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Abstract— A Dyck shift and a Motzkin shift are mathematical
models for constraints on genetic sequences. In terms of the
theory of symbolic dynamics, neither of the Dyck shift nor the
Motzkin shift is sofic. In terms of the mathematical language
theory, they are non-regular and context free languages. There-
fore we can not use the Perron-Frobenius theory to calculate
capacities of these constraints. O. Milenkovic has shown that the
DSV (Delèst-Schẗzenberger-Viennot) theory for grammars gives
us a method of calculating capacities of constraints modeled with
context-free grammars. On the other hand, W. Krieger shown
that the capacity of the Dyck shift with brackets of n kinds is
log(n+1). Recently, K. Inoue has shown that the capacity of the
Motzkin shift with brackets of n kinds and neutral symbols of
m kinds is log(n + m + 1). We give alternative proofs for these
results by using the DSV theory. We also show that the DSV
method allow us to calculate the capacity of a constraint given
as a combinations of context free languages and shifts of finite
type.
keywords: DSV method, Dyck shift, Motzkin shift, capacity, input
constraints, context-free grammar

I. INTRODUCTION

In digital storage devices, information sequences are en-
coded by an error correcting code and then by a recording
code(there are coding schemes in which the recording code
is applied first). We use the recording code because encoded
sequences should satisfy some constraints which ensure that
the sequences would be correctly retrieved or transmitted.
Such constraints are called input constraints for the devices.

When we would use genetic sequences for processing,
recording or transmitting information, we may impose input
constraints on the sequences so that processing, recording or
transmitting would be done without difficulties. Sets of Dyck
paths and Motzkin paths can be regarded as mathematical
models of such input constraints for genetic sequences.

Usually Dyck paths are defined with one pair of a left and a
right brackets. By extending the number of pairs of brackets,
we can define a special class of symbolic dynamics. It was
shown by W. Krieger that the class of dynamical systems is
very different from the class of sofic shifts [1]. The results
were extended by K. Inoue[2] to dynamical systems modeled
as Motzkin paths.

The topological entropy of a subshift is completely deter-
mined by an adjacency matrix of the shift if the shift is of finite
type or sofic[3], [4]. However, we had to invent a method
of calculating the capacity for each subshift if the shift is

not sofic. Recently O. Milenkovic has shown that the DSV
method, a method of calculating generating function of words
defined by a context-free or slightly more general grammar,
and a theory of analytical combinatorics can be employed in
calculating capacities of subshifts defined by the context free
grammar[5]. The method is systematic and we need no trick
for each individual subshift other than elementary calculus.

Here we show that results by W. Krieger and K. Inoue can
be derived by the DSV method and a result of the theory
of analytical combinatorics. Then we apply the technique to
the problem for calculating the capacity of a shift defined by
a context free grammar and a subshift of finite type, e.g., a
subshift consisting of Dyck paths satisfying a runlength limited
constraints.

II. PRELIMINARIES

For a set A, we define A∗ to be a set of all finite sequences
from A including the empty sequence and A+ a set of all non-
empty finite sequences from A.

Let Σ be a finite alphabet. A set of all bi-infinite sequences
from Σ, or a set of all functions from the set Z of all integers
to Σ, is called the full shift on Σ, denoted by ΣZ. For a set
F ⊆ Σ∗, we define XF as follows

XF = {x ∈ ΣZ : ∀w ∈ F ,w is not a subsequence of x}.

We call XF a subshift and F a forbidden set. If a subshift S
is given as S = XF for some finite set F , we call S a subshift
of finite type(SFT). We define a map σ : ΣZ → ΣZ by

(σ(x))i = xi+1, x ∈ ΣZ.

σ is called the shift map. If we introduce a distance d(x,y) in
the subshift by

d(x,y) =
∞

∑
i=−∞

d(xi,yi)
2|i|

for sequences x = (xi)i∈Z and y = (yi)i∈Z. where

d(a,b) =
{

0 if a = b;
1 if a 6= b.

Let X and Y be two subshifts. For a function f : X → Y , f
is continuous and commutes with the shift map, that is,

f (σ(x)) = σ( f (x)) ∀x ∈ X ,



if and only if there exists a map φ : Σn → Σ and integers n and
l such that

( f (x))i = φ(x−l+ix−l+1+i · · ·xn+i), ∀i ∈ Z,

[6]. The function f is called block map. If there is a surjective
block map from X to Y , we say Y is a factor of X . If X is of
finite type, then we say Y is a sofic shift. A forbidden set of
a sofic shift is not necessarily a finite set.

Let X be a subshift. Let Bn(X) be the set of words of length
n appearing as a subsequence of some sequence in X . Let
B(X) = ∪nBn(X). The topological entropy h(X) of X or the
capacity C(X) of X is defined by

h(X) = C(X) = lim
n→∞

logBn(X)
n

.

See [4] or [3]. The base of the logarithm is usually 2.
We can define a measure theoretical entropy of a subshift for

a measure on the shift, which was introduced as an invariant
of a measure theoretical dynamical system by extending the
concept of the entropy or the entropy rate of an information
source introduced by Shannon[7]. The measure theoretical
entropy of an SFT with a measure coincides with the entropy
rate of a Markov chain corresponding to the SFT with the same
measure. The topological entropy of an SFT is the maximum
of the measure theoretical entropy over possible measures
for the SFT. This fact was found by Shannon[7] and then
rediscovered by Parry[8]. For an irreducible sofic shift, the
maximal entropy measure is unique. But this does not hold
for an irreducible non-sofc shift[1].

III. DYCK SHIFT AND MOTZKIN SHIFT

A class of subshifts of finite type is simplest and well-
studied in symbolic dynamics. A class of sofic shift is wider
than the class of SFTs and corresponds to a class of regu-
lar languages in computational language theory or automata
theory. The class has different names in other fields. There
is a dictionary for translating technical terms among different
fields[9].

A set of finite words is said to be regular if the set of
generated by a regular grammar. If the set is generated by a
context free grammar then the set is said to be context free.
Let L be a language (a set of words of finite length) defined
by a context free grammar. We can define a subshift whose
forbidden set is Σ+\L. A class of such subshift is properly
wider than the class of sofic shifts[1]. In this draft subshifts in
the class are said to be context free. There are many textbooks
for computational language theory, e.g., [10].

Example 1: [3] Let Σ = {a,b,c}. We consider a constraint
that if block abmcka appears then we should have m = k. A
forbidden set for the constraint is

F1 = {abmcka : m 6= k}.

This set is a language defined by the following grammar

E → bEC|ε
B → b|bB

C → c|cC

D → aBEa|aECa

A shift defined by F1 is not sofic, which can be proved by the
pumping lemma.

If L is a regular language then Σ+\L is also regular.
However, there is a context free language L such that Σ+\L
is not a context free language. Thus, for a subshift X if X is
an SFT then the forbidden set of X can be a finite set but if
X is a context free shift then B(X) is context free.

A. Dyck shift

We consider points on the 2 dimensional plane whose
coordinates are integers and a set of paths start from the origin
and move forward along only directions (1,1) and (1,−1). A
path in the set is said to be a Dyck path if it does not cross the
X-axis. The Dyck path correspond to a sequence of brackets in
which the number of right brackets is not greater than that of
the left bracket. However, we note that a forbidden set of the
subshift is empty because every finite sequence of directions
(1,1) and (1,−1) can appear in some Dyck path. Hence the
subshift is the full shift of 2 symbols.

Next we consider another constraint which is similar to
the above constraint but whose alphabet consists of pairs of
brackets of n kinds. We consider a set of sequences satisfying
a constraint that brackets are always balanced, that is, an left
bracket should be closed with a right bracket of the same kind.
For example, if n = 2 then the following sequences are allowed

[(())][(())()]([([][][[]])]), [[(())]]([])[][[]]([()])()[]

We also consider a set of left subsequences(prefixes) of
sequences satisfying the above constraint. By these sets of
sequences, we can define a subshift.

A formal definition of this subshift is given as follow [1]:
An alphabet is defined as

ΣD = {α1,α2, . . . ,αn,β1,β2, . . . ,βn}.

Roughly speaking, αi and βi are left and right brackets of the i-
th kind, respectively, for i = 1,2, . . . ,n. We define an operation
“ ·” on ΣD ∪{0,1} by the following rules

αi ·β j = 1, if i = j,
αi ·β j = 0, if i 6= j,
η ·1 = 1 ·η = η, η ∈ ΣD ∪{1},
0 ·η = η ·0 = 0, η ∈ ΣD ∪{1},
0 ·0 = 0.

We also define a function redD on Σ∗
D as follows,

redD(a) = a1 ·a2 · · ·am, a = a1a2 · · ·am ∈ Σm
D.

For the empty sequence ε, we define

redD(ε) = 1.



We define the Dyck shift Dn with brackets of n kinds by

Dn = {x ∈ ΣZ
D : redD(xixi+1 · · ·x j) 6= 0, for ∀i ≤ ∀ j}.

For n with n ≥ 2, Dn is not the full shift with 2n symbols.
This shift was introduced by Krieger and he proved that

Dn is irreducible but the entropy maximizing measure is not
unique and the entropy of Dn is log(n + 1). In [11] we can
find a method of calculating the topological entropy of Dn
by counting possible paths without any measure theoretical
discussion.

We can prove that Dn is not a sofic shift if n ≥ 2 as
follows(its proof is essentially the pumping Lemma). Suppose
that Dn is a sofic shift. Then there should exist an SFT X and
a block map π such that Dn = π(X). We can assume that X is a
set of bi-infinite paths(sequences of edges) of a directed finite
graph G and π is a labeling of edges of G. There are paths in
Dn which generates a sequence containing a finite sequence

(((· · ·(︸ ︷︷ ︸
k times

for any positive integer k. Therefore X should contain a cycle
a = a1 · · ·al such that π(a∞) = (∞ where a∞ means a path
repeating a infinitely many times. We can also find a cycle
b = b1 · · ·bk such that π(b∞) =]∞. Let c be a path from the
initial state of a to the initial state of b. We consider a sequence
which can be generated by a path amcbn

z = π(am) π(c) π(bn), ml > nk + lg(c‘)

where lg(y) is the length of y. Although z would be generated
by G, we note that redD(z) = 0. This means G generates a
sequence which is not a Dyck path. This is a contradiction.

B. Motzkin shift

A Motzkin shift can be regarded as a Dyck shift with
‘neutral symbols.’ A formal definition of the shift is given
as follows[1]. An alphabet ΣM of the shift is

ΣM = {α1,α2, . . . ,αn,β1,β2, . . . ,βn,11,12, . . . ,1m}.

We define a binary operation “ ◦ ” on ΣM ∪ {0,1} by the
following rules:

αi ◦β j = 1, if i = j,
1i ◦1 j = 1, for 1 ≤ i ≤ n,1 ≤ j ≤ m
αi ◦β j = 0, if i 6= j,
η◦1 = 1◦η = η, for η ∈ ΣM ∪{1}
1i ◦η = η◦1i = η, for 1 ≤ i ≤ N,η ∈ ΣM ∪{1}
0◦η = η◦0 = 0,
0◦0 = 0.

We also define the function redM on sequences of this alphabet
with respect to the operation “ ◦ ”as well as redD. Then Mn,m
is defined by

Mn,m = {x ∈ ΣZ
M : redM(xixi+1 · · ·x j) 6= 0 for ∀i ≤ ∀ j}

Inoue has shown that the topological entropy of Mn,m is
log(n+m+1) [2].

IV. DSV THEORY

Schützenberger[12] introduced a systematic method of cal-
culating a generating function of words generated by a gram-
mar given as a set of rewriting rules. This method was ex-
tended to attribute grammars. We mean both of these methods
by the DSV method[5]. The DSV method are explained in [5].

In this section we calculate a generating function of Dyck
paths which terminate on the X-axis as an example of an
application of the DSV method.

Example 2: [5] The following set of rules determine the
Dyck paths which start from the origin and terminate on the
X-axis.

D → ε,
D → z ·D · z ·D.

In the second rule, z means the unit move (1,1) and z means
(1,−1), respectively. Symbol ε means the empty sequences.

Next we take sums of rewriting rules for the same terminal
symbols. Since we have only one terminal symbol D in this
example, we have

D → ε+ z ·D · z ·D.

We assume that all addition and multiplications are commu-
tative. Under this assumption, we get

D → ε+ zzD2.

We transform all variables into a single variable t and ε into
1. We replace symbol ‘→’ with symbol ‘=’. Then we get the
following for our example.

D(t) = 1+ t2D2(t).

By solving this equation with respect to D(t), we get

D(t) =
1±

√
1−4t2

2t2

by multiplying 1∓
√

1−4t2,

=
1− (1−4t2)

2t2(1∓
√

1−4t2)

=
2

1∓
√

1−4t2

From the definition of the generating function, we should have
limt→0 D(t) = 1,

D(t) =
2

1+
√

1−4t2
(1)

=
1−

√
1−4t2

2t2 .

This is equal to the generating function of the Catalan number.
Example 3: Consider the following set of blocks

E = {aib j : 0 ≤ i ≤ j}.



The blocks in E are generated by the following rewriting rules,

S → ab+aSb,

B → ε+bB,

E → B+SBE.

We can show that a subshift defined by this set of rewriting
rules is no sofic. From these rules we have

S(t) =
t2

1− t2 ,B(t) =
1

1− t
.

Since we have

E(t) = B(t)+B(t)S(t)E(t),

E(t) is given by

E(t) =
1− t2

(1− t)(1− t2)− t2 .

The denominator of this vanishes at 0.554958132.
A sofic shift can be represented by a directed graph with

a right resolving labeling of its edges and the capacity of the
shift is the logarithm of the largest real eigen value of the
adjacency matrix of the graph. Although we can not apply
this method to non sofic shifts, we can calculate the capacity
of a non sofic shift by using the following result when we can
find a generating function of the shift.

When a function f (z) is expanded as

f (z) = ∑
n≥0

fnzn,

by [zn] f (z) we mean the n-th coefficient in this expansion.
Definition 1: We define a relation ‘./’ by

an ./ Kn ⇔ limsup
n

|an|1/n = K

This is equivalent to

limsup
n

|an|
Kn = 1.

Definition 2: We say that the function f (z) is analytic if
f (z) can be expanded at z.

Theorem 1: (Exponential Growth Formula) [13] We as-
sume that f (z) is analytic at z = 0 and define R by

R = sup{r ≥ 0 : f is analytic at z with |z| < r} (2)

Then we have

[zn] f (z) = fn ./

(
1
R

)n

.

V. TOPOLOGICAL ENTROPY OF DYCK SHIFT

A. Case: n = 1

We have shown that the capacity of the Dyck shift is 1 when
n = 1. Here we consider generating function of paths starting
from the origin and terminating on the X-axis. The generating
function is given by (1). It is well-known that by expanding

the function and taking the 2n-th coefficient of the expansion
we can see that the number of such paths of length 2n is

1
n+1

(
2n
2

)
,

which is the Catalan number Cn. We approximate Cn by using
the stirling formula and then we obtain

Cn ∼
4n

n3/2
√

π
.

The exponential growth rate of the number is

lim
n→∞

1
2n

logCn = lim
n→∞

1
2n

log22n = 1.

This corresponds to the fact that the Dyck shift D1 with one
pair of brackets is the full shift. But Krieger shown that this
does not hold for n ≥ 2 and calculated the capacity of Dn [1].
We will explain this by using the DSV method.

B. Case: n ≥ 2

A set BN(Dn), a set of N-blocks appearing in some sequence
in Dn, is larger than a set of balanced N-blocks DN(Dn),

DN(Dn) = {a1 · · ·aN : redD(a1 · · ·aN) = 1}.

For example, if (((()((()[]))))))) then α ∈ B18(D2) but α 6∈
D18(D2).

On the other hand, such blocks correspond to periodic points
in Dn. These blocks are defined formally as follows:

DL(Dn) = {u ∈ B(Dn) : redD(u) ∈ A+}.

where A = {α1, · · · ,αn}. A similar set of blocks can be defined
as follows

DR(Dn) = {u ∈ B(Dn) : redD(u) ∈ B+},

where B = {β1, · · · ,βn}. Intuitively, DL(Dn) and DR(Dn) can
be considered as a set of all postfixes of blocks in DN(Dn)
and a set of all prefixes of blocks in DN(Dn), respectively.
The remaining blocks are given by

DB(Dn) = {u ∈ B(Dn) : redD(u) = B+A+}.

Then we have

B(Dn) = D(Dn)∪DL(Dn)∪DR(Dn)∪DB(Dn),

where D(Dn) = ∪∞
i=0DN(Dn). Note that four sets in the right

hand side are disjoint. Rewriting rules for these sets of blocks
are given as follows.

D →
n

∑
i=1

αi ·D ·βi ·D+ ε

DL →
n

∑
i=1

D ·βi ·D+
n

∑
i=1

DL ·βi ·D

DR →
n

∑
i=1

D ·αi ·D+
n

∑
i=1

D ·αi ·DR

DB →
n

∑
i=1

DL ·αi ·D+
n

∑
i=1

DB ·αi ·D



where we write rules having the same nonterminal symbol on
the left hand side as a single sum.

We calculate generating functions of D(t), DL(t), DR(t) and
DB(t) with respect to the block length by the DSV method.
Although D(t) is one of solutions of a quadratic equation, we
can get the following results from the fact that limt→0 D(t) = 1.

D(t) =
2

1+
√

1−4nt2

=
1−

√
1−4nt2

2nt2 , (3)

DL(t) = DR(t) =
tD(t)2

1− tnD(t)
, (4)

DB(t) =
t2D(t)3

(1−ntD(t))2 .

Equation (3) is very similar to (1). Therefore we can apply
the same method of calculating the Catalan number to (3).
The result is

#B2N(Dn) = [t]2ND(t) =
1

N +1

(
2N
N

)
nN .

Therefore we have

lim
N→∞

1
2N

log#B2N(Dn) = 1+
1
2

logn.

There is another method of obtaining this value. In (3), if
1−4nt2 is negative then D(t) is not analytic. Therefore

1
2
√

n
= sup{r ≥ 0 : (3) is analytic z with |z| < r}.

Thus we can conclude that

limsup
n→∞

1
n

log[tn]D(t) = 1+
1
2

logn.

Next, we evaluate a denominator of DL(t), DR(t) and
DB(t) at t = 1/(n + 1) to calculate exponential growth rate
of [tn]DL(t), [tn]DR(t) and [tn]DB(t).

1− tnD(t) = 1− t
1−

√
1−4nt2

2nt2

= 1−
1−

√
1− 4n

(n+1)2

2
n+1

= 1−
1−

√
(n−1)2

(n+1)2

2
n+1

= 0.

This means that none of DL(t),DR(t),DB(t) is analytic at t.
We not that 2

√
n < n+1 for integer n with n ≥ 2. Therefore

1
n+1

= sup{r ≥ 0 : D̃(t) is analytic z with |z| < r}

where D̃(t) = D(t)+DL(t)+DR(t)+DB(t). From Theorem 1
we note that the exponential growth rate [tn]D̃(t) is log(n+1).
This result coincides with the result by Krieger [1].

The above argument can be applied to the case n = 1. If
n = 1 then

limsup
n→∞

1
n

log[tn]D(t) = 1+
1
2

logn = 1.

The denominator of (4) is 0 at t = 1/2 when n = 1 and we
note that the denominator is not 0 if 0 < t < 1/2. Therefore
we can also conclude that the entropy of D1 is log2 = 1 from
Theorem 1.

Remark 1: For the case n = 1, Dyck paths are defined to
be sequences in DL in [5]. We can define a set of periodic
points in Dn from the Dyck paths and get Dn by taking the
topological closure of the set. Therefore there is no essential
difference between a definition of Dyck paths in [5] and a
definition of Dyck shift in [1].

According to the definition, we must calculate the gener-
ating function of B(Dn). The above example means that we
can calculate the function step by step, that is, D(t),DL(t) and
DB(t). For the Dyck shift we have shown

limsup
n→∞

1
n

log[tn]D(t) 6= limsup
n→∞

1
n

log[tn]DL(t).

But this is not a common property of a class of context free
shift.

Example 4: We consider Example 3 again. Let Y be a
subshift defined by the set of rewriting rules in the example.
First we describe rewriting rules for a set of prefixes of blocks
in E.

ER → EAS

A → a|aA

Let A(t) and ER(t) be generating functions of A and ER,
respectively. Then we have

A(t) =
1

1− t
,

ER(t) = E(t)A(t)S(t) =
1− t2

(1− t)(1− t2)− t2
1

1− t

We note that every postfix of a block in E is again in E. Hence,
EL = E and we have

B(Y ) = E +ER.

Therefore we get the generating function of B(t) as

1− t2

(1− t)(1− t2)− t2

(
1+

t3

(1− t)(1− t2)

)
.

The denominator of this function also vanishes at
0.554958132. Therefore, from Theorem 1 we can conclude
that

limsup
n→∞

1
n

log[tn]E(t) = limsup
n→∞

1
n

log[tn]EL(t).



VI. ENTROPY OF MOTZKIN SHIFT

We can calculate entropies of Motzkin shifts as well as Dyck
shifts.

First we define sets of blocks corresponding to periodic
points of a Motzkin shift

M = {u ∈ B(Mn,m) : redM(u) = 1},
ML = {u ∈ B(Mn,m) : redM(u) ∈ A∗},
MR = {u ∈ B(Mn,m) : redM(u) ∈ B∗},

where A = {α1, . . . ,αn} and B = {β1, . . . ,βn}. The remaining
blocks are

MB = {u ∈ B(Mn,m) : redM(u) ∈ B+A+}.

These four sets are disjoint. Blocks in these sets are generated
by the following rewriting rules.

M → ε+
n

∑
i=1

αi ·M ·βi ·M +
m

∑
j=1

1 j ·M,

MR →
n

∑
i=1

M ·αi ·MR +
n

∑
i=1

M ·αi ·M,

ML →
n

∑
i=1

ML ·βi ·M +
n

∑
i=1

M ·βi ·M,

MB →
n

∑
i=1

ML ·αi ·M +
n

∑
i=1

MB ·αi ·M.

The generating function M(t) corresponding to a nonterminal
symbol M is given by solving an equation

M(t) = 1+nt2M(t)2 +mtM(t).

So we have

M(t) =
1−mt ±

√
(mt −1)2 −4nt2

2nt2 .

We must have limt→0 M(t) = 1 from the definition of the
generating function. Therefore we can conclude that

M(t) =
1−mt −

√
(mt −1)2 −4nt2

2nt2 .

Similarly, generating functions ML(t) and MR(t) corre-
sponding to ML and MR, respectively, are given as follows,

ML(t) = MR(t) =
ntM(t)2

1− tnM(t)
.

MB(t) is

MB(t) =
nM(t)ML(t)
1− tnM(t)

=
n2tM(t)3

(1− tnM(t))2 .

If (mt −1)2 < 4nt2 then M(t) is not analytic. Therefore

1
m+2n

= sup{r ≥ 0 : M(t) is analytic at z with |z| < r}.

From Theorem 1 we have

limsup
n→∞

1
n

log[tn]M(t) = log(m+2n).

We can show that denominators of ML(t),MR(t) and MB(t)
vanish at t = 1/(n+m+1). Let t = 1/(n+m+1).

(mt −1)2 −4nt2 =
(

m−m−n−1
n+m+1

)
− 4n

(n+m+1)2

=
n2 −2n+1
(n+m+1)2

=
(n−1)2

(n+m+1)2

M(t) =
n+m+1

n

1− tnM(t) = 1− n+m+1
n

·n · 1
n+m+1

= 0.

If n ≥ 2 then we have

1
n+m+1

<
1

m+2n
.

Thus we have

sup{r ≥ 0 : M̃(t) is analytic at z with |z| < r} =
1

n+m+1

where M̃(t) = M(t) + ML(t) + MR + MB(t). Therefore, from
Theorem 1 we note that the exponential growth rate of
[tn]MR(t) is log(n+m+1). This result coincides with the result
by Hamachi and Inoue[14].

VII. APPROXIMATION OF DYCK SHIFT FROM INSIDE AND
CODING

Hamachi and Inoue gave necessary and sufficient conditions
that an SFT is embedded into a Dyck shift [14].

For a subshift X , we mean a set of all periodic points of X
by P(X). We define P(Dn)− by

P(Dn)− = {x ∈ P(Dn) : red(xi · · ·x j) ∈ A+,∀i ≤ ∀ j},

where A is the set of left brackets. We note that P(Dn)−

corresponds to ML in the previous section. Then we have
Theorem 2 (T. Hamachi and K. Inoue): [14, Theorem

6.3] Suppose that n > 2. A necessary and sufficient condition
that X is embedded into Dn is that there is an injective map
from P(X) to P(Dn)− and h(X) < log(n+1).

A condition for the case n = 2 is slightly different from that
for the case n > 2 [14, Theorem 5.3].

As an application of these results we may construct a code
by which we encode a free binary sequence into a DNA or
RNA sequence satisfying a constraint modeled as a Dyck or
Motzkin path. The condition on the number of periodic points
may not be satisfied for some cases. Moreover, an encoder for
the coding problem may not be needed to be a block map but
it will be sufficient that we are able to construct a finite state
encoder with a sliding block decoder. Consequently, we use
the following fact to construct such an encoder.

log(n+1) = sup{h(W ) : W ⊂ Dn, W is an irreducible SFT}.
(5)



This is the fact proved in the proof of the above theorem [14,
Remark 4.5]. From (5), we can take a sequence (Wi)i≥0 of
SFT’s such that

lim
i→∞

h(Wi) = log(n+1), Wi ⊂ Dn.

Using this fact we can construct a finite state encoder with a
sliding block decoder for Dn as follows.

1) We assume that the number of data symbols is K. We
take nonnegative integers p and q such that K p < (n +
1)q.

2) We find an SFT Wi ⊂ Dn with
p
q

logK ≤ h(Wi) < (n+1).

There should be such an SFT from the fact mentioned
above.

3) Since we have p logK ≤ qh(Wi) = h(W q
i ), we can apply

the code construction method given in [15] to W q
i and

we can get a sliding block decodable finite state encoder
from the full shift with K p symbols to W q

i where W q
i is

the q-th power shift of Wi.
A resulting encoder may depend on W q

i which we take
in Step 2). Therefore, we must investigate the structure of
a constraint defined by a context free grammar in order to
construct an encoder for the constraint.

VIII. DYCK SHIFT AND RUN-LENGTH CONSTRAINT

Dyck shifts and Motzkin shifts can be regarded as mathe-
matical models for constraints on DNA and RNA sequences.
Pairs of brackets correspond to bonds of Watson-Crick pairs.
In some operations on genetic sequences the number of
G(guanine) in a sequence should be equal to that of C(cytosine).
A ratio of four symbols determines the temperature at which
some chemical operation can be applied. These facts mean we
may need some constraints other than the secondary structure
of genetic sequences. Therefore we consider sequences which
satisfy the Dyck constraint and a constraint of finite type
simultaneously. We show that the entropy of a shift consisting
such sequences can also be calculated systematically.

We assume that the alphabet is {(,), [, ]} and consider
a (0,1)-RLL constraint as an additional constraint which
requires that there should be at most 1 left bracket between
consecutive two left parenthesis and there should be at most
1 right bracket between consecutive two right parenthesis. We
mean a shift satisfying this constraint by D0,1. This shift can
be considered as an example of shifts investigated by Krieger
and Matsumoto [16].

In calculating the capacities of Dn and Mn,m we first tried
to obtain generating functions for allowable blocks for these
constraints. We also calculate the capacity of D0,1 in a similar
way.

Rewriting rules for this constraints can be given as follows:

D → ε+(·D·) ·D+[·E·] ·D,

E → (·D·)+ ε.

Generating functions D(t) and E(t) corresponding D and E,
respectively, are

D(t) = 1+ t2D2(t)+ t2E(t)D(t),
E(t) = t2D(t)+1.

We have the following equation for D(t)
0 = 1+(t2 −1)D(t)+ t2(t2 +1)D2(t).

By solving this with respect to D(t), we get

D(t) =
1− t2 ±

√
(t2 −1)2 −4t2(t2 +1)
2t2(t2 +1)

.

Since we should have limt→0 D(t) = 1, we conclude that

D(t) =
1− t2 −

√
(t2 −1)2 −4t2(t2 +1)
2t2(t2 +1)

=
2

1− t2 +
√

(t2 −1)2 −4t2(t2 +1)
.

We have
(t2 −1)2 −4t2(t2)+1) = 0

when t = 0.3933198 . . ..
We can also define a set DR in D0,1 corresponding to DR in

Dn. Rewriting rules of DR can be given by

DR → (·DR +[·(·DR +(·D+[·E
+(·D ·DR +[·E ·DR

A generating function DR(t) corresponding to DR must satisfy
DR(t) = tDR(t)+ t2DR(t)+ tD(t)+ tE(t)

tD(t)DR(t)+ tE(t)DR(t)

By solving this equation we get

DR(t) =
tD(t)+ tE(t)

1− t2 − t − tD(t)− tE(t)
(6)

By numerical calculation, we know that the denominator of
(6) vanishes at t0 = 0.3364712 and is positive for 0 ≤ t < t0.
Thus, we have

limsup
n→∞

1
n

log[tn]DR(t) = log2
1

0.3364712
= 1.57144507.

We note that DL(t) = DR(t). Since

DB → DL ·D ·DR,

we have DB(t) = D(t)DR(t)2. Thus we can conclude that
the entropy of the shift is approximately log2 1/0.3364712 =
1.51768881531.

Next we consider a shift defined as a product of D2 and a
(1,2) RLL constraint, say DRLL

1,2 . A set of rewriting rules for
the shift can be given as follows.

U → ε+[·[·U0·]·] ·U +[·U1·] ·U
(·(·V0·)·) ·U +(·V1·) ·U

U0 → (·U1·)+ ε
U1 → (·V0·)+ [·V1·]+ ε
V0 → [·V1·]+ ε
V1 → [·U0·]+ (·U1·)+ ε



From these rewriting rules we get

U1(t) = V1(t) =
t2 +1

1− t2(t2 +1)
,

U0(t) = V0(t) =
1

1− t2(t2 +1)
,

U(t) =
1

1−2t2U0(t)−2tU1(t)

The denominator of U(t) vanishes at 0.361103. Let SR be a
set of prefixes of U . The rewriting rules for SR can be given
as follows

SR → [·[·P0 +[·P1 +(·(·B0 +(·B1

+[·[·P0 ·SR +[·P1 ·SR +(·(·B0 ·SR +(·B1 ·SR

S1 → (·E0·)+ [·E1·]+ ε
S0 → (·S1·)+ ε
E0 → [·E1·]+ ε
E1 → [·S0·]+ (·S1·)+ ε
P1 → (·B0 +[·B1 +S1

P0 → (·P1 +S0

B0 → [·B1 +E0

B1 → [·P0 +(·P1 +E1

From these rules, we have

SR(t) =
2t2P0(t)+2tP1(t)

1−2t2P0(t)−2tP1(t)

P1(t) = B1(t) =
t3S1(t)+ t +1

1− t2 − t
P0(t) = B0(t) = tP1(t)+ t2S1(t)+1

S1(t) = E1(t) =
t2 +1

1− t2 − t4

The denominator of SR(t) vanishes at 0.334389419. We can
show that SL, the set of all postfixes of blocks in S, has the
same generating function. If we define SB by

SB → SL ·S ·SR,

we get a disjoint decomposition of B(DRLL
1, )

B(DRLL
1, ) = S +SR +SL +SB.

A generating function of SB is

SB(t) = SR(t)2S(t).

Therefore we can conclude that

limsup
n→∞

1
n

log[tn]G(t) = log0.334389419

where G(t) is a generating function of B(X). Therefore
capacities of D0,1 and DRLL

1,2 are different.
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