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Abstract—A subspace beamforming method is presented that
decomposes a MIMO channel into multiple pairs of subchannels.
The pairing is done based on singular values such that similar
channel capacity is obtained between different subchannel pairs.
This new capacity balancing concept is key to achieving high
performance with low complexity. We apply the subspace idea to
geometric mean decomposition (GMD) and maximum likelihood
(ML) detection. The proposed subspace GMD scheme requires
only two layers of detection/decoding, regardless of the total num-
ber of subchannels, thus alleviating the latency issue associated
with conventional GMD. We also show how the subspace concept
makes the optimization of ML beamforming and ML detection
itself feasible for any K ×K MIMO system. Simulation results
show that subspace beamforming performs nearly as well as
optimum GMD performance, and to within only a few dB of the
Shannon bound.

Index Terms—MIMO, SVD, GMD, subspace, maximum like-
lihood

I. INTRODUCTION

Multiple-input, multiple-output (MIMO) transmission is a
key technology to achieve high spectrum efficiency in wireless
systems [1] [2]. Methods for MIMO detection include those
based on joint detection, e.g., maximum likelihood (ML)
detection [3] [4], and those involving channel decomposi-
tion and per-stream detection, e.g., interference nulling [5],
successive interference cancellation (SIC) [6], and transmitter
beamforming [2] [7]. A common challenge among various
approaches is to achieve good tradeoffs between complexity
and performance as the number of antennas/data streams
grows. Another important aspect of MIMO implementation is
the concept of capacity summation. Methods such as singular
value decomposition (SVD) and SIC are known to be ‘opti-
mum’ in the sense that the sum of capacities of individual
decomposed subchannels is equal to the Shannon MIMO
channel capacity [2] [8]. However, actual system performance
depends greatly on how this capacity summation is realized. In
general, capacity summation is possible through: (i) bit loading
based on channel feedback [9], (ii) coding across subchannels
with a single error-correcting codeword [10], (iii) spectrum
factorization [11], and (iv) capacity balancing, such as geo-
metric mean decomposition (GMD) [7] and the singular value
pairing method described in this paper. For example, SVD
may produce subchannels with highly unequal signal-to-noise
ratios (SNRs) and suffer a significant performance loss when
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low rate coding and/or a broad range of modulation levels
(e.g., 256QAM) are not available. In contrast, GMD, which
requires both beamforming and SIC, produces subchannels
with equal SNRs and has been shown to be the first known
benchmark that achieves the MIMO channel capacity to within
the single-input, single-output (SISO) gap for any code rate
and without bit loading [7]. In order to avoid error propagation,
a GMD scheme should use decisions after decoding to subtract
out interference, therefore it requires the detection/decoding
of different subchannels to be done sequentially. This may
impose a serious latency issue as the number of subchannels
increases, especially when long code blocks are used for
improved coding gain (e.g., in turbo coding [12]).

This paper presents a subspace beamforming method [13]
based on singular value pairing and block diagonalization
of the effective channel matrix. These are done such that
similar channel capacity is obtained between different pairs
of subchannels (i.e., the capacity balancing concept) and a
subspace GMD scheme requires only two layers of detec-
tion/decoding (alleviating the latency issue). The proposed
subspace beamforming method can also be used to minimize
complexity of ML detection and ML beamforming.

II. BACKGROUND

A. System Model

Consider a MIMO system with N transmit antennas and M
receive antennas. The receive signal is given by

r = HFx + n (1)

where H is the channel matrix of size M × N , F is the
beamforming (or precoding) matrix of size N ×K, x is the
transmitted signal vector of size K (i.e., K multiplexed data
streams), and r and n are the received signal and noise vectors,
both of size M . In general, K ≤ ρ, where ρ is the rank
of H. Denote the SVD of H as H = ÛŜV̂

H
(H denotes

Hermitian transpose), where Û and V̂ contain the left and the
right singular vectors, respectively, and Ŝ is a diagonal matrix
whose diagonal elements s1 ≥ s2 ≥ · · · ≥ sρ are the sorted
non-zero singular values of H. Without loss of generality, the
optimum beamforming matrix F is written as F = VP, where
V contains only the first K columns of V̂ in the case of
rank reduction, and P is a second beamforming matrix of
size K ×K , assumed to be an orthogonal (unitary and real)
matrix in this paper. We can then rewrite (1) as

r = HVPx + n = USPx + n (2)
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where U and S are the possible rank-reduced versions of Û
and Ŝ.

The Shannon capacity of the above MIMO system is

C = log2

∣∣∣∣I +
1

N0
S2

∣∣∣∣ = log2[
K∏

i=1

[1 +
s2

i

N0
]] (3)

where N0 is the noise power (assumed to be the same for all
receive antennas).

B. Review of GMD

There are two types of GMD beamforming: (i) zero-
forcing (ZF) GMD, and (ii) minimum mean-square error
(MMSE) GMD (also known as “uniform channel decompo-
sition (UCD)” [7]).

As with any system involving SIC, it is easy to understand
GMD by first considering the ZF condition. The beamforming
matrix P for ZF-GMD is obtained by decomposing the sin-
gular value matrix S into S = QLPT (T denotes transpose),
where all matrices are real matrices of size K × K, Q and
P are orthogonal matrices, and L is a lower triangular matrix
with equal diagonal elements

lkk = l = (
K∏

i=1

si)
1
K (4)

Using the above P in (2) and mutiplying (UQ)H to both sides
yields

y = (UQ)H r = Lx + (UQ)Hn (5)

Thus, the effective channel matrix is given by the lower-
triangular matrix L. With SIC operation (all elements below
the diagonal elements of L are subtracted out), the effective
channel matrix is diagonalized, and the K subchannels have
equal output SNRs.

The above receiver operation is equivalent to ZF-SIC,
therefore it does not achieve the channel capacity given by
(3). Meanwhile, we can use MMSE-SIC instead; however, this
will not yield equal subchannel SNRs. In order to both achieve
the channel capacity and yield equal subchannel SNRs, the
beamforming matrix P must be computed in a MMSE fashion:

(S2 + N0I)
1
2 = QLPT (6)

Using P from the above decomposition in (2) and assuming
a MMSE-SIC receiver, all subchannels will have equal output
SNRs and the system achieves the channel capacity.

III. SUBSPACE BEAMFORMING

A. Subspace GMD

The subspace method involves block diagonalization of the
effective channel matrix such that there are pairs of data
streams that are detected independently of one another. For
simplicity of notation, we only describe the case where the
number of data streams K is even. When K is odd, the only
difference is that there is one unpaired data stream left over,
which is to be detected by itself with a simple linear MMSE
receiver.

Again we explain how the method works under the ZF
condition first, then describe extension to MMSE later. We
begin by rewriting the received signal in (2) as

r = HṼPx + n = ŨS̃Px + n (7)

where S̃ is the singular value matrix whose
diagonal elements are reordered as S̃ =
diag(s1, sK , s2, sK−1, · · · , sK/2, sK/2+1) and Ũ and
Ṽ are obtained by reordering the columns of U and
V accordingly. We now rewrite S̃ as a block diagonal
matrix whose diagonal elements are submatrices of size
2: S̃ = diag(S̃1, S̃2, · · · , S̃K

2
); then perform GMD of

each submatrix S̃i = Q̃iL̃iP̃T
i (i.e., pairwise ZF-GMD).

Accordingly,

S̃ = diag(Q̃1L̃1P̃T
1 , · · · , Q̃K

2
L̃K

2
P̃T

K
2
) = Q̃L̃P̃T (8)

Substituting (8) into (7), letting P = P̃, and multiplying
(ŨQ̃)H to both sides yields

y = diag(L̃1, L̃2, · · · , L̃K
2
)x + (ŨQ̃)Hn (9)

The effective channel matrix is block diagonal, therefore only
pairwise SIC is needed.

The above subspace GMD only guarantees pairwise equal
subchannel SNRs. The output SNRs between pairs depends
on the geometric mean of the singular values that are paired
together. The way we pair the ith largest singular value with
the ith smallest singular value in each submatrix S̃i is the best
possible way to balance those output SNRs.

The MMSE version of subspace GMD is derived by re-
placing the pairwise ZF-GMD in the above scheme by the
following pairwise MMSE-GMD, and using pairwise MMSE-
SIC instead of pairwise ZF-SIC:

(S̃2
i + N0I)

1
2 = Q̃iL̃iP̃T

i , i = 1, 2, · · · ,K/2 (10)

The output SNR for the ith pair of subchannels is given by

Γ̃i =

√
(s2

i + N0)(s2
K−i+1 + N0)

N0
− 1, i = 1, 2, · · · ,K/2

(11)

B. Subspace ML

Optimum beamforming for ML detection is known to be
an NP problem that requires exhaustive search and becomes
prohibitively complex as K increases [14]. Furthermore, the
complexity of ML detection itself grows exponentially with
K. With subspace beamforming, however, the number of
data streams that need to be jointly detected is limited to 2,
therefore making ML problems more feasible to solve.

We again refer to the received signal in (7) and use the same
block diagonal representations of the reordered singular value
matrix S̃ and the beamforming matrix P as before. Multiplying
the received signal by ŨH yields

y = diag(S̃1P1, S̃2P2, · · · , S̃K
2
PK

2
)x + ŨHn (12)
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Here we can let Pi (i = 1, · · · , K
2 ) be a Givens rotation

G(θi) whose angle θi is to be optimized with respect to S̃i =
diag(si, sK−i+1).

In this paper, we consider two methods for optimizing the
2×2 ML beamforming angle θi. The first method [14], called
the “dmin” method, is based on maximizing the minimum
distance between received vectors:

max
θi

min
xj ,xk

d(xj ,xk) (13)

where xj and xk are two possible different transmitted symbol
vectors, and d(xj ,xk) =

∥∥∥S̃iP̃i(xj − xk)
∥∥∥. The second

method, called the “BER” method, is based on minimizing
the uncoded bit error rate (BER) of ML detection for a
given channel S̃i. The dmin method is relatively simple to
compute and can be stored in a set of 1-dimension look-
up table with respect to the condition number s̃1/s̃2, where
s̃1 ≥ s̃2 here represent the two diagonal elements of any 2×2
singular value matrix S̃i. The BER method requires exhaustive
simulation trials (with random Gaussian noise samples) and a
2-dimension look-up table to store the optimum angle value
as a function of s̃1/s̃2 and the SNR (s̃2

1 + s̃2
2)/N0. In terms

of performance, the dmin method is expected to be inferior to
the BER method, as the minimum distance criterion is based
on approximation at high SNR.

Figs. 1(a) and (b) show examples of the optimum beam-
forming angle θ (representing θi) based on the two methods
for 16QAM. Note that only angles in the range [0, π/4] need
to be considered, due to the symmetry of the received vectors
for QAM. In Fig. 1(a), we also plot the Givens rotation angle
θ = tan−1

√
s̃1/s̃2 for 2 × 2 ZF-GMD. We will show later

that, despite the simplicity of ZF-GMD beamforming and the
fact that it is optimized for a different receiver (i.e., ZF-SIC),
this scheme actually performs quite well with subspace ML
and 2× 2 ML in general.

IV. PERFORMANCE EXAMPLES

A. Subspace GMD Results

We present simulation results to demonstrate the per-
formance of subspace beamforming. Our simulation model
is based on the orthogonal frequency-division multiplexing
(OFDM) system for the 3rd Generation Partnership Project-
Long Term Evolution (3GPP-LTE) [15]. 16QAM with rate 1/2
turbo coding is assumed. Figs. 2 and 3 show the packet error
rate (PER) as a function of the average SNR for 3 × 3 and
4× 4 MIMO systems with i.i.d. flat Rayleigh fading. No rank
reduction is assumed. Each packet occupies 7 OFDM symbols,
with 72 assigned subcarriers per OFDM symbol. The number
of information bits in each packet is on the order of 3000 for
the 3× 3 , and 4000 for the 4× 4 system. In each figure, we
plot the performances of (i) full GMD with parallel encoding
(K codewords for K subchannels); (ii) subspace GMD with
parallel encoding; (iii) subspace GMD with 2 codewords,
where multiple data streams belonging to the same SIC layer
are coded together together (i.e., all the odd streams in (9)
belong to the first layer and they are coded and interleaved as
one codeword; all the remaining streams belong to the second
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Fig. 1. Optimum 2 × 2 ML beamforming angle θ based on (a) the dmin
method and GMD, and (b) the BER method. 16QAM

layer and are coded and interleaved as another codeword); (iv)
the Shannon outage bound—the probability that the specified
spectral efficiency (6 b/s/Hz for the 3 × 3 , and 8 b/s/Hz for
the 4 × 4 system) is not supported by the Shannon MIMO
channel capacity in (3); and (v) the subspace GMD bound—
the probability that the specified spectral efficiency per data
stream (2 b/s/Hz) is not supported by the capacity of any of
the subspace GMD’s subchannel (this is a lower bound for
the PER of subspace GMD with parallel encoding). We see in
Figs. 2 and 3 that full GMD performs to within about 2 dB of
the Shannon bound (i.e., the SISO gap). Similarly, subspace
GMD with parallel encoding performs to within about 2 dB of
the subspace GMD bound. The gap between subspace GMD
with parallel encoding and full GMD (or the gap between the
two bounds) indicates the degree to which capacity balancing
through singular value pairing deviates from perfect balance.
The 3 × 3 system (with one unpaired data stream) shows a
bigger gap than the 4 × 4 system. Subspace GMD with 2
codewords performs better than subspace GMD with parallel
encoding because it benefits from coding across multiple data
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Fig. 2. PER of subspace GMD beamforming for a 3x3 MIMO system. Flat
fading. 16QAM with rate 1/2 turbo coding
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Fig. 3. PER of subspace GMD beamforming for a 4x4 MIMO system. Flat
fading. 16QAM with rate 1/2 turbo coding

streams (it also benefits somewhat from the resulting longer
block size for turbo decoding). Therefore, not only does
this scheme alleviate the latency issue, it also gives superior
performance.

B. Subspace ML Results

Before presenting results for the subspace ML approach,
we first compare performance of the different 2 × 2 ML
beamforming schemes described in Section III-B. Fig. 4 shows
PER performance for a 2×2 MIMO system with ML detection.
All ML results assume all substreams to be coded and inter-
leaved together as one codeword. For reference, we provide
benchmark performances, the corresponding Shannon outage
bound and the GMD performance, as we did previously; again
GMD performance is within the SISO gap of about 2 dB from
the Shannon bound. We also plot the PER for “open-loop”
ML, i.e., ML detection without transmitter beamforming. The
open-loop ML shows a gap as large as 6.5 dB from the
Shannon bound at 1% PER. Transmitter beamforming can
significantly reduce this gap. Among the three schemes, “ML
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Fig. 4. PER of ML beamforming for a 2 × 2 MIMO system. Flat fading.
16QAM with rate 1/2 turbo coding

(BER)” using the BER method gives the best performance and
it performs to within only 3 dB of the Shannon bound. “ML
(ZF-GMD)” based on ZF-GMD beamforming also performs
quite well despite its ad hoc nature—it even outperforms “ML
(dmin)” which uses the dmin method. As for the sizes of the
lookup tables used for the BER and the dmin methods in
this simulation, the optimum angle values were computed and
stored as a function of s̃1/s̃2 in 1 dB steps from 0 to 35
dB, and (for the BER method only) as a function of the SNR
(s̃1

2 + s̃2
2)/N0 in 1 dB steps from −2 to 33 dB.

Figs. 5 and 6 show performance of subspace ML beamform-
ing for 3×3 and 4×4 MIMO systems. Again for reference, we
provide the Shannon outage bound and the GMD performance
(these are the same curves as shown in Figs. 2 and 3), and
also the open-loop performance with full ML detection. The
subspace ML schemes use the same three 2× 2 beamforming
methods as shown in Fig. 4. Overall, we see similar trends
of performance as before: a gap of 6 dB or more between
open-loop full ML and the Shannon bound; the BER method
being the best among the three ML beamforming methods,
with the ZF-GMD method being second, and the dmin method
being last. Furthermore, the performance with the BER method
continues to be within 3 dB of the Shannon bound, similar to
results in the 2×2 case. This may seem as though the proposed
subspace approach is not suboptimum after all. In reality, we
know that the subspace approach is suboptimum and the fact
that the gap from the Shannon bound remains the same (or
even becomes smaller) is rather due to the higher diversity
order as we go from a 2×2 system to 3×3 and 4×4 systems.
We also note that subspace ML using the BER method has
essentially the same performance as subspace GMD with 2
codewords in Figs. 2 and 3, even though subspace ML does
not have the latency issue associated with SIC that subspace
GMD does.

C. Performance with a Weaker Code

Finally we provide results for a higher code rate to demon-
strate that the performance of subspace beamforming is not
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Fig. 5. PER of subspace ML beamforming for a 3× 3 MIMO system. Flat
fading. 16QAM with rate 1/2 turbo coding

0 2 4 6 8 10 12 14 16 18 20
10

−3

10
−2

10
−1

10
0

SNR (dB)

P
ac

ke
t E

rr
or

 R
at

e

 

 

GMD, 4 codewords
subspace ML (BER), 1 codeword
subspace ML (ZF−GMD), 1 codeword
subspace ML (d

min
), 1 codeword

open−loop 4x4 ML, 1 codeword
Shannon bound

Fig. 6. PER of subspace ML beamforming for a 4× 4 MIMO system. Flat
fading. 16QAM with rate 1/2 turbo coding

greatly affected by weaker codes. So far we have assumed
the use of a rate 1/2 turbo code and we know for a fact
that subspace GMD with 2 codewords achieves a performance
benefit from coding across subchannels. Most likely subspace
ML must also gain some performance benefit from coding
across subchannels because it uses a single codeword structure.
Fig. 7 shows performance of these subspace schemes for a
3 × 3 MIMO system with rate 3/4 turbo coding. We see
that performance for subspace GMD with 2 codewords and
subspace ML using the BER method indeed show a bigger gap
from the Shannon bound than results with rate 1/2 coding in
Figs. 2 and 5. Still both schemes continue to perform to within
3 dB of the Shannon bound and have similar performance
to one another. This is an indication that the singular value
pairing to balance capacity is in effect and all subchannels have
quite (but not completely) uniform detection performance.

V. CONCLUSIONS

We have presented a subspace beamforming method that
decomposes a MIMO channel into multiple pairs of sub-
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Fig. 7. PER of subspace GMD beamforming and subspace ML beamforming
for a 3× 3 MIMO system. Flat fading. 16QAM with rate 3/4 turbo coding

channels. The purpose is to avoid the complexity of joint
detection and/or the latency of having many SIC layers. We
have introduced a new capacity balancing concept, where the
pairing of subchannels is done based on singular values such
that similar channel capacity is obtained between different
subchannel pairs. This concept is key to achieving high per-
formance with low complexity. We have described a subspace
GMD scheme with 2 codewords, which not only alleviates the
latency issue, but also gives superior performance compared to
subspace GMD with parallel encoding. We have also applied
the subspace idea to ML detection and showed how it makes
the optimization of ML beamforming and ML detection itself
feasible for any K×K MIMO system. Simulation results show
that subspace GMD with 2 codewords and subspace ML based
on a proposed 2×2 ML beamforming method perform nearly
as well as optimum GMD performance, and to within only a
few dB of the Shannon bound.
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