causal feedback is available at some
S (lom 205 + ofy )|/ 15m 2 /

or all of the transmitters, and under arbitrary models of
and 0% is the variance of the underlying source}, is the transmitter cooperation (i.e., arbitrary “free” additional links
variance of the observation noise is the variance of the between sensors). This is explained in more detail in [11].



IX. SOME CONCLUDING REMARKS As shown in the proof of Theorem 3, the left hand side can
In this note, we have closed a small gap in our previom?? lower bounded by the remote rate-distortion function (see
arguments, using an insight due to Witsenhausen. This c&h9: [171)

cerns a joint source-channel coding problem in a Gaussian GCARAS .,Uﬁ;SN)

“sensor” network. The improved upper bound shows that 1 o2 1 Ao2

uncoded transmission is not only scaling-law optimal; it is > 510g58 + §1Og S — . (34)
exactly optimal. Aol +ofy — Fogy

Clearly, it will be interesting to investigate the significance I VY .
of the Witsenhausen bound for more general source-chanﬁglereA = D=1 @ The new argument is used to bound

L . : . the right hand side of Equation (33) more tightly. We start as
communication networks. A partial account of this was given the broof of Theorem 3 by arauing that
by Kang and Ulukus in [12]. As shown in the proof of P y arguing

Theorem 5, one way of using the bound is in the shape of an (XN XV ... xN.vY)

“enhanced” cut-set bound: To bound the mutual information N

across the channel, in the regular cut-set boualt,joint < maXZI(Xl[n]’XQ[n],,,,,XM[n];Y[nD, (35)
distributions of the channel input signals must be considered. n=1

The Witsenhausen argument permits to limit the class @here the maximum is over all joint distributions such that
joint distributions in a non-trivial way: The maximum amounggN
n=1

s ! —1 Pmn < P, Where P, ,, is as defined in Equation
of correlation between the channel inputs can be boundé ). The maximizing distribution is Gaussian, therefore,
in terms of the “maximum correlation coefficient” of the

underlying source signals. In the Gaussian case considered in
this paper, this is a simple matter as the maximum correlation
coefficient is merely the standard correlation coefficient. More

I(Xl[n],Xg[n}, ce. ,XM[n];Y[n])

n=1

N
generally, finding the maximum correlation coefficient is a _ 1 Yy
non-trivial issue for which algorithms have been devised (see N ; 2 log(1 + 025 Znd), (36)
e.g. the ACE algorithm in [13]). - . _ _ _
It is perhaps interesting to point out a connection to anoth@heres = (dy, ... ’5M,)- and, is a matrix whose entry in
method of understanding the (“exact”) optimality of uncodetPW m and columnm’ is given by
transmission, as proposed in [14], [15] and sometimes referred Solmm = B[Xo[n) Xow[n]]. 37)

to as “measure-matching.” In this perspective, ¥ire the

encoder to be uncoded transmission (as in Equation (5)), @ddw, we note that
the decoder to be the corresponding minimum mean-squared N
error estimate. The measure-matching approach then deter- Xm[n] = fmnUpy)

mines the channel input cost function as well as the distortiggy any functionf,,, () satisfying

measure for which the considered encoder and decoder are

information-theoretically optimal. Straightforward evaluation — Elfmn(Un)] =0 and  E[f? (U] = Pun,

of the measure-matching conditions as given in [14], u@]/here the sufficiency of mappings satisfying the first condition

leads, not syrpnsmgly, tp .the mean-squared. error d'StO”'BHn be shown by standard arguments, and the second condition
measure. Slightly less trivially, the cost function is found t merely the definition ofP as in Equation (19). By
be the received-power constraint discussed in Section Vlll_emma 4. we have that e '

i.e., Equation (31). N N
E[fm,n(Um )fm/,n(Um/)] S anm/ vV Pm,npm’,fu (39)

(38)
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It can be shown that whebi,,, andU,,,; are jointly Gaussian,

. the supremum in the above expression is attained by choosing
Proof: [Proof of Theorem 5] For the purpose of this proof,

APPENDIX

we will first consider the case of general valueswf, 4, and fiUn) = U and (41)
P,,, and then specialize our results to the claimed scenario. Vamos + o3
We considerany mapping of lengthV that attains an average Uy

9(Un) = —F———r (42)

distortion D (in the sense of Equation (4)) and uses average \/m
powersPy, Ps, ..., Py (in the sense of Equation (2)). Clearly, ) ,
we must have (by the data processing inequality) A 'proof of thI'S well-known fgct can be found, e.g., in [18]..
It is perhaps important to point out that beyond the Gaussian
oM, oM, .UM SNy <1(xN, x, ..., XN;YN). (33) case, the optimal functiong (-) andg;(-) are not always as



simple. This has been studied in much detail, see e.g. the A@id thus, Equation (48) evaluates to

algorithm in [13]. For our scenario, we now find
ElUU]
EUZEU;,]
El(amS + W) (am: S + Wi )]
VE[(amS + W) E[(am S + Wi )?]

(43)

pm,m’

_ O T . @44y A=
V(mo? + o) (amo? + o2))
To continue, we defin& = + Z” . X, and note thatS
also has its correlation coefficients bounded A4y ... The (g
concavity of the logarithm implies that
ol [2]
> I(Xa[n), Xa[nl,. .., Xa[n]; Yn))
n=1
< Liog(1+ L 6755) < max Llog(1 + —=-57s), B
= 2% 0% = Ay o8 0% ’
(45) ]

where the maximum is over all covariance matriceésatis-

fying

N
D . [5]
Ytwm < = P, ., <P, 46
Chon = F 3 as)
1 N
Zrnm < p:n,m’ﬁ Z /P P 6]
n=1
< p;kn,m,’ \/m, for m 7é m'. (47) [7]

Since the expression inside the logarithm in Equation (45)
is merely a weighted sum (with non-negative coefficients) of!
the entries of the matrix, it is clear that the maximizing
covariance matrix is simply the one that attains these twis]
constraints with equality. Hence, we find the following rate
upper bound:

I(xy ,Xa 1ol

XM,YN

Z o

M

Z Z pm,m’amam’\/m

m=1m’'=m+1

[11]
< L+ —
[12]

48
(48) 3]

To conclude the proof, let us denoteR =
I(UN,UN,...,UN;SN) and invert the relationship (34) to[14]
obtain
2 29—2R [15]
D S22 2 (49)
1+ "S 1+ [16]

Aas
However, R is upper bounded by Equation (48). Combinin?1

this with Equation (49) gives a general lower boundon
For reasons of space and insight, we will not write out the

(X7, X5, X YY)
1 PtotAigi_-:gW
< §log 1+ 5 (51)
0z

Substituting this expression fa@t in Equation (49), noting that

M, and rearranging terms gives the claimed lower bound.
[ |
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