Channel sensing and estimation is an important component of modern wireless communication systems, and it is a crucial element of emerging systems such as cognitive radio. Wireless channels are multidimensional; delay, Doppler, and spatial diversity provides rich signaling environments that can be exploited to enhance communication capabilities. The identification of such channels is usually carried out by fully exciting or illuminating all dimensions and then applying linear estimation techniques. For high-dimensional channels, this is prohibitive and often ineffective. Linear estimation methods are ineffective because they ignore a key feature of such channels. Because of their high-dimensionality and the physical causes underlying them, wireless channels are often quite sparse, with a small number of dominant modes characterizing their structure. Estimation methods that do not capitalize on this sparsity do not perform well. This paper addresses channel sensing and estimation from a new perspective that exploits the inherent sparsity in high-dimensional wireless communication channels. Adapting ideas from the theory of compressed sensing, we make two key observations: 1) sparse channels can be identified from a small number of properly chosen excitations or illuminations, and exhaustive probing is unnecessary; 2) nonlinear, sparse estimation methods such as the Lasso yield superior channel estimates compared to linear techniques. One of the especially novel mathematical aspects of our work is that we show that Toeplitz-structured sensing matrices, which naturally arise when pseudorandom excitations are employed, are very well suited to the identification of sparse channels.