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Abstract—This work first presents a general technique to
compute tight upper and lower bounds on the information
rate of a multiuser Rayleigh fading channel with no
Channel State Information (CSI) at the transmitters or
the receivers. The paper then presents analytical upper
and lower bounds on the information rate which converge
in the limit of large number of transmitting users where
the channel bandwidth is large compared to the user data
rates, e.g., when users can employ CDMA. In this limit, the
capacity (per Hz) of the individual users is decreasing while
the sum capacity (per Hz) is constant. The paper concludes
with exact analytical expressions for the information rates
of both the block fading and the continuous correlated
fading channel models in this regime.

1. INTRODUCTION

This paper considers a multi-user multi-receiver net-
work where the channel between each transmitter re-
ceiver pair is an independent Rayleigh fading channel
with no CSI at the transmitters or the receivers. It
considers both a block fading model and a continuous
correlated fading model. In the block fading case, the
fading coefficients stay constant over a block and are
independent over successive blocks. In the correlated
fading case, the fading is modeled as an ergodic and
stationary process defined by its power spectral density.
The users each transmit independent signals which are
also i.i.d in time and the receivers can cooperatively
decode these transmitted signals. The paper presents
upper and lower bounds on the information rate for this
channel model under various scenarios. When the chan-
nel bandwidth is large compared to the users’ data rates,
we conjecture that i.i.d. signaling is capacity achieving.

Section III-A describes an optimal receiver scheme for
the channel and signaling scheme described above. This
receiver computes the exact a-posteriori probabilities
(APPs)of the transmitted symbols by enumerating all fu-
ture sequences. The achievable rate of this receiver is the
information rate of the channel. However, this receiver
has exponential complexity and hence its achievable rate
cannot be computed exactly.

Section III-B modifies the optimal receiver to get
upper and lower bounds on the information rate of
the channel which are easy to compute. The lower
bound (presented in section III-B) randomly prunes
the set of strings of undecoded symbols to make the
APP calculation easier. The achievable rate using this
simplified APP is an obvious lower bound on constrained
capacity just as any constructive mechanical solution
would be. The upper bound in section III-B is based on
a genie aided scheme which provides the estimator with
additional side information about the undecoded symbols
which eliminates the need for the exponentially complex
enumerations. Since the availability of side information
cannot decrease capacity, the mutual information ob-
tained by using the genie aided APP estimates is an upper
bound on the information rate of the fading channel.
Plots of these bounds show that for very reasonable
system parameters they are essentially coincident.

Section IV presents slightly different upper and lower
bounds on the information rate and then shows that
they converge in the limit where the system bandwidth
and number of transmitting users increase proportionally
while keeping each user’s data rate (in bits/sec) constant.
In this limit, each user is more and more spread and
therefore, the information rate (in bits/sec/Hz) achieved
by each user is vanishingly small. However, the aggre-
gate spectral density (in W/Hz) remains constant and the
aggregate information rate (in bits/sec/Hz) approaches
a constant from below because the number of trans-
mitting users is increased in proportion to the channel
bandwidth. In other words, this limit represents a pure
CDMA multiple access system. Section IV-A presents
an analytical upper bound on the information rate of
the multi-receiver network which is linear in the number
of receivers. Section IV-B presents a lower bound on
information rate which is also linear in the number
of receivers when the system bandwidth is large. The
section then proves that the single receiver bounds are
tight in the limit, which proves that the upper and lower
bounds coincide and the information rate of the multi-
receiver network is linear with the number of receivers.
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The section concludes with a closed form expression for
the information rates of the block fading and brickwall
fading channels.

The literature contains few results on capacity rele-
vant to fading channels without Channel State Informa-
tion(CSI) at moderate SNRs. Most papers that study the
wideband regime consider either single-user systems or
multi-user systems where the density of users is low
enough that the users don’t interfere with each other.
The first rigorous study of the capacity of multipath
fading channels in the wideband regime was done in
[5] by Telatar and Tse. This paper studied the multipath
channel with a fixed number of resolvable paths and
presented results on the capacity and mutual information
of such channels in the wideband regime. Verdu ([6])
studied the capacity of Rayleigh fading channels with
known and unknown CSI and presented results on the
tradeoff between spectral efficiency and energy per bit
in the wideband regime. For the non-coherent Rayleigh
flat fading channel, Subramaniam and Hajek[7] show
that, under an average power constraint, the optimal input
distribution for the wideband regime is bursty. However,
such signaling is not possible in practical communication
systems. Hence, Sethuraman and Hajek([8] and [9])
impose an additional peak power constraint and obtain
bounds on the capacity which are asymptotically tight
in the wideband regime. However, the wideband regime
that Sethuraman and Hajek consider is very restrictive
because the sum capacity is itself vanishingly small in
the limit and so ideas of multiple access disappear. This
paper preserves the essential character of the multi-user
channel by increasing the number of transmitting users in
proportion to the signaling bandwidth. As a result, even
though the per user information rates in bits/sec/Hz are
decreasing in the limit, the sum of the information rates
of all users is a constant.

There are also a few results related to the numerical
computation of information rate for different channels.
Arnold et al. ([10]) present a simulation based technique
to compute tight bounds on the information rates of finite
state channels with memory. Extending this approach to
non-finite state channels requires choosing a finite state
channel model that approximates the channel of interest.
The accuracy of the choice of finite state channel affects
the tightness of the bounds. For the non-coherent case,
Li and Collins([1] and [2]) consider the point to point
Rayleigh flat fading channel and provide simple bounds
on information rate which are tight at low SNR. Gopalan
et al. ([3] and [4]) extend these bounds to the MIMO
case.

2. MIMO CHANNEL MODEL

The model of the MIMO network considered in this
paper consists of N independent users and a receiver
array of K antennas, as shown in Figure 1.
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Fig. 1. A general MIMO fading network

Let Hij =[Hij(1) · · ·Hij(n) · · ·Hij(T )] be the fad-
ing process between the jth transmitter and the ith

receiver. Hij is assumed to be a zero mean, unit power
Gaussian random process, where Hij(n) ∼ CN (0, 1),
E[|Hij(n)|2] = 1 for 1 ≤ j ≤ N, 1 ≤ i ≤ K and
1 ≤ n ≤ T . The fading processes of all transmitter-
receiver pairs are assumed to be mutually independent,
so that Hij is independent of Hkl for any i 6= k or j 6= l.

The fading processes are correlated in time and this
paper considers both block fading and continuous corre-
lated fading models. In the block fading case, the channel
coefficients are constant for a block of time Γ0 sec,
defined as the coherence time, and independent over
successive blocks. In the case of continuous correlated
fading, the process is ergodic and stationary with an
arbitrary covariance matrix KH . For the special case of
a process with a brick-wall fading spectrum, the power
spectral density is a rectangular function of bandwidth
Wf Hz. The coherence time of the fading process, Γ0

(in sec) is defined as 1/Wf .
The N users, each equipped with a single transmitting

antenna, transmit mutually independent signals, denoted
by X1, · · · ,XN where Xj = [Xj(1) Xj(2) · · · Xj(T )]
is the length T transmitted signal of user j. Each
transmitter transmits i.i.d. symbols from a constellation
A with average power P0. Let the signaling bandwidth
be W symbols/sec.

The received signals at the K antennas are
Y1, · · · ,YK where Yi =[Yi(1) · · · Yi(T )]. The signal
at the ith receiver, shown in Figure 1, can be written as

Yi(n) =

N
∑

j=1

Hij(n)Xj(n)+Zi(n) ∀ 1 ≤ i ≤ K, 1 ≤ n ≤ T

(2.1)
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Fig. 2. Successive-decoding structure at each receiving antenna.
XN

1 (n) = [X1(n), · · · , XN (n)] in (3.1) denotes the nth column
and XN

1 (1, n−1) = [XN
1 (1), · · · , XN

1 (n−1)] denotes the columns
to the left of the nth column.

where Zi =[Zi(1) · · ·Zi(n) · · ·Zi(T )] is the AWGN
channel noise at the ith receiver with power σ2

z = N0W ,
or E[|Zi(n)|2] = σ2

z for 1 ≤ n ≤ T .
The information rate of this channel is the maximum

achievable rate of transmission with a fixed input distri-
bution, denoted by RK,N , as in

RK,N = lim
T→∞

1

T
I(XN

1 ;YK
1 ) (2.2)

where X
j
1 ≡ [X1,X2, . . .Xj] and Y

i
1 ≡

[Y1,Y2, . . . Yi] for notational convenience.

3. SUCCESSIVE-DECODING RECEIVER FOR THE

MULTIUSER CHANNEL

A. Optimal Receiver Scheme with Full Enumeration

This section presents a successive-decoding receiver
that computes the exact APP of the transmitted symbol
and whose achievable rate is the information rate of the
channel. The successive-decoding receiver relies on a
lossless expansion of the information rate using the chain
rule of mutual information as given by (3.1).

I(XN

1 ;YK

1 )

=
T
∑

n=1

N
∑

j=1

I(Xj(n);YK

1 |XN
1 (1, n − 1), Xj−1

1
(n))

= NTH(X)+
T
∑

n=1

N
∑

j=1

E
[

log(p(Xj(n)|YK

1 , X
N
1 (1, n − 1), Xj−1

1
(n)))

]

(3.1)

The expansion of (3.1) suggests the decoding of the
transmitted symbols instant by instant (column 1 to col-
umn T in Figure 2), and user by user (row 1 to row N ) at
each time instant. Calculating the individual terms in the
expansion of (3.1) involves canceling interference from

previously-decoded users and using the symbols from
previous time instants as training for channel estimation.
Each term in (3.1) represents the decoding of Xj(n),
which corresponds to the nth time instant of the jth user.

This decoding requires an exact computation of its
APP, APPjn(d) = p

(

Xj(n) = d
∣

∣Y
K
1 , XN

1 (1, n −

1), Xj−1
1 (n)

)

. Using Bayes’ rule, this APP can be ex-
pressed in terms of the likelihood function, Ljn(d) =

P
(

Y
K
1

∣

∣XN
1 (1, n − 1), Xj−1

1 (n), Xj(n) = d
)

.

APPjn(d)

=
P
(

Y
K

1

∣

∣XN
1 (1, n − 1), Xj−1

1
(n), Xj(n) = d

)

∑

s∈A
P
(

Y
K

1

∣

∣XN
1

(1, n − 1), Xj−1

1
(n), Xj(n) = s

)

(3.2)

The exact computation of each likelihood term re-
quires a complete enumeration of the undecoded symbols
From Figure 2, we see that the undecoded symbols
are XN

j+1(n) and XN
1 (n + 1 : T ). The number of

possible sequences of undecoded symbols is therefore
M (T−n)N+N−j . This is exponential in both blocklength
and the number of users and is hence computationally
infeasible. Therefore, upper and lower bounds on the
information rates are derived which are computationally
feasible.

B. Upper and Lower Bounds on Information Rate

A decoder that uses these exact APPs is optimal and
its achievable rate is the information rate. However,
the number of enumerations required in (3.2) is expo-
nential in both the number of users and the length of
the transmitted sequence and hence it is infeasible to
implement this decoder directly. In practice, the decoder
can be constructed by considering only a random subset,
X ⊂ S , of all possible enumerations in (3.2)

P
(

Y
K
1

∣

∣XN
1 (1, n − 1), Xj−1

1 (n), Xj(n) = d
)

=
∑

e∈X

P
(

Y
K
1 , e

∣

∣XN
1 (1, n − 1), Xj−1

1 (n), Xj(n) = d
)

(3.3)

where e is a sequence of undecoded symbols
[XN

j+1(n), XN
1 (n + 1 : T )].

Since such a suboptimal enumeration yields an inexact
APP, the achievable rate of this decoder is less than
information rate [12]. As the size of the random set,
|X |, increases, the performance of the decoder improves
and it achieves capacity when |X | = |S|. To characterize
the loss incurred by this practical decoder, the following
paragraphs present a tight upper bound on the informa-
tion rate.

The upper bound on the MIMO information rate
is derived from the information rate of a genie aided



4

decoder, where the genie provides side information to
the decoder about the undecoded symbols in the block
in Fig.2. The side information is in the form of a set
of sequences, Y ⊂ S , out of which one is the actual
transmitted sequence. In other words, the genie tells
the decoder that none of the sequences outside Y were
transmitted. Since the decoder is free to ignore this
side information, the information rate of this genie-aided
decoder is an obvious upper bound. The information rate
of this genie aided decoder can be computed exactly by
enumerating all possible sequences in the set Y using
the total probability law.

P
(

Y
K
1

∣

∣XN
1 (1, n − 1), Xj−1

1 (n), Xj(n) = d
)

=
∑

e∈Y

P
(

Y
K
1 , e

∣

∣XN
1 (1, n − 1), Xj−1

1 (n), Xj(n) = d
)

(3.4)

The rest of the decoding process is identical to the
optimal decoder presented earlier. Note that this upper
bound will converge to the exact information rate if there
is no side information, i.e., the set Y consists of all
possible sequences and is identical to S . However, it
would be computationally infeasible to compute it as the
number of sequences grows exponentially with number
of undecoded symbols. Hence the set should be chosen
large enough to keep the bound tight, but small enough
to be computationally feasible.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

No. of Receivers, K

S
u

m
 c

a
p

a
ci

ty
, 

C
su

m
 (

b
its

/s
/H

z)

Continuous Rayleigh fading, QPSK signalling
No. of users (N) = 50, σ2 = 10dB     

Upper Bound, Coherence Length = 100
Lower Bound, Coherence Length = 100
Upper Bound, Coherence Length = 200
Lower Bound, Coherence Length = 200
Coherent Capacity
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information rate for the continuous Rayleigh fading channel with
two different coherence lengths along with the coherent capacity, for
QPSK inputs. N = 50, P0 = 1 and σ2

z = 10.

The upper and lower bounds are calculated using a
Monte Carlo approach. Figure 3 plots the upper and
lower bounds for |X | = |Y|= 100 for both block
and continuous correlated Rayleigh fading with QPSK

inputs. In the plots for continuous correlated fading, the
fading spectrum is taken to be brickwall with coherence
length defined to be the inverse of its bandwidth. With a
large number of antennas, the use of QPSK signaling
limits the achievable rates, and larger constellations
would yield higher capacities. However, when the num-
ber of receivers is small, there is no significant gain in
using a larger constellation [3].

The tightness of the bounds depends on the cardinality
of the sets |X | and |Y|. Hence these sets should be
chosen large enough to keep the bounds tight, but small
enough to be computationally feasible.

4. INFORMATION RATE FOR LARGE POPULATIONS

In this section, we compute upper and lower bounds
on the information rate which converge in the limit where
the system bandwidth and number of transmitting users
increase proportionally while keeping each user’s data
rate (in bits/sec) constant. Although the information rate
achieved by each user in bits/sec/Hz is vanishingly small
in this limit, the aggregate information rate of the whole
system approaches a constant because we also consider
the number of transmitting users to increase propor-
tionately with the bandwidth utilized by the system. In
other words, the bandwidth and the number of users
are increasing proportionately while keeping the signal
power, noise power spectral density and the coherence
time of the fading process constant. This limit represents
a pure CDMA multiple access system.

A. Upper Bound

The information rate of a K receiver system is upper
bounded by K times the information rate of a single
receiver system. For the single receiver system, we can
calculate an upper bound by expanding out the sum in-
formation rate using the chain rule of mutual information
as the difference between the non-fading information
rate (I(HN

1 ,XN
1 ;Y) and the fading information rate

(I(HN
1 ;Y|XN

1 )) as

R1,N = lim
T→∞

1

T

[

I(HN
1 ,XN

1 ;Y) − I(HN

1 ;Y|XN

1 )
]

≤ lim
T→∞

(

log
2
(1 +

NP0

σ2
z

) −
1

T

N
∑

i=1

I(Hi;Y|XN

1
,Hi−1

1
)

)

(4.1)

We calculate a lower bound on the fading informa-
tion rate, I(Hi;Y|XN

1 ,Hi−1
1 ) from the variance of the

MMSE channel estimates, σ2
hi

. For the block fading
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channel, we get

R1,N ≤ log2(1 +
NP0

σ2
z

) −
1

Γ0W

N
∑

i=1

log(1/σ2
hi

)

= U1,N

(4.2)

The single receiver upper bound for the correlated fading
case can also be calculated analogously. For the special
case of brickwall fading, the single receiver upper bound
turns out to be the same as (4.2).

Finally, the upper bound for the K receiver system is
given by K times the single receiver upper bound as

RK,N ≤ KR1,N ≤ KU1,N = UK,N (4.3)

In the limit where the number of users, N , grows in
proportion to W , keeping the coherence time, Γ0, the
noise power spectral density, N0, and the signal power,
P0, constant, we can explicitly calculate the upper bound,
UK,∞ as

UK,∞ = lim
N→∞

W→∞

UK,N (4.4)

B. Lower Bound

The lower bound is calculated from a constructive
decoding scheme. The decoding scheme converts the
multiuser channel into a single user single receiver non-
fading channel with i.i.d. BPSK inputs. In the wideband
limit, the information rate of such a channel is lower
bounded by considering the noise to be Gaussian [13]
and can be calculated from the noise variance.

The decoding scheme is a mechanization of the chain
rule of mutual information. For a single receiver network,
we have

R1,N = lim
T→∞

1

T

N
∑

i=1

T
∑

t=1

I(Xi(t);Y|Xi−1
1 , Xi(1 : t−1))

(4.5)
Each user transmits i.i.d. BPSK signals. The users are

decoded successively and each user is decoded time-
instant by time-instant. Each term in 4.5 corresponds to
the decoding of the tth bit of user i, with the previous
users completely decoded and with the past bits of user
i known. For each term in the above expansion, we
compute the MMSE channel estimates of users 1 to
i − 1 based on the data X

i−1
1 . We also compute the

MMSE channel estimate of the user i which has the past
bits as training. Based on these channel estimates, we
cancel out the estimated interference of the previously
decoded users and compute the variance of the residual
interference from the decoded users as well as the
variance of the interference from the undecoded users.

The SNR of this single user, single receiver system is
given by

SNR =
P0(1 − σ2

hi
)

(N − i)P0 + (i − 1)P0σ2
h + σ2

z

(4.6)

where σ2
h is the MMSE channel estimate variance of

users 1 to i − 1 and σ2
hi

is the MMSE channel estimate
variance of user i.

For a multireceiver system, we can show that the re-
ceived signals at different receivers become uncorrelated
in the wideband limit under consideration. Therefore,
when we do maximal ratio combining across receivers,
the signals add as voltages and the noises add as powers
and the SNR of the combined signal grows linearly with
the number of receivers.

In the wideband limit, the worst case noise is Gaussian
([13]) and so we get a lower bound on the information
rate by considering the aggregate interference and noise
to be Gaussian, as

R
K,∞ ≥ lim

N→∞
lim

T→∞

1

T

N
∑

i=1

T
∑

t=1

(

KP0(1 − σ2

hi
)

(N − i)P0 + (i − 1)P0σ
2

h + σ2
z

)

= L
K,∞

(4.7)

We can explicitly evaluate the bounds on information
rate for special cases like block fading and correlated
fading with a brickwall spectrum. The information rate
of these two cases (in bits/sec/Hz) in the limit turns out
to be identical because of the way the coherence time is
defined for the brickwall fading channel in Section II.

In the limit, the information rate (in bits/sec/Hz) of
the multiuser block fading channel and the multiuser
brickwall fading channel is given by

RK,∞ = LK,∞ = UK,∞

=
K

2αΓ0ρ log 2

[

(α + αΓ0ρ + ρ) −
√

(α + αΓ0ρ − ρ)2 + 4αρ

+ 2αΓ0ρ log
2(α + ρ)

α + ρ − αΓ0ρ +
√

(α + αΓ0ρ − ρ)2 + 4αρ

− 2ρ log
2ρ

−α − αΓ0ρ + ρ +
√

(α + αΓ0ρ − ρ)2 + 4αρ

]

(4.8)

where, α = W
N

Hz, ρ = P0

N0

Hz and Γ0 is the coherence
time in seconds. α is the bandwidth per user which is
maintained constant as both the system bandwidth, W ,
and the number of users, N , increase proportionately.
ρ is the ratio between the signal power, P0, and noise
power spectral density, N0, which are both constants. As
described in Section II, for the block fading channel, Γ0

is the time for which the fading remains a constant, and
for the brickwall fading channel, Γ0 is the inverse of the
fading bandwidth.
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