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ABSTRACT

A new paradigm for the periodic non uniform sampling of a
class of non bandlimited signals was recently proposed. The
main idea is to generate the periodic non uniform samples by
retaining a select group of samples from a larger set, obtained
by oversampling the continuous time signal by an integer fac-
tor L. In this paper, we revisit the problem and consider the
more challenging case where the sampler operates atL/M
time the Nyquist rate withL andM being coprime integers.
We derive a new multi-input multi-output (MIMO) discrete-
time model, and then use this model to obtain a set of neces-
sary conditions for perfect signal reconstruction with FIRfil-
ters. We also show that unlike the case ofM = 1, the newly
derived conditions are not sufficient for FIR perfect recovery.

Index Terms— Periodic Non-Uniform Sampling, Finite
Rate of Innovations, Multirate DSP, Wavelets, Sylvester

1. INTRODUCTION

The classical sampling theorem derived by Shannon in
1949 [1] states that aσ-bandlimited continuous time sig-
nalyc(t) can be recovereduniquelyfrom its uniform periodic
samplesy(n) , yc(nT ) as long asT ≤ π/σ and is given by

yc(t) =

∞
∑

n=−∞

x(n)φ(t − nT ) (1)

whereφ(t) = sin(πt/T )/(πt/T ) andx(n) = yc(nT ). A
nice interpretation of the reconstruction formula (1) was re-
cently proposed in [2] by observing that any real bandlimited
signal with support[−π/T, π/T ] has1/T degrees of freedom
per unit time, which is basically the number of time samples
required to specify it. With this interpretation in mind, the ex-
tension of Shannon’s sampling theorem for bandlimited sig-
nals to a larger class of continuous-timenon-bandlimitedsig-
nalsyc(t), namely the class of signals that havefinite rate of
innovations[2], can be obtained. Consider therefore the class
of continuous-time signalsyc(t) that has the form (1) where,
in this case,x(n) is not necessarily equal toyc(nT ) andφ(t)
is not the sinc function but aknownfunction ofcompact sup-
port. Popular examples ofφ(t) found in the literature are the

wavelet generating function proposed by Walter [3] and Mal-
lat [4] in the context of multiresolution analysis (MRA) and
spline functions proposed by Unser [5] for image processing
applications. The sequence of coefficientsx(n) is typically
assumed to have finite energy, i.e.,x(n) ∈ ℓ2 and the gener-
ating functionφ(t) decays faster than1/t as given below

|φ(t)| ≤
K

1 + |t|1+ǫ
(2)

for someK > 0 and ǫ > 0 [6, 7]. The above properties
are important to insure that the reconstruction of the signal
yc(t) from its samples is pointwise stable, i.e., that a small
perturbation in the samples valuesyc(nT ) results in a re-
construction error that is also small pointwise in time. So,
how is it possible to reconstructyc(t) from the samplesy(n)
even thoughyc(t) is not bandlimited and frequency aliasing
occurs ? To answer this, we assume for simplicity purpose
and without loss of generality thatT = 1 (normalized time
scale). Then, from (1), the uniform samples have the form

y(n) =
∞
∑

k=−∞

x(k)φ(n − k) which is a discrete time con-

volution sum. We can therefore recover the coefficientsx(n)
from y(n) by using the digital filter1/Φ(z) whereΦ(z) =
∑

n φ(n)z−n, provided the filter is realizable. For example,
whenφ(t) is βN (t), Φ(z) is FIR with zeros both inside and
outside the unit circle and its inverse is implemented as a sta-
ble non causal IIR filter to achieve pointwise stability of the
reconstruction process [5]. Although this works well for finite
length signals like images (see [5] and the references therein),
the implementation of non-causal IIR filters has limitations
and therefore, reconstruction solutions with FIR filters are of-
ten desirable. The feasibility of perfect reconstruction by FIR
filters using difference sampling was presented in [8] and a
more general exposition that provides necessary and sufficient
conditions for FIR reconstruction can be found in [9]. We
consider here the periodic non uniform sampling of the class
of non bandlimited signals that can be represented as in (1)
with φ(t) having compact support. The periodic non uniform
samples are obtained by retaining a select number of samples
from y(n) , yc(nM/L). In this case, the sequencey(n)
is modeled as the output of the discrete time fractional inter-
polation filter of Fig. 1 where↑ L denotes an upsampler of



factorL, ↓ M denotes a downsampler of factorM andF (z)
is the FIR transfer function of the sequencef(n) , φ(n/L).

x(n) y(n)L F (z) M
 

Fig. 1. A discrete-time multirate signal model

Sinceyc(t) is oversampled, we must haveL > M ≥ 1. The
oversampling ofyc(t) generates therefore a multirate DSP
model and reconstruction ofx(n) (and consequentlyyc(t))
from y(n) can be achieved by FIR filtering. ForM = 1,
a number of necessary and sufficient conditions for retriev-
ing x(n) from a periodic non uniformly decimated version of
y(n) by FIR filtering is given in [10]. The main contribution
of this paper is therefore the extension of the results of [10]
to the more challenging fractional rate case,M > 1. Similar
to [10], the work presented here is of theoretical nature and
is organized as follows: using multirate DSP theory, we first
obtain a novel discrete-time MIMO model for the fractional
rate case. Using this structure, we then derive necessary con-
ditions for FIR reconstruction ofx(n). Similar to the results
of [10], these conditions depend on the relative primeness of
the polyphase components ofF (z) but, unlike [10], arenot
sufficient for FIR reconstruction ofx(n). Numerical exam-
ples that illustrate the key findings of this work are also given.

2. THE DISCRETE TIME MODEL

For simplicity, we assume thatF (z) in Fig. 1 is a causal filter.
We emphasize however that this assumption is not necessary
in any of our derivations. The multirate discrete time model
of Fig. 1 can be first converted to the structure of Fig. 2 [11].
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Fig. 2. An equivalent representation of Fig. 1

Let F (z) =
L−1
∑

i=0

Fi(z
L)zi, whereFi(z), i = 0, 1, . . . , L

are itsL polyphase components. For theith row vector of
the matrix transfer functionEa(z), the M elements are the
M polyphase components ofHi(z) , zilFi(z), wherel is

a factor determined byL andM . The elements of the ma-
trix Ea(z) are therefore theM polyphase components of the
adequately shifted versions of theL polyphase components
of F (z). Starting from Fig. 2, we now derive a new and
more generic Multi-Input Multi-Output (MIMO) model. Let
Ea i,j(z) denote the(i, j)th element ofEa(z). By expressing

Ea i,j(z) =

Q−1
∑

k=0

E
(k)
a i,j(z

Q)z−k

for some integerQ, we replace each scalar elementEa i,j(z)
by its blocked version, theQ×Q pseudocirculant matrix [12]













E
(0)
a i,j(z) E

(1)
a i,j(z) · · · E

(Q−1)
a i,j (z)

z−1E
(Q−1)
a i,j (z) E

(0)
a i,j(z) · · · E

(Q−2)
a i,j (z)

...
...

...
...

z−1E
(1)
a i,j(z) z−1E

(2)
a i,j(z) · · · E

(0)
a i,j(z)













to get theLQ×MQ matrixEb(z). By further interchanging
the rows ofEb(z) to getEc(z) and by invoking the so called
polyphase identity [12], we get the equivalent discrete-time
model of Fig. 3. The signalsyk(n), k = 0, 1, . . . , LQ − 1, in
Fig. 3 are theLQ polyphase components ofy(n).
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Fig. 3. The new discrete-time model

3. PERFECT RECONSTRUCTION BY FIR FILTERS

From Fig. 3, sincex(n) is the interleaved version ofxk(n),
k = 0, 1, . . . ,MQ − 1, perfect reconstruction is achieved if
and only if theMQ signalsxk(n) can be reconstructed from
a subset ofMQ signals out of theLQ sequencesyk(n). Let











Yk0
(z)

Yk1
(z)
...

YkMQ−1
(z)











= E(z)











X0(z)
X1(z)

...
XMQ−1(z)













where theMQ × MQ matrix E(z) is carefully selected out
of Ec(z) (alternatively Eb(z)). It therefore follows that a
necessary and sufficient condition for perfect signal recovery
is thatE(z) is non singular. Furthermore, for FIR reconstruc-
tion, the determinant ofE(z) has to be a pure delay.
Construction of E. Assume thatNi, i = 0, 1, . . . , L−1 is the
highest order ofEa i,j(z), j = 0, 1, . . . ,M − 1, and letQ =
L−1
∑

i=0

Ni. We can then form theLQ × MQ matricesEb(z)

andEc(z). By carefully forsakingQ rows which contain the
factor ofz−1 in Ec(z) (Eb(z)), we can get an(L − 1)Q ×
MQ scalarmatrixE. SinceL > M , this new matrix has at
leastMQ rows, and we therefore have the following result.
Theorem 1.Perfect FIR reconstruction ofx(n) is possible if
the matrixE has full column rank, i.e.,rank(E) = MQ.
We emphasize that perfect FIR reconstruction is, in general,
not unique. In fact, the FIR reconstructing system is unique
only if L = M + 1. We can further explore the structure of
the matrixE by rewriting it in the following form



























e0,0 · · · e0,n0
0 · · · 0

. . .
0 · · · 0 e0,0 · · · e0,n0

...
eL−1,0 · · · eL−1,nL−1

0 · · · 0
. . .

0 · · · 0 eL−1,0 · · · eL−1,nL−1



























The matrixE is a generalized Sylvester matrix withL basic

building blocks [13]. By definingPi(z) =
ni
∑

j=0

ei,jz
−j (i =

0, 1, . . . , L−1) as the leading polynomials of every block, we
can derive the main result of this paper.
Theorem 2. A necessary condition for the matrixE to have
full column rank is that its leading polynomials are coprime.
Proof. Define the(L − 1)Q × L polynomial matrixS(z) as





















































1 0 · · · 0
z−1 0 · · · 0

...
...

...
...

z−(Q−N0−1) 0 · · · 0
0 1 · · · 0
0 z−1 · · · 0
...

...
...

...
0 z−(Q−N1−1) · · · 0
...

...
...

...
0 0 · · · 1
0 0 · · · z−1

...
...

...
...

0 0 · · · z−(Q−NL−1−1)





















































p(z) = S(z) ·











P0(z)
P1(z)

...
PL−1(z)











=



































P0(z)
z−1P0(z)

...
z−(Q−N0−1)P0(z)

...
PL−1(z)

z−1PL−1(z)
...

z−(Q−NL−1−1)PL−1(z)



































= e0 + e1z
−1 + · · · + eMQ−1z

−(MQ−1),

wheree0, e1, · · · , eMQ−1 are just theMQ column vectors
of the matrixE. SupposeP0(z), P1(z), · · · , PL−1(z) have a
common zero atz = z0. Then, we have

p(z0) = S(z0) ·











P0(z0)
P1(z0)

...
PL−1(z0)











= S(z0) ·











0
0
...
0











L×1

= 0 = e0 + e1z
−1
0 + · · · + eMQ−1z

−(MQ−1)
0

Clearly, theMQ columns of the matrixE are linearly depen-
dent, i.e.,rank(E) < MQ. Hence, the coprimeness of the
leading polynomialsP0(z), P1(z), · · · , PL−1(z) is a neces-
sary condition for the matrixE to have full column rank. �

The above theorem can be therefore interpreted as the ana-
logue result to Theorem 1 in [10]. We note however that,
unlike the case ofM = 1, the converse of this theorem is
not true, i.e., the coprimeness of the leading polynomials in
this case is not sufficient for FIR perfect reconstruction. Note
also, that similar to the case ofM = 1 [10], the choice ofQ is
in generalnot unique. For example, forQ = L max Ni, the
same results are obtained. The following examples illustrate
the above ideas by examining a number of possible scenarios.

Example 1.AssumeL = 3, M = 2, and

F (z) = 3 + z−2 + 5z−3 + 6z−5 + z−6

+ 2z−7 + 7z−10 + 2z−11

=⇒ Ea(z) =





3 + 5z−1 1
1 6 + 2z−1

2z−1 7







Let Q =
2
∑

i=0

Ni = 3, we have

Eb(z) =





























3 5 0 1 0 0
0 3 5 0 1 0

5z−1 0 3 0 0 1
1 0 0 6 2 0
0 1 0 0 6 2
0 0 1 2z−1 0 6
0 2 0 7 0 0
0 0 2 0 7 0

2z−1 0 0 0 0 7





























=⇒ E =

















3 5 0 1 0 0
0 3 5 0 1 0
1 0 0 6 2 0
0 1 0 0 6 2
0 2 0 7 0 0
0 0 2 0 7 0

















The three leading polynomials3 + 5z−1 + z−3, 1 + 6z−3 +
2z−4 and2z−1 + 7z−3 are coprime andrank(E) = 6.
Example 2.AssumeL = 3, M = 2, and

F (z) = 3 + 2z−2 + 3z−3 − 5z−4 + 2z−5

+ 3z−6 + 5z−7 + 2z−11

=⇒ Ea(z) =





3 + 3z−1 3
2 2 + 2z−1

−5 5





Let Q =
2
∑

i=0

Ni = 2, we have

Eb(z) =

















3 3 3 0
3z−1 3 0 3

2 0 2 2
0 2 2z−1 2
−5 0 5 0
0 −5 0 5

















=⇒ E =









3 3 3 0
2 0 2 2
−5 0 5 0
0 −5 0 5









The three leading polynomials3 + 3z−1 + 3z−2, 2 +
2z−2 + 2z−3 and−5 + 5z−2 are relatively prime. How-
ever, rank(E) = 3 < 4. Therefore, this example clearly
shows that the coprimeness of the leading polynomials isnot
sufficientfor the matrixE to have full column rank.
Example 3.AssumeL = 5, M = 2, and

F (z) = 3 + 2z−4 − 5z−10 − 7z−12 − 6z−13 + 8z−15

+ z−16 + z−17 + 6z−18 − 2z−19 + 3z−21

=⇒ Ea(z) =













3 − 5z−1 8z−1

2 −2z−1

6z−1 −6
−7 1
1 3




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





Let Q =
4
∑

i=0

Ni = 3, we have

Eb(z) =




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
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



3 −5 0 0 8 0
0 3 −5 0 0 8

−5z−1 0 3 8z−1 0 0
2 0 0 0 −2 0
0 2 0 0 0 −2
0 0 2 −2z−1 0 0
0 6 0 −6 0 0
0 0 6 0 −6 0

6z−1 0 0 0 0 −6
−7 0 0 1 0 0
0 −7 0 0 1 0
0 0 −7 0 0 1
1 0 0 3 0 0
0 1 0 0 3 0
0 0 1 0 0 3
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















































E =
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3 −5 0 0 8 0
0 3 −5 0 0 8
2 0 0 0 −2 0
0 2 0 0 0 −2
0 6 0 −6 0 0
0 0 6 0 −6 0
−7 0 0 1 0 0
0 −7 0 0 1 0
0 0 −7 0 0 1
1 0 0 3 0 0
0 1 0 0 3 0
0 0 1 0 0 3









































,

[

A1

A2

]

SinceL − 1 > M , we may have several possible choices
for synthesizing the reconstruction scheme. In this case, both
A1 andA2 are non-singular and we can design at least two
distinct FIR recovery systems for the same givenF (z).

Example 4.Let L = 3, M = 2, and

F (z) = 1 + z−2 + z−3 + z−5

+ z−6 + z−7 + z−11

=⇒ Ea(z) =





1 + z−1 1
1 1 + z−1

0 1







Assume now thatQ = L max Ni = 3, we have

Eb(z) =





























1 1 0 1 0 0
0 1 1 0 1 0

z−1 0 1 0 0 1
1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 z−1 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





























=⇒ E =





















1 1 0 1 0 0
0 1 1 0 1 0
1 0 0 1 1 0
0 1 0 0 1 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





















The three leading polynomials1+ z−1 + z−3, 1+ z−3 + z−4

andz−3 are coprime, as implied byrank(E) = 6.
Example 5.Let L = 3, M = 2, and

F (z) = 1 + z−2 + z−3 − z−4 + z−5

+ z−6 + z−7 + z−11

=⇒ Ea(z) =





1 + z−1 1
1 1 + z−1

−1 1





Assume again thatQ = L max Ni = 3, we have

Eb(z) =





























1 1 0 1 0 0
0 1 1 0 1 0

z−1 0 1 0 0 1
1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 z−1 0 1
−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1





























=⇒ E =





















1 1 0 1 0 0
0 1 1 0 1 0
1 0 0 1 1 0
0 1 0 0 1 1
−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1





















The three leading polynomials1+ z−1 + z−3, 1+ z−3 + z−4

and−1 + z−3 are coprime. Nevertheless,rank(E) = 5 < 6.
The example therefore illustrates that the relative primeness
of the leading polynomials is also not sufficient for the matrix
E to have full column rank for this alternative choice ofQ.

4. CONCLUDING REMARKS

The results presented here raise a number of issues for future
research. To start with, sufficient conditions for FIR recon-
struction for the fractional rate case are not currently known.
Second, given that the choice ofQ is not unique, is there a
specific value ofQ that produces necessary and sufficient con-
ditions for perfect FIR recovery in the fractional rate case?
Moreover, since the FIR reconstruction solution is in general
not unique, how do you choose the particular FIR recovery
system ? Finally, these results are derived for the determinis-
tic noiseless case. What are the results when noise is present?
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