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ABSTRACT wavelet generating function proposed by Walter [3] and Mal-
A new paradigm for the periodic non uniform sampling of aIat _[4] in the_ context of multiresolution ana[ysis (MRA) anq
class of non bandlimited signals was recently proposed. Th%ohr;e fl{nCtlon_?hproposed by UfnseffF]. for image procI(TSS|ng
main idea is to generate the periodic non uniform samples b PP |cat|é)ns.h ef_se_zquence ot coe 'C'ef(&) ('js tt_]yplca y
retaining a select group of samples from a larger set, oftlain s_sunf1e tp ave d'n'te enfergy, '“ﬁ(”) € fzan tbel gener-
by oversampling the continuous time signal by an integer fac?ling unctiong(t) decays faster thatyt as given below
tor L. In this paper, we revisit the problem and consider the K
more chaIIenging case_where the sgmpler qpera}tés/M 9(6)] < 1+ [¢TFe )
time the Nyquist rate witl. and M being coprime integers. ,
We derive a new multi-input multi-output (MIMO) discrete- for somek” > 0 ande > 0 [6, 7]. The above properties
time model, and then use this model to obtain a set of nece§/€ important to insure that the reconstruction of the digna
sary conditions for perfect signal reconstruction with IR~ ¥<(t) from its samples is pointwise stable, i.e., that a small
ters. We also show that unlike the caseléf= 1, the newly ~ Perturbation in the samples valugs(nT) results in a re-

derived conditions are not sufficient for FIR perfect reqgve construction error that is also small pointwise in time. So,
how is it possible to reconstrugt(¢) from the sampleg(n)

even thoughy.(t) is not bandlimited and frequency aliasing
occurs ? To answer this, we assume for simplicity purpose
and without loss of generality thgt = 1 (normalized time

1. INTRODUCTION scale). Then, from (1), the uniform samples have the form

Index Terms— Periodic Non-Uniform Sampling, Finite
Rate of Innovations, Multirate DSP, Wavelets, Sylvester

The classical sampling theorem derived by Shannon irl((n) - kzwx(k)qb(n — k) which is a discrete time con-

1949 [1] states that a-bandlimited continuous time sig- volution sum. We can therefore recover the coefficieris)
naly.(t) can be recoveredniquelyfrom its uniform periodic  from y(n) by using the digital filterl /®(z) where®(z) =
samplegy(n) = y.(nT) aslongad’ < 7/c andis givenby S ¢(n)z~", provided the filter is realizable. For example,
- when¢(t) is N (t), ®(z) is FIR with zeros both inside and
ye(t) = Z 2(n)é(t — nT) (1) glutside the unit circl_e and its in.verse i§ implementgd asaa st
e non causal IR filter to achieve pointwise stability oéth
reconstruction process [5]. Although this works well foiitin
where¢(t) = sin(nt/T)/(wxt/T) andz(n) = y.(nT). A  length signals like images (see [5] and the referencesith)ere
nice interpretation of the reconstruction formula (1) was r the implementation of non-causal IIR filters has limitason
cently proposed in [2] by observing that any real bandlichite and therefore, reconstruction solutions with FIR filteis afr
signal with supporf—= /T, 7/T] hasl/T degrees of freedom ten desirable. The feasibility of perfect reconstructigr-tR
per unit time, which is basically the number of time sampledilters using difference sampling was presented in [8] and a
required to specify it. With this interpretation in mindetex-  more general exposition that provides necessary and sufici
tension of Shannon’s sampling theorem for bandlimited sigeonditions for FIR reconstruction can be found in [9]. We
nals to a larger class of continuous-timen-bandlimitedsig-  consider here the periodic non uniform sampling of the class
nalsy.(t), namely the class of signals that hdiréte rate of  of non bandlimited signals that can be represented as in (1)
innovationg2], can be obtained. Consider therefore the classvith ¢(¢) having compact support. The periodic non uniform
of continuous-time signalg.(¢) that has the form (1) where, samples are obtained by retaining a select number of samples
in this caseg(n) is not necessarily equal 1o (nT) andg(t)  from y(n) = y.(nM/L). In this case, the sequengén)
is not the sinc function but lenownfunction ofcompact sup- is modeled as the output of the discrete time fractionakinte
port. Popular examples a@f(¢) found in the literature are the polation filter of Fig. 1 wherg L denotes an upsampler of

n=—oo



factor L, | M denotes a downsampler of facthf andF'(z)  a factor determined by, and M. The elements of the ma-
is the FIR transfer function of the sequenfi@) = ¢(n/L).  trix E,(z) are therefore thé/ polyphase components of the
adequately shifted versions of tHepolyphase components
of F(z). Starting from Fig. 2, we now derive a new and
x(n) — fL F (Z) - *Ml_, y(n) more generic Multi-lnput Multi-Output (MIMO) model. Let
E, i j(z) denote thei, j)" element ofE, (). By expressing

Q-1
Fig. 1. A discrete-time multirate signal model k _
9 9 Eaij(2) =Y Buli(29)27*
k=0
Sincey.(t) is oversampled, we must have> M > 1. The  for some integef), we replace each scalar elemént; ;(z)

oversampling ofy.(t) generates therefore a multirate DSP by its blocked version, th@ x @) pseudocirculant matrix [12]
model and reconstruction af(n) (and consequently.(t))

0 1 —1
from y(n) can be achieved by FIR filtering. FaZ = 1, E 1-),]-(2) E! z'),j(z) E(S,%,j (2)
a number of necessary and sufficient conditions for retriev- z*lE((fi;l)(z) E((loi)j(z) EéQif)(z)

ing z(n) from a periodic non uniformly decimated version of : : :

y(n) by FIR filtering is given in [10]. The main contribution L o) L @) : ©

of this paper is therefore the extension of the results of [10 2B (2) 2T ES (2) o By (2)

to the more challenging fractional rate casdé,> 1. Similar . . .
to [10], the work presented here is of theoretical nature ant gettheLQ) x MQ matrix Bp,(z). By further interchanging

is organized as follows: using multirate DSP theory, we first oei roxv;sgf%.;(ﬁt)itto[gi%E\jv(g) ae?(:ht;yénvuoig;grfr gizgr(;?tilae[eti(j
obtain a novel discrete-time MIMO model for the fractional polyp y ' 9 q

rate case. Using this structure, we then derive necessary COEOd?%I;rfeFtlr?éL?)Q Tr(;le S'ﬁ::ﬁgﬁ’ ]:_)n:er?t’sl, '('n')’ L@ —1,in
ditions for FIR reconstruction of(n). Similar to the results g polyp P otn).
of [10], these conditions depend on the relative primenéss o

- x(n), o @ x, (1) Yo(n) X(n),
the polyphase components BY z) but, unlike [10], arenot A - o : :

sufficient for FIR reconstruction of(n). Numerical exam-
ples that illustrate the key findings of this work are alsagiv

= va L ()
2. THE DISCRETE TIME MODEL

For simplicity, we assume tht(z) in Fig. 1 is a causal filter.

We emphasize however that this assumption is not necessary -
in any of our derivations. The multirate discrete time model

of Fig. 1 can be first converted to the structure of Fig. 2 [11].

B
Yo(m) : X () :
> LOX MO MO LO @

E.(2) . R(2)

x(n)
Z—l \m Yiga(m)
»i(n)
. E (2) Fig. 3. The new discrete-time model
4 .
LxM v, () 3. PERFECT RECONSTRUCTION BY FIR FILTERS
L-1
From Fig. 3, sincex(n) is the interleaved version afi(n),
Fig. 2. An equivalent representation of Fig. 1 k=0,1,...,MQ — 1, perfect reconstruction is achieved if
and only if theM @ signalszy(n) can be reconstructed from
a subset of\/Q signals out of the.() sequenceg(n). Let
L—1 . .
Let F(z) = i;) F;(z1)2, where Fy(z), i = 0,1,...,L Y, (2) Xo(2)
are its L polyphase components. For ti& row vector of Yieu(2) X1(2)

=E(z
the matrix transfer functio£,(z), the M elements are the =)
A

M polyphase components @f;(z) £ 2" F;(z), wherel is YkMQ',l(Z) XMQ.,l(z)



where theM @Q x MQ matrix E(z) is carefully selected out
of E¢(z) (alternatively En(z)). It therefore follows that a
necessary and sufficient condition for perfect signal recpv
is thatE(z) is non singular. Furthermore, for FIR reconstruc-
tion, the determinant dE(z) has to be a pure delay.
Construction of E. Assume thatV;,7 =0,1,..., L—1isthe
highest order of2, ; ;(2),7 =0,1,...,M — 1, and letQ =

L—1
> N;. We can then form th&Q x M@ matricesEy(z)

i=0

andE.(z). By carefully forsakingy rows which contain the
factor of 271 in E¢(2) (Ep(z)), we can get afL — 1)Q x
M@ scalarmatrix E. Sincel. > M, this new matrix has at
leastM @ rows, and we therefore have the following result.
Theorem 1. Perfect FIR reconstruction af(n) is possible if
the matrixE has full column rank, i.ezank(E) = MQ.

We emphasize that perfect FIR reconstruction is, in generaYVhereeovelv e

Po(z)

27 1Py (2)
Py(2) —(Q- 0:—1
P?(z) 2@ N_ ) Py(2)
pe) =S| L |- :
Proa(2) Fi1(z)

Z_1PL71(Z)

2z~ @=Nei=Dpp ()

—eytez 4+ eMQ_lz*(MQfl)’

,enmqQ—1 are just theM @ column vectors

not unique In fact, the FIR reconstructing system is unique®f the matrixg. Suppose(z), 1 (2),-- -, PL-1(z) have a

only if L = M + 1. We can further explore the structure of
the matrixE by rewriting it in the following form

[ eopo €0,n0 0 0
0 0 €0,0 €0,n0
€L—1,0 €L—1,np_1 0 0
L 0 0 €L-1,0 €L-1np_1 |

The matrixE is a generalized Sylvester matrix withbasic
building blocks [13]. By defining?;(z) = Z e ;270 (i =
j=0

0,1,...,L—1) as the leading polynomials of every block, we
can derive the main result of this paper.

Theorem 2. A necessary condition for the matri to have
full column rank is that its leading polynomials are coprime
Proof. Define the(L — 1)@ x L polynomial matrixS(z) as

1 0 0
271 0 0
S~ (Q—No—1) 0 0
0 1 0
0 271 0
0 S~ (@-Ni-1) 0
0 0 1
0 0 271
0 0 2~(@-Nioa-D)

common zero at = zy. Then, we have

Po(Zo) 0
Py (z) 0
P(20) = S(20) - : =S(z0) - | .
PL_l(ZO) 0 Lx1
(MQ-1)

=0=eytez + - +emwg 12

Clearly, theM @ columns of the matriE are linearly depen-
dent, i.e.,rank(E) < MQ. Hence, the coprimeness of the
leading polynomials?y (z), P1(z), - -, Pr—1(z) is a neces-
sary condition for the matrik to have full column rank. l

The above theorem can be therefore interpreted as the ana-
logue result to Theorem 1 in [10]. We note however that,
unlike the case of\f = 1, the converse of this theorem is
not true, i.e., the coprimeness of the leading polynomials i
this case is not sufficient for FIR perfect reconstructionteN
also, that similar to the case 8f = 1[10], the choice of) is

in generahot unique. For example, for) = L max N;, the
same results are obtained. The following examples illtestra
the above ideas by examining a number of possible scenarios.

Example 1.Assumel = 3, M = 2, and

F(2)=3+2245234627426
+227 T 472710 p 271

345271 1
= E,(z) = 1 6+ 2271
2771 7



2
Let@ = > N; = 3, we have
1=0

3 50 1 0 0]
0 35 0 10
5> 0 3 0 0 1

1 00 6 20
Ep(z)=| 0 1 0 0 6 2
0 0 1 2271 0 6

0 20 7 00

0 02 0 70

2271 00 0 0 7|
350100
035010
_g_|1 00620
01 00 6 2
020700

00 2070

The three leading polynomias+ 5271 + 273, 1 + 6273 +
2z-%and2z~1 + 7273 are coprime andank(E) = 6.
Example 2. AssumelL = 3, M = 2, and
F(2) =3+2:2 4323 —527%42,7°
+327 0 4+5277 42,711

343271 3
= Ea(2) = 2 242271
-5 5

2
Let@ = > N; = 2, we have

1=0
3 3 3 0
31 3 0 3
2 0 2 2
Eu(z)=1 ¢ o 9,1 9
5 0 5 0
0 -5 0 5
3 3 30
2 0 2 2
—E=1_5 0 5 0
0 -5 0 5

The three leading polynomiald + 327! + 3272, 2 +
2272 + 2273 and —5 + 5272 are relatively prime. How-
ever,rank(E) = 3 < 4. Therefore, this example clearly
shows that the coprimeness of the leading polynomiat®is
sufficientfor the matrixE to have full column rank.

Example 3. AssumelL = 5, M = 2, and

52710 7,712 _ 6713 4 8710

22—19 + 32—21

F(z) =342 -
L1641 4 18

3—5z"1 8271
2 —2z71
— E.(2) = 621 —6
-7 1
1 3
4
Let@ = >  N; = 3, we have
=0
3 -5 0 0 8 0 |
0 3 =5 0 0 8
—5z71 0 3 8z~ 1 0 0
2 0 O 0 -2 0
0 2 0 0 0 -2
0 0 2 -227' 0 0
0 6 0 —6 0 0
Ep(2) = 0 0 6 0 -6 0
6zt 0 0 0 0 -6
-7 0 0 1 0 0
0 -7 0 0 10
0 0 -7 0 0 1
1 0 0 3 0 0
0 1 0 0 3 0
| 0 0 1 0 0 3 |
3 -5 0 0 8 0 ]
0 3 -5 0 0 8
2 0 0 0 -2 0
o 2 0 0 0 =2
0 6 0 -6 0 0
E_| 0 0 6 0 —6 0 A[Al}
-7 0 0 1 0 0 Ao
o -7 0 0 1 o0
0 0O -7 0 0 1
1 0 0 3 0 0
o 1 0 0 3 0
L 0 0 1 0 0 3 |

SinceL — 1 > M, we may have several possible choices
for synthesizing the reconstruction scheme. In this casth, b
A, and A, are non-singular and we can design at least two
distinct FIR recovery systems for the same give().

Example 4.Let L = 3, M = 2, and

F)=1+22423427°
L6 Ty 1

14271 1
= E.(2) = 1 14271
1



Assume now thaf) = L max N; = 3, we have

1 1.0 1 00
0 1 1 0 10
27101 0 0 1
1 00 1 10

Ex(z)=| 0 1.0 0 1 1
0 01 =zt 01
0 00 1 00
0 00 0 10
. 0 00 0 0 1]
(1 1. 0 1 0 0]
01 1010
1 00110

—E=|010 0 1 1
000100
000010
|00 00 0 1

The three leading polynomialst+ z=! + 273, 14+ 273 4+ 24
andz~?2 are coprime, as implied byunk(E) = 6.
Example 5.Let L = 3, M = 2, and
F2)=1+4+22423—z44,7°
+ 276 + 277 + Zfll

14271 1
= Ea(z) = 1 1+271
-1 1

Assume again tha) = L max N; = 3, we have

(1 1 0o 1 0 0]
0 1 1 0 10
210 1 0 0 1

1 0 0 1 1 0
Ep(z)=| 0 1 0 0 1 1
0 0 1 =2zt 01

-1 0 0 1 00

0 -1 0 0 10

| 0 0 -1 0 0 1|
1 1 0 1 0 0]

0 1 1 010

1 0 0 110
—E=| 0 1 0 01 1
-1 0 0 1 0 0

0 -1 0 010

0 0 -1 0 0 1 |

The three leading polynomialst+ 2= +273, 14+ 273 4 2%
and—1 + z~3 are coprime. Neverthelessynk(E) = 5 < 6.
The example therefore illustrates that the relative priassn
of the leading polynomials is also not sufficient for the rixatr
E to have full column rank for this alternative choice@f

4. CONCLUDING REMARKS

The results presented here raise a number of issues foefutur
research. To start with, sufficient conditions for FIR recon
struction for the fractional rate case are not currentliywkmo
Second, given that the choice €fis not unique, is there a
specific value of) that produces necessary and sufficient con-
ditions for perfect FIR recovery in the fractional rate case
Moreover, since the FIR reconstruction solution is in gaher
not unique, how do you choose the particular FIR recovery
system ? Finally, these results are derived for the detésmin
tic noiseless case. What are the results when noise is pPesent
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