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Abstract— The benefits employing channel state information
(CSI) at the transmitter in a multiple antenna wireless link are
well documented in the literature. One of the most popular
techniques to provide the transmitter with CSI in frequency
division duplexing wireless links is by sending a finite number
of feedback bits. However, the effect of the overhead created
by these feedback bits on the link performance is still not well
understood. In this paper, we study a specific scenario of limited
feedback known as limited feedback beamforming. We look at
the effect of allocating resources to feedback and the scaling of
these resources. Monte Carlo simulations also demonstrate the
inherent tradeoff between the forward and reverse links in a
wireless system.

I. INTRODUCTION

Over the last ten years, much work has been done to
exploit channel state information (CSI) at the transmitter in
multiple antenna wireless systems. The challenge with imple-
menting signaling techniques that adapt to CSI is developing
approaches to supply the transmitter with CSI. While the
receiver can obtain CSI by training, the transmitter can only
obtain CSI if it is a transceiver (i.e., it acts as both a transmitter
and receiver). This means that if the forward link in a wireless
system uses CSI adaptive signaling the transmitter will have
to use the reverse link to obtain this CSI. Thus, understanding
the two-way nature of wireless systems is critical.

In frequency division duplexing (FDD) systems, one of
the main applications of the two-way structure is the use of
limited feedback (see for example [1]–[3] and the references
therein). The basic idea with this work has been that the
forward link leverages CSI at the transmitter by having the
receiver send some form of quantized CSI information on the
reverse link. Most of this research, however, has made the
often questionable assumption that the feedback channel is
‘free’ (i.e., available without a loss in time, power, frequency,
etc.). This kind of assumption generally has several problems.
When a user allocates resources for feedback that same user
encounters a corresponding loss in resources available for
transmitting data. Even though the feedback increases the max-
imum achievable rate on the forward link, feedback decreases
the maximum achievable rate on the reverse link. Therefore,
there exists a tradeoff between the maximum achievable rate
in the forward and reverse links.

There has only been limited work that takes into account
the two-way nature. A two-way channel estimation scheme is

proposed in [4]. Ref. [5] discusses using a quasi-symmetric
channel mode. A model for deducting a feedback rate penalty
in a symmetric wireless system is proposed in [6]. Feedback
design that takes into account bandwidth resources is available
in [7]. Ref. [8] studies a two-stage bidirectional training
scheme suitable for time division duplexing (TDD) and derives
the diversity-multiplexing tradeoff is derived. An analytical
study of allocating power to training, feedback, and data is
given in [9].

In this paper, we look at the at the asymptotic scaling of time
and power resources required to optimize a limited feedback
beamforming multiple antenna system. We propose models for
allocating feedback that takes into account parameters such as
coherence time and number of antennas. Numerical results
demonstrate the tradeoff. Interestingly, a related set-up was
independently developed in [10] that looks at scaling with a
large number of transmit antennas.

In Section 2, we set-up the limited feedback system that is
analyzed. Section 3 addresses the asymptotic scaling of the
number of feedback channel uses. The amount of power that
should be allocated is asymptotically characterized in Section
4. Section 5 presents simulations, and we conclude in Section
6.

II. LIMITED FEEDBACK BEAMFORMING

The two-way system under consideration is described
herein.

A. System Set-up

The system under consideration is shown in Fig. 1. Consider
two mobiles, labeled Mobile A and Mobile B, signaling to
each other wirelessly using a frequency division duplexing
M transmit antenna by M receive antenna wireless link with
beamforming and combining. We refer to Link 1 as the link
where Mobile A transmits to Mobile B and Link 2 as the link
where Mobile B transmits to Mobile A.

We assume a block fading model for both links. The
channels for Links 1 and 2 at the ith block are denoted by the
M ×M matrices H1[i] and H2[i], respectively. Both matrices
have independent and identically distributed CN (0, 1) entries.
By the FDD and block fading assumptions, we assume that
Hl1 [i1] and Hl2 [i2] are independent when l1 6= l2 or i1 6= i2.
Both channels are constant for T channel uses, and with a
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Fig. 1. This paper considers a symmetric two-way beamforming system.
The two links are assumed to be frequency division duplexed. The goal is to
determine what is the optimal way to distribute time and power resources.

slight abuse of terminology, we refer to T as the coherence
time of the channel. Mobile A (B) is assumed to have perfect
knowledge of H2[i] (H1[i]) throughout the entire T channel
uses of the ith block. Therefore, this analysis will ignore the
role of channel estimation in feedback optimization.

In addition to symmetry in the numbers of antenna and
channel model, we will assume that both mobiles have the
same transmit power constraints. These symmetries motivate
both links to use identical framing and power allocation. The
below discussion will apply to both links.

The T channel uses will be divided into two different
phases. The first phase for channel uses 1, 2, . . . , Tf (with
0 ≤ Tf ≤ T ) is the feedback phase. During this phase, the
transmitter for Link l has no knowledge of Hl[i] but needs to
convey information about the beamformer that should be used
to transmit over H1+mod(l,2)[i]. For this reason, beamforming
can not be optimally designed during the feedback phase. The
analysis will assume that each mobile transmits only from its
first antenna giving an input-output relationship for link l at
channel use k (with k ∈ {1, . . . , Tf}) of block i as

yf,l[k, i] =
√

ρfHl[i]e1sf,l[k, i] + nl[k, i] (1)

where e1 = [1 0 · · · 0]T , nl[k, i] is an M -dimensional
vector with independent CN (0, 1) entries that are also inde-
pendent in both k and i, sf,l[k, i] is the feedback information
symbol containing information about the other link satisfying
E

[
|sf,l[k, i]|2

]
= 1, and ρf is the SNR during the feedback

phase.
The second phase is the data phase. During this, the signal

received on Link l at channel use k (with k ∈ {Tf +1, . . . , T})
of block i is given by

yd,l[k, i] =
√

ρdHl[i]fl[i]sd,l[k, i] + nl[k, i] (2)

where sd,l[k, i] is the transmitted data symbol satisfying
E

[
|sd.l[k, i]|2

]
= 1, fl[i] is the beamforming vector for block

i satisfying ‖fl[i]‖ = 1, and ρd is the SNR during the data
phase.

With this framework, the feedback bits on Link l are used to
convey f1+mod(l,2)[i] for the opposite link. Therefore, letting
B denote the number of bits sent per feedback channel use
during the feedback phase, the TfB feedback bits describing
f1+mod(l,2)[i] are encoded as [sf,l[1, i] · · · sf,l[Tf , i]] . This
means that no time diversity is available during feedback.

The value of B is fixed for all blocks. This value must be
chosen to accommodate some sort of average probability of

error constraint on the feedback codeword. Thus, the number
of feedback bits is a function of the feedback SNR ρf . To
model this, we will assume that B is chosen as

B(ρf ) = (B0 + log2(ρf ))+ (3)

where B0 is a constant dependent on M and (·)+ = max(·, 0).
For the purpose of analysis, we assume that the feedback
codeword is received without error when feedback bits are
scaled according to (3).

In contrast, we assume that the data blocklength
Td is much larger than T. For convenience, let
Td = K(T − Tf ) for some integer K. If R is the
number of bits per data channel use, TdR bits are encoded as
[sd,l[Tf + 1, 1] · · · sd,l[T, 1] · · · sd,l[Tf + 1,K], sd,l[T, K]] .
Therefore, the encoded data will be able to leverage time
diversity.

To take into account power limitations, we assume that each
mobile can support an average power of ρ. Therefore,

Tfρf + (T − Tf )ρd = Tρ (4)

With this set-up, the power available for data is

ρd =
1

1− α
ρ− α

1− α
ρf (5)

where α = Tf

T . As the power allocated for feedback increases,
this causes a loss in the power available for data.

B. Codebook Approach and Maximum Achievable Rate

The TfB(ρf ) bits of feedback per block sent on Link
(1 + mod(l, 2)) convey the choice of the beamformer fl[i] for
use on Link l. We will model this as being done using a
codebook F [i]. The codebook will consist of 2Tf B(ρf ) unit
vectors that are known at both Mobile A and B.

Often, this codebook is designed offline and fixed (meaning
that F [i] = F). In this paper, however, we will assume that
the codebook is designed using random vector quantization
[11], [12] In this model, the codebook F will be generated
randomly at each block using a uniform distribution on the
M -dimensional unit sphere in CM .

The maximum achievable rate (in bits per data channel use)
as Td →∞ for Link l is

Cl(ρd, TfB(ρf )) = E

[
log2

(
1 + max

fl∈F
ρd ‖Hlfl‖2

)]
(6)

where the expectation is over Hl and F . Note that because of
the symmetry in the channel distributions,

C(ρd, TfB(ρf )) , C1(ρd, TfB(ρf )) = C2(ρd, TfB(ρf )).
(7)

The maximum achievable rate can be written as

C(ρd, TfB(ρf )) = C(ρd,∞)− L(ρd, TfB(ρf )) (8)

where

L(ρd, TfB(ρf )) = C(ρd,∞)− C(ρd, TfB(ρf )) (9)



is the rate loss incurred from using finite rate feedback. This
is given by

L(ρd, TfB(ρf )) =

E

[
log2

(
1 + ρd ‖H‖22

)
− log2

(
1 + max

f∈F
ρd ‖Hf‖2

)]

where the dependence on the link has been omitted for clarity.
The loss can actually be bounded as [12]–[14]

L(ρd, TfB(ρf )) ≤ log2(e)E
[
ρd

(
‖H‖2 −max

f∈F
‖Hf‖2

)]

≤ log2(e)ρdµE

[
1−max

f∈F
|v∗f |2

]
(10)

≤ log2(e)ρdµ2−
Tf B(ρf )

M−1 . (11)

where v is a vector that is uniformly distributed on the M -
dimensional complex unit sphere and µ = E

[‖H‖22
]
.

The bound in (11) becomes very loose as ρd grows large
(but very tight as TfB(ρf ) grows large for fixed ρd). To
accommodate the high SNR case, note that

L(ρd, TfB(ρf )) → E

[
log2

(
‖H‖2

)
− log2

(
max
f∈F

‖Hf‖2
)]

≤ E

[
− log2

(
max
f∈F

|v∗f |2
)]

(12)

≤ log2(e)(M − 1)2M−2
(
2Tf B(ρf ) − 1

)−1/(M−1)

.

(13)

See the Appendix for the proof of (13).
Because data is only transmitted in (1−Tf ) of the T channel

uses per channel realization, the time allocated for feedback
shows up as a rate scaling. Thus, the maximum achievable
rate is given as

R(ρd, Tf ) =
(

1− Tf

T

)
(C(ρd,∞)− L(ρd, TfB(ρf ))) .

(14)

III. FEEDBACK SCALING WITH COHERENCE TIME

The goal of this section is to understand how Tf should
scale with T when ρd and ρf are fixed such that B(ρf ) > 0.

The following Lemma will help us in understanding this
scaling.

Lemma 1: When Tf is optimally chosen and ρd, ρf are
fixed such that B(ρf ) > 0, R(ρd, Tf ) → C(ρd,∞) as
T →∞.

The proof of this result is trivial because any sublinear
scaling of Tf that strictly increases with T will achieve this
result. Lemma 1 formulates the intuitively clear result that
as the channel changes more and more slowly, feedback is
highly useful and allows the transmitter to approach perfect
CSI performance.

To optimize Tf , we will lower bound (14). Using (11),

R(ρd, Tf ) ≥
(

1− Tf

T

) (
C(ρd,∞)− log2(e)ρdµ2−

Tf B(ρf )
M−1

)
.

(15)

This lower bound can be shown to be very tight when Tf

grows large.
Lemma 2: To optimize (14) with fixed ρf (with B(ρf ) >

0) and ρ, the temporal feedback resources should scale as
Tf = O(log2(T )).

Proof: The proof uses Lemma 1 and the fact that the
lower bound in (15) is tight and concave.

Taking the derivative of the lower bound,

log2(e)ρdµ

(
1
T

+
B(ρf ) ln(2)

M − 1
− TfB(ρf ) ln(2)

T (M − 1)

)
2−

Tf B(ρf )
M−1

− C(ρd,∞)
T

.

As T grows large, the derivative behaves as

log2(e)ρdµ

(
B(ρf ) ln(2)

M − 1

)
2−

Tf B(ρf )
M−1 − C(ρd,∞)

T
.

Giving an asymptotically optimal Tf ,

Tf =
M − 1
B(ρf )

(
log2(T ) + log2

(
ρdµB(ρf )

(M − 1)C(ρd,∞)

))
.

(16)

The result in Lemma 2 makes sense but is a little surprising.
The amount of time resources dedicated to feedback will scale
quite slowly with the coherence time.

IV. FEEDBACK SCALING WITH POWER

The next step in understanding feedback resources is to
understand how to allocate power to the feedback link given a
fixed Tf (with Tf > 0) and T. First, let us state the following
lemma.

Lemma 3: When ρf is optimally chosen subject to (4) with
fixed Tf , T , ρd →∞ as ρ →∞.
Again, this lemma is obvious.

As ρd →∞,

R(ρd, Tf ) →
(

1− Tf

T

)
E

[
log2

(
ρd max

f∈F
‖Hf‖2

)]
. (17)

Using (3) and the bound (13),
(

1− Tf

T

)(
η + log2(ρd)

− log2(e)(M − 1)2M−2
(
2Tf B(ρf ) − 1

)−1/(M−1)
)

=
(

1− Tf

T

)
(η + log2(ρd)

− log2(e)(M − 1)2M−2
(
2Tf B0ρ

Tf

f − 1
)−1/(M−1)

)

(18)

where η = E
[
log2

(
‖H‖22

)]
.

The following lemma summarizes the high SNR behavior.
Lemma 4: As ρ →∞ with fixed Tf > 0 and T, ρf behaves

as O
(
ρk

)
where k = O

(
1

Tf

)
.



Proof: To maximize this lower bound, we only need to
deal with maximizing,

g(ρf ) = ln
(

1
1− α

ρ− α

1− α
ρf

)

− (M − 1)2M−2
(
2Tf B0ρ

Tf

f − 1
)−1/(M−1)

,

which uses (5). This function can be shown to be asymptoti-
cally concave over the region of interest with derivative

dg

dρf
= − α

ρ− αρf
+

(
2M−22Tf B0Tf

) ρ
Tf−1
f(

2Tf B0ρ
Tf

f − 1
) M

M−1
.

(19)
By dealing with only the higher order terms, we find that we
should set

ρf ∼
(
2M−2−Tf B0/(M−1)Tρ

) M−1
Tf +M−1

.

Lemma 4 tells us that should have polynomial growth in
the feedback power as a function of total power. However,
this growth rate is couple with the amount of channel uses
allocated to feedback.

V. SIMULATIONS

In this section, we verify our feedback resource scaling with
coherence time and power expressions numerically.

To simulate the scaling of the coherence time, we used the
lower bound in (15). In Fig. 2, we plot the optimal number
of feedback channel uses Tf against the coherence time T
while keeping the power used during the feedback and the data
phases constant at ρd = 10 and fixing ρf such that B(ρf ) = 1.
The logarithmic behavior exhibited matches the prediction in
Lemma 2. Note also that increasing the number of antennas
M increases the optimal Tf for any given T . Intuitively, this is
because increasing M increases the dimension of the space to
be represented during the feedback phase. Hence, one requires
more feedback bits to represent the space satisfactorily.

In Fig. 3, we plot the optimal feedback power ρf against the
available power ρ while keeping the coherence time constant
at T = 10. Both scales show the power in decibels. The
asymptotic lower bound resulting from (12) and (17) was used.
The straight line behavior in the plot satisfies the prediction
from Lemma 4 where the optimal feedback power ρf grows
polynomially with available power ρ. Also observe that the
optimal feedback power decreases as Tf increases. This is
intuitive as less power for each feedback channel use is needed
when feedback spans more channel uses.

VI. CONCLUSION

In this paper, we looked at how feedback resources should
scale to optimize the two-way symmetric rate. This scaling is
important because too much or too little feedback can cause
a significant rate loss. We looked at optimizing both time and
power resources. In future analysis, it would be interesting
to more thoroughly take into account feedback probability of
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Fig. 2. Feedback channel uses Tf is plotted against coherence time T for
m = 2, 3, and 4. Power for the feedback and the data phases are kept constant.
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error scaling with Tf and ρf . We have assumed that the effect
of the probability of error scaling is negligible.

VII. APPENDIX

We bound E
[
− log2

(
maxf∈F |v∗f |2

)]
in this section.

Lemma 5: The expected value of the inner product satisfies

log2(e)(N − 1)B
(

N − 1,
M

M − 1

)

≤ E

[
− log2

(
max
f∈F

|v∗f |2
)]

≤ log2(e)(M − 1)2M−2(N − 1)B
(

N − 1,
M

M − 1

)



where B(·, ·) is the beta function and F is an RVQ codebook
with N = 2Tf B(ρf ) random unit vectors.

Proof: Let wN denote a random variable defined as
maxf∈F |v∗f |2 given an N vector random unit vector code-
book F and random unit vector v. From [12],

E [− ln (wN )] =
∫ 1

0

1
x

(
1− (1− x)M−1

)N
dx

=
∫ 1

0

1− (1− x)M−1

x

(
1− (1− x)M−1

)N−1
dx.

Note that 1 ≤ 1−(1−x)M−1

x ≤ (M − 1)2M−2. Therefore,

E [1− wN−1] ≤ E [− ln (wN )]

≤ (M − 1)2M−2E [1− wN−1] .

The proof is completed by noting that

E [1− wN ] = NB

(
N,

M

M − 1

)
≤ (N)−

1
M−1 .

Substituting N = 2Tf B(ρf ) completes the proof.
The bound in (13) follows from this lemma because [14]

(N − 1)B
(
N − 1, M

M−1

)
≤ (N − 1)−

1
M−1 . In fact, as N →

∞, (N − 1)B
(
N − 1, M

M−1

)
→ (N − 1)−

1
M−1 .

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation under CCF0513916 and the AT&T Foundation.
Chun Kin Au-Yeung is supported by a Motorola UPR grant.

REFERENCES

[1] D. J. Love, R. W. Heath, Jr., W. Santipach, and M. L. Honig, “What
is the value of limited feedback MIMO channels?” IEEE Comm. Mag.,
vol. 42, pp. 54–59, Oct. 2004.

[2] K. K. Mukkavilli, A. Sabharwal, E. Erkip, and B. Aazhang, “On
beamforming with finite rate feedback in multiple-antenna systems,”
IEEE Trans. Inform. Theory, vol. 49, pp. 2562–2579, Oct. 2003.

[3] D. J. Love, R. W. Heath, Jr., and T. Strohmer, “Grassmannian beamform-
ing for multiple-input multiple-output wireless systems,” IEEE Trans.
Inform. Theory, vol. 49, pp. 2735–2747, Oct. 2003.

[4] R. Taylor and L. Withers, “Echo-MIMO: a two-way channel training
method for matched cooperative beamforming,” in Proc. of Thirty-Ninty
Allerton Conf. on Sig., Sys., and Comp., Oct. 2005, pp. 386–392.

[5] J. L. P. Withers, “A quasi-symmetric model for the two-way MIMO
communication channel,” in Proc. IEEE Int. Conf. Acoust., Speech and
Sig. Proc., Apr. 2007, pp. 217–220.

[6] D. J. Love, “Duplex distortion models for limited feedback MIMO
communication,” IEEE Trans. Signal Processing, vol. 54, pp. 766–774,
Feb. 2006.

[7] Y. Xie, C. N. Georghiades, and K. Rohani, “Optimal bandwidth alloca-
tion for the data and feedback channels in MISO-FDD systems,” IEEE
Trans. Commun., vol. 54, pp. 197–203, Feb. 2006.

[8] C. Steger and A. Sabharwal, “Single-input two-way SIMO channel:
diversity-multiplexing tradeoff with two-way training,” IEEE Trans.
Wireless Commun., pp. 197–203, Mar. 2007, submitted for review.

[9] C. K. Au-Yeung and D. J. Love, “Design and analysis of two-way limited
feedback beamforming systems,” in Proc. Asilomar Conf. Signals,
Systems, and Computers, Nov. 2007.

[10] W. Santipach and M. L. Honig, “Optimization of training and feedback
for beamforming over a MIMO channel,” in Proc. IEEE Wireless
Commun. Networking Conf., March 2007.

[11] ——, “Asymptotic performance of MIMO wireless channels with lim-
ited feedback,” in Proc. IEEE Mil. Comm. Conf., vol. 1, Oct. 2003, pp.
141–146.

[12] C. K. Au-Yeung and D. J. Love, “On the performance of random vector
quantization limited feedback beamforming in a MISO system,” IEEE
Trans. Wireless Commun., vol. 6, pp. 458–462, Jan. 2006.

[13] J. Zheng, E. R. Duni, and B. D. Rao, “Analysis of multiple-antenna
systems with finite-rate feedback using high-resolution quantization
theory,” IEEE Trans. on Sig. Proc., vol. 55, pp. 1461–1476, 2007.

[14] N. Jindal, “MIMO broadcast channels with finite rate feedback,” IEEE
Trans. Inform. Theory, vol. 52, pp. 5045–5060, 2006 Nov.


