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Abstract— In this paper, we consider single-source, single-sink
(ss-ss) multi-hop relay networks, with slow-fading Rayleigh links
and single-antenna relay nodes operating under the half-duplex
constraint. We present protocols and codes to achieve the optimal
diversity-multiplexing tradeoff (DMT) of two classes of networks.
Networks belonging to the first class can be viewed as the union
of K node-disjoint parallel paths, each of length > 1, labeled here
as KPP networks. The results are extended to variants including
KPP(I) networks which permit causal interference between paths
and KPP(D) networks which posses a direct link from source to
sink. The second class is comprised of layered networks in which
each layer is fully connected.

We also draw some results for more general networks. For
an arbitrary network with multiple flows, we show that the
maximum achievable diversity gain for each flow is equal to
the corresponding min-cut and present a simple amplify-and-
forward (AF) scheme for achieving the same. For arbitrary ss-ss
directed networks with full-duplex relays, we prove that a linear
tradeoff between maximum diversity and maximum multiplexing
gain is achievable using an AF protocol.

Explicit codes with short block-lengths based on cyclic division
algebras are given for all the proposed protocols.

Two key implications of the results in the paper are that the
half-duplex constraint does not necessarily entail rate loss by a
factor of two as previously believed and that simple AF protocols
are often sufficient to attain the best possible DMT.

I. INTRODUCTION

The diversity-multiplexing gain tradeoff (DMT) has been
proposed as a tool to study cooperative relay networks, be-
cause it is simple enough to be analytically tractable and
powerful enough to compare different protocols [10], [5],
[1], [6]. In this paper, we study multi-hop slow-fading relay
networks from a DMT viewpoint.

A. Channel Model

All nodes in the network are assumed to have a single
antenna, unless otherwise mentioned. We adopt a discrete-
time, complex-baseband viewpoint of each channel in the
network.

1) The time duration required to communicate a message
is short enough to invoke the quasi-static assumption.

2) All channels are assumed to experience Rayleigh fading
and hence all fade coefficients are i.i.d., circularly-
symmetric complex Gaussian CN (0, 1) random vari-
ables.

3) The additive noise at each receiver is also modeled
as possessing an i.i.d., circularly-symmetric complex
Gaussian CN (0, 1) distribution.

4) Each receiver (but not at the transmitter)is assumed
to have perfect channel state information of all the
upstream channels in the network. 1

An AF protocol ℘ i.e., a protocol ℘ in which each node
in the network operates in an amplify-and-forward fashion,
induces the following linear channel model between source
and sink:

y = H(℘)x + w , (1)

where y ∈ Cm denotes the signal received at the sink, w is
the noise vector, H(℘) is the (m×n) induced channel matrix
and x ∈ Cn is the vector transmitted by the source. The
components of the n-tuple x are the n symbols transmitted
by the source and similarly, the components of the m-tuple
y represent the symbols received at the sink. Typically m
equals n. We impose the following energy constraint on the
transmitted vector x

Tr(Σx) := Tr(E{xx†}) ≤ nρ

and we will regard ρ as representing the SNR on the network
where Tr denote the trace operator. We will assume a symmet-
ric power constraint on the relays and the source. However the
exact power constraint is immaterial in the scale of interest.
We consider both half and full-duplex operation at the relay
nodes.

B. Diversity Multiplexing Gain Tradeoff

Let R denote the rate of communication across the network
in bits per network use. Let ℘ denote the protocol used across
the network. Let r denote the multiplexing gain associated to
rate R defined by

R = r log(ρ).

The probability of outage for the network operating under
protocol ℘, i.e., the probability of the induced channel in (1)

1However, for the protocols proposed in this paper, the CSIR is utilized
only at the sink, since all the relay nodes are required to simply amplify and
forward the received signal.



is then given by

Pout(℘,R) = inf
Σx ≥ 0, Tr(Σx) ≤ nρ

Pr(I(x; y)|H(℘)) ≤ nR).

Let the outage exponent dout(℘, r) be defined by

dout(℘, r) = − lim
ρ→∞

Pout(℘,R)
log(ρ)

and we will indicate this by writing

ρ−dout(℘,r) .= Pout(℘,R).

The symbols ≥̇, ≤̇ are similarly defined.
The outage dout(r) of the network associated to multiplexing

gain r is then defined as the supremum of the outages taken
over all possible protocols, i.e.,

dout(r) = sup
℘

dout(℘, r).

A distributed space-time code (more simply a code) oper-
ating under a protocol ℘ is said to achieve a diversity gain
d(℘, r) if

Pe(℘, ρ) .= ρ−d(℘,r) ,

where Pe(ρ) is the average error probability of the code C(ρ)
under maximum likelihood decoding. Using Fano’s inequality,
it can be shown (see [3]) that for a given protocol,

d(℘, r) ≤ dout(℘, r).

We will refer to the outage exponent dout(r) as the DMT
d(r) of the corresponding channel since for every protocol
discussed in this paper we shall identify a corresponding
optimal coding strategy in Section IV-E.

For each of the protocols described in this paper, we can
get an upper bound on the DMT, based on the cut-set upper
bound on mutual information [15]. This was formalized in
[10] as follows:

Lemma 1.1: Given a cut Ci, i = 1, 2, .., M between any
source and destination, let r(Ci) log(ρ) be the rate of in-
formation flow across the cut. Given a cut, there is a H
matrix connecting the input terminals of the cut to the output
terminals. Let us call the DMT corresponding to this H matrix
as the DMT of the cut, dCi(r

(Ci)). Then the DMT between the
source and the destination is upper bounded by

d(r) ≤ min
i
{dCi(r

(Ci))}.
Definition 1: Given a random matrix H of size m× n, we

define the DMT of the matrix as the DMT of the associated
channel Y = HX + W where Y is a m length received
column vector, X is a n length transmitted column vector
and W is a CN (0, I) column vector.

II. TAXONOMY OF MULTI-HOP NETWORKS

Any wireless network can be associated with a directed
graph, with vertices representing nodes in the network and
edges representing connectivity between nodes. If an edge is
bidirectional, we will represent it by two edges one pointing
in either direction. An edge in a directed graph is said to be
live at a particular time instant if the node at the head of the

edge is transmitting at that instant. An edge in a directed graph
is said to be active at a particular time instant if the node at
the head of the edge is transmitting and the tail of the edge is
receiving at that instant.

A wireless network is characterized by broadcast and
interference constraints. Under the broadcast constraint, all
edges connected to a transmitting node are simultaneously
live and transmit the same information. Under the interference
constraint, the symbol received by a receiving end is equal to
the sum of the symbols transmitted on all incoming live edges.
We say a protocol avoids interference if only one incoming
edge is live for all receiving nodes.

In wireless networks, the relay nodes operate in either half
or full-duplex mode. In case of half duplex operation, a node
cannot simultaneously listen and transmit, i.e., an incoming
edge and an outgoing edge of a node cannot be simultaneously
active.

Definition 2: A set of edges
(v1, v2), (v2, v3), . . . , (vn−1, vn) connecting the vertices
v1 to vn is called a path. The length of a path is the number
of edges in the path. The K-parallel path (KPP) network is
defined as a network containing a single source and a single
sink, that can be expressed as the union of K vertex-disjoint
paths, each of length greater than one, connecting the source
to the sink. Each of the node-disjoint paths is called a relaying
path. All edges in a KPP network are bidirectional.

Definition 3: Consider a KPP network. Let v1, v2, v3, v4

be four consecutive vertices lying on one of the K paths
leading from source to sink. Let v1 and v3 transmit, thereby
causing the edges (v1, v2) and (v3, v4) to be active. Due to
the broadcast and interference constraints, transmission from
v3 interferes with the reception at v2. This is termed as back-
flow.

Fig. 1. The KPP network

The Definition 2 of KPP networks precludes the possibility
of either having a direct link between the source and the
destination, or of the existence of links connecting nodes lying
on distinct node-disjoint paths. We now expand the definition
of KPP networks to include both possibilities.

Definition 4: If a network graph is a union of a KPP
network and an edge between the source vertex and sink
vertex, then it is called a KPP network with direct link, denoted
by KPP(D). If a given network graph is a union of a KPP
network and edges interconnecting the vertex-disjoint paths of
the KPP network, then the network is called a KPP network



TABLE I
PRINCIPAL RESULTS SUMMARY

Network No of No of Full/half Direct Upper bound on Achievable Is upper bound Reference
sources/ antennas duplex Link Diversity/DMT Diversity/DMT achieved?

sinks in nodes present? dbound(r) dachieved(r)

Arbitrary Multiple Multiple FD/HD Either d(0) = M d(0) = M X Theorem 4.1
(dmax achieved)

Arbitrary Directed Single Single FD Either Concave M(1− r)+ A linear DMT Theorem 4.3
Acyclic Networks in general between dmax and

rmax is achieved

KPP(D)(K ≥ 3) Single Single HD X (K + 1)(1− r)+ (K + 1)(1− r)+ X Theorem 4.7

(K, L) Regular Single Single HD × K(1− r)+ K(1− r)+ X Theorem 4.10

KPP(I)(K ≥ 3) Single Single HD × K(1− r)+ K(1− r)+ X Theorem 4.7

Fully-Connected Single Single HD × Concave M(1− r)+ A linear DMT Theorem 4.16
Layered in general between dmax and

rmax is achieved

Layered Single Single HD × Concave M(1− r)+ A linear DMT Lemma 4.14
(with conditions in general between dmax and
in Lemma 4.14) rmax is achieved

with Interference and is denoted by KPP(I). If a given network
graph is a union of a KPP network, a direct edge and edges
interconnecting nodes in various paths, then the network is
called a KPP network with interference and direct path, and
denoted by KPP(I, D).

Figure 2(a) below provides examples of all four variants of
KPP networks.

(a) A KPP network (b) A KPP(D) network

(c) A KPP(I) network (d) A KPP(I, D) network

Fig. 2. Examples of KPP networks with K = 2

For a KPP(D), KPP(I) or a KPP(I, D) network, we consider
the union of the K node disjoint paths as the backbone KPP
network. While there may be many choices for the K node
disjoint paths, we can choose any one such choice and call
that the backbone KPP network. These K relaying paths in
these networks are referred to as the K backbone paths. A

start node and end node of a backbone path are the first and
the last relays respectively in the path.

In a general KPP network, let Pi, i = 1, 2, ..., K be the K
backbone paths. Let Pi have ni edges. The j-th edge on the
i-th path Pi will be denoted by eij and the fading coefficient
on that edge be denoted as gij .

Definition 5: Consider a single source single destination
single antenna bidirectional network. A network is said to be
a layered network if there exists a a partition of the vertex set
V into subsets V0, V1, ..., VL, VL+1, such that
• V0, VL+1 denote the singleton sets corresponding to the

source and sink respectively.
• If there is an edge between a node in vertex set Vi and

a node in Vj , then |i− j| ≤ 1.
We call V1, ..., VL as the relaying layers of the network.

A layered network is said to be fully connected if for any i,
v1 ∈ Vi and v2 ∈ Vi+1, then the (v1, v2) is an edge in the
network.

In Fig.3, examples of layered networks are given. Layered
networks were also considered in [8] and [11]. In particular,
[11] considered layered networks with equal number of relays
on all layers. We call such layered networks as regular
networks.

Definition 6: The (K, L) Regular network is defined as a
KPP(I) network which is also a layered network with L layers
of relays.



A simple example of a (K,L) Regular network is a (K, 1)
network which comprises of a single source, one layer of
K relays and a sink node. This is the well studied two-hop
network without a direct link.

(a) A Layered network with with 4 relay-
ing layers

(b) A fully connected layered network

(c) A (3,4) regular network

Fig. 3. Examples of Layered and Regular networks

III. LOWER BOUNDS ON THE DMT OF CERTAIN DERIVED
MIMO CHANNELS

A. White in the Scale of Interest

Lemma 3.1: Consider a channel of the form Y = HX +Z.
Let H , Fi, i = 1, 2, .., L be n× n independent random matri-
ces, with each entry of each matrix having a finite mean and
variance. Let Gi, i = 1, 2, .., M comprise of finite products of
various matrices from the set of Fi. Let z = z0 +

∑M
i=1 Gizi.

Let {zi} be i.i.d. circularly symmetric n-dimensional complex
Gaussian CN (0, I) random vectors. Then,

1) λi
.= ρ0 ∀i with probability one, where λi are

eigenvalues of the noise covariance matrix Σ.
2) log det(I + ρHH†Σ−1) .= log det(I + ρHH†) with

probability one.
3) Pr(log det(I + ρHH†Σ−1) ≤ r log ρ) .=

Pr(log det(I + ρHH†) ≤ r log ρ)

Whenever a noise vector satisfies the conditions of this
Lemma, we will say the noise is white in the scale of interest.

Lemma 3.2: [3] For any channel that is of the form Y =
HX + N , iid gaussian inputs are sufficient to attain the best
possible outage exponent of the channel, with N being white
gaussian noise.

B. DMT Lower Bound for Triangular H

Definition 7: Consider a set of matrices Aij , j =
1, 2, ..., N, i ≥ j, of size Ni×Nj . Let A be a matrix comprised

of the block matrices Aij in the (i, j)-th position, i.e.,

A =




A11 0 . . . 0
A21 A22 . . . 0

...
. . .

...
AN1 AN2 . . . ANN


 .

We will call A as a block lower-triangular matrix.
Define the l-th sub-diagonal matrix, Al of a block lower

triangular matrix A as the block lower triangular matrix
comprising of entries Al1, A(l+1)2, ..., A(l+N−1)N and zeros
elsewhere.

(Al)ij = Aij if i− j = l − 1, else (Al)ij = 0Ni×Nj
.

The last sub-diagonal matrix of A is defined as the sub-
diagonal matrix Al of A, with the highest l such that Al is a
non-zero matrix.

Theorem 3.3: Consider a block lower-triangular matrix H
made of matrices Hij of size Ni×Nj . Let M :=

∑N
i=1 Ni be

the size of the square matrix H . Consider a channel of the form
Y = HX + W, where H is a M ×M block lower-triangular
random matrix, X, Y,W are M×1 vectors. Let W be a noise
vector, which is white in the scale of interest. Let Xi, Yi,Wi

be vectors of length Ni such that X = [X1, X2, ..., XN ]T ,
Y = [Y1, Y2, ..., YN ]T and W = [W1,W2, ..., WN ]T . Let Hd

be the block-diagonal part of the matrix H and H` denote the
last sub-diagonal matrix of H . Then

1) dH(r) ≥ dHd
(r).

2) dH(r) ≥ dH`
(r).

3) In addition, if the entries of H` are independent of the
entries in Hd, then dH(r) ≥ dHd

(r) + dH`
(r)

Proof: The channel is given by Y = HX+W. Since the
noise is white in the scale of interest, we have by Lemma 3.1
that the DMT of this channel is the same as the DMT of
a channel with Y = HX + V, where V is distributed as
CN (0, I). Therefore, we can assume without loss of generality
that W is distributed as CN (0, I).

The outage probability exponent [3] is given by

ρ−d(r) .= inf
ΣX :TrΣX≤P

Pr{I(X;Y : H = H) ≤ r log ρ}

In order to evaluate this exponent, we first evaluate the mutual
information. Let us assume that the input X is distributed
as CN (0, I). By Lemma 3.2, it can be seen that this input
distribution is indeed DMT optimal. We will compute the
mutual information terms under this assumption that the inputs
are iid gaussian. Now, we proceed to find a lower bound
on the DMT of the matrix. Consider the following series of
inequalities for all i = 1, ..., N .



Zi := I(Xi;Y|H = H,Xi−1
1 )

≥ I(Xi;Yi|H = H,Xi−1
1 )

= I(Xi;
i∑

k=i−`

HikXk + Wi|H = H,Xi−1
1 )

= I(Xi;
i∑

k=i−`

HikXk + Wi|H = H,Xi−1
1 )

= I(Xi; HiiXi + Wi|H = H,Xi−1
1 )

= I(Xi; HiiXi + Wi|H = H)
= I(Xi; HiiXi + Wi)

I(X;Y|H = H) =
M∑

i=1

I(Xi;Y|H = H,Xi−1
1 )

≥
M∑

i=1

I(Xi; HiiXi + Wi)

= I(X;HdX + W|Hd = Hd)
ρ−dH(r) = Pr{I(X;Y|H = H) ≤ r log ρ}

≤ Pr{I(X;HdX + W|Hd = Hd) ≤ r log ρ}
= ρ−dHd

(r)

dH(r) ≥ dHd
(r) (2)

We have a second series of inequalities for i = 1, ...,M−1.
Yi := I(Xi−`;Y|H = H,XN

i−`+1)
≥ I(Xi−`;Yi|H = H,XN

i−`+1)

= I(Xi−`;
i∑

k=i−`

HikXk + Wi|H = H,XN
i−`+1)

= I(Xi−`;
i∑

k=i−`

HikXk + Wi|H = H,XN
i−`+1)

= I(Xi−`; Hi(i−`)Xi−` + Wi|H = H,XN
i−`+1)

= I(Xi−`; Hi(i−`)Xi−` + Wi|H = H)
= I(Xi−`; Hi(i−`)Xi−` + Wi)

I(X;Y|H = H) =
1∑

i=N

I(Xi;Y|H = H,XN
i+1)

≥
`+1∑

i=N

I(Xi−`;Y|H = H,XN
i−`+1)

≥
`+1∑

i=N

I(Xi−`; Hi(i−`)Xi−` + Wi)

= I(X;H`X + W|H` = H`)

Mapping the mutual information inequality to outage expo-
nent, we get,

dH(r) ≥ dH`
(r) (3)

Therefore,

I(X;Y|H = H) ≥ max(I(X;HdX + W|Hd = Hd),
I(X;H`X + W|H` = H`)) (4)

Now by Eq.(4),

ρ−dH(r) = Pr{I(X;Y : H = H) ≤ r log ρ} (5)
≤ Pr{I(X;HdX + W|Hd = Hd) ≤ r log ρ,

I(X;H`X + W|H` = H`)) ≤ r log ρ}
= Pr{I(X;HdX + W|Hd = Hd) ≤ r log ρ}

×Pr{I(X;H`X + W|H` = H`) ≤ r log ρ}
= ρ−dHd

(r)ρ−dH`
(r)

= ρ−dHd
(r)+dH`

(r)

dH(r) ≥ dHd
(r) + dH`

(r) (6)

where the first step comes about because of the indepen-
dence of the processes Hs and Hi, which is indeed the case
because of the assumption that all the fading coefficients in
the system are independent. The second step is because iid
complex gaussian inputs are optimal in the scale of interest.

Corollary 3.4: Theorem. 3.3 holds for the case when the
matrix H is block upper-triangular instead of block lower-
triangular

Remark 1: Theorem 3.3 yields lower bounds on the DMT
of various existing AF protocols including the NAF protocol
[5], the SAF protocol [7], and the MIMO AF protocol [12].
The theorem also settles the conjecture on the DMT of a
network with direct link in [13].

IV. RESULTS

A tabulation of the principal results of this paper is given
in Table I.

A. For an Arbitrary Multi-hop Network

1) Min-Cut Equals Max Diversity:
Theorem 4.1: Consider a multi-terminal fading network

with nodes having multiple antennas with each edge having iid
rayleigh fading coefficients. The maximum diversity achiev-
able for any flow is equal to the min-cut between the source
and the sink corresponding to the flow. Each flow can achieve
its maximum diversity simultaneously.

Proof: We will distinguish between two cases.

Case I: Network with single antenna nodes

Choose a source Si and sink Dj . Let Cij denote the set of
all cuts between Si and Dj .

Lemma 4.2: If a matrix H has exactly m independent
Rayleigh fading coefficients in m arbitrary locations, the
diversity for that matrix is exactly equal to m.

From the cut-set bound on DMT 1.1,

d(r) ≤ min
C∈Cij

dC(r)

⇒ d(0) ≤ min
C∈Cij

dC(0)

Given a cut C, there is a matrix corresponding to the cut
HC . If the cut has mC edges crossing it, then this matrix has
exactly m independent fading coefficients, and therefore has
diversity equal to m by Lemma 4.2.



d(0) ≤ min
C∈Cij

mC =: m say

It is now sufficient to prove that diversity order of m is
achievable. Let us first consider the case when there is only
one flow.

By Menger’s Theorem [16], the number of edges in the
min-cut is equal to the maximum number of edge disjoint
paths between source and the destination. Schedule the
network in such a way that each edge in a given edge disjoint
path is activated one by one. Same is repeated for all the
edge disjoint paths. Thus, the same data symbol is transmitted
through all the edge disjoint paths from Si to Dj . Let the
number of edges in the i-th edge disjoint path be ni. The
jth edge in the the ith edge disjoint path is denoted by eij

and the associated fading coefficient be hij . The activation
schedule can be represented as follows: Activate each of
the following edge individually in successive time instants:
e11, e12, · · · , e1n1 , e21, · · · , e2n2 , · · · , em1, em2, · · · , emnm

.
Now define hi :=

∏ni

j=1 hij be the product fading coefficient
on the i-th path. Let the total number of time slots required
be N = Σm

i=1ni.
With this protocol in place, the equivalent channel seen by

a symbol is

H =




h1 0 . . . 0
0 h2 . . . 0
...

...
. . .

...
0 0 . . . hm




Let uij be defined as: ρ−uij := |hij |2.
If dH(r) is the outage exponent for this channel,

ρ−dH(r) .= Pr{Σm
i=1 log(1 + |hi|2) ≤ rlogρ}

= Pr{Σm
i=1 log(1 +

ni∏

j=1

|hij |2) ≤ r log ρ}

.= Pr{Σm
i=1 log(1 + ρ(1−Σ

ni
j=1uij)) ≤ r log ρ}

.= Pr{Σm
i=1 log(1 + ρ(1−Σ

ni
j=1uij)) ≤ log ρr}

.= Pr{
m∏

i=1

(ρ(1−Σ
ni
j=1uij)

+
) ≤ ρr}

Following the same lines of arguments as in [3],

dH(r) = inf
A

Σm
i=1Σ

ni
j=1uij (7)

where

A = {uij : Σm
i=1(1− Σni

j=1uij)+ ≤ r} (8)

Let Σni
j=1uij = ui. Then,

d(r) = inf
A′

Σm
i=1ui

where A′ = {ui : Σm
i=1(1− ui)+ ≤ r}

⇒ dH(r) = m− r

Since we use N channel uses, the effective outage exponent
is given by,

d(r) = dH(Nr)
= m−Nr (9)

Thus the maximum diversity of m can be achieved. If
there are multiple flows in the network, schedule the data
of all the flows in a time division manner. This will entail
further rate loss - however, since we are interested only in the
diversity, we can still achieve each flow’s maximum diversity
simultaneously.

Case II: Network with multiples antenna nodes

In the multiple antenna case, we regard any link between a
nt transmit and nr receive antenna as being composed of ntnr

links, with one link between each transmit and each receive
antenna. Note that it is possible to selectively activate precisely
one of the ntnr Tx-antenna-Rx-antenna pairs by appropriately
transmitting from just one antenna and listening at just one Rx
antenna.

We create a modified network from the original network
by doing the following: We will replace all nodes by a super
node which is comprised of small nodes on either sides. Let
us say a node i has ni antennas. Add ni small nodes to the
left side (receive side) of the node and ni small nodes to
the right (transmit side). We have thus converted a multiple
antenna network into a virtual single network with super nodes
and small nodes. If we evaluate the min-cut on this network,
with the understanding that any cut should partition only the
super-nodes, then we will get the maximum diversity on this
network. The same strategy as in the single antenna case can
then be used in order to achieve this diversity in the network.

Figure 4 illustrates this conversion for the case of a single
source S, two relays R1 and R2 and a destination D. Having
thus converted the multiple antenna network into one with
single antenna nodes, the theorem now follows from Case I.

2) Lower Bound to the DMT of Certain Full-Duplex Net-
works: In this section, all networks considered will have full-
duplex relay nodes.

Definition 8: Consider a network N and a path P from
source to destination. This path P is said to have an interme-
diate direct path if there is a direct link in N connecting two
non-consecutive nodes in P .

Theorem 4.3: Consider a ss-ss full-duplex network with
single antenna nodes. Let the min-cut of the network be M .
Then a linear DMT between the maximum multiplexing gain
and a maximum diversity gain, M(1 − r)+, is achievable if
either of the two conditions are satisfied:

• None of the M edge disjoint paths between source and
destination have intermediate direct paths, or

• The directed graph representing the network has no
directed cycles.



(a) Original network with multiple an-
tenna nodes

(b) Equivalent network with single an-
tenna nodes

Fig. 4. Illustration: nS = nD = 2, n1 = n2 = 3

B. DMT of KPP networks

In this section, we present AF protocols achieving the cut-
set bound on DMT for KPP networks, d(r) = K(1 − r)+ ,
with half-duplex constraint on relay nodes.

1) Orthogonal Protocols:
Definition 9: An AF protocol assuming half duplex opera-

tion at relay nodes is said to be an orthogonal protocol if at
any node, only one of the incoming or outgoing edges is active
at a given time instant. The rate, R of an orthogonal protocol
is defined as the ratio of the number of symbols transmitted
by the source to the total number of time slots.

We consider orthogonal protocols with periodic activation
sets, i.e., there exists an integer N such that the set of edges
activated at any particular time t is equal to the set of edges
activated at t + N . Let C = {c1, c2, . . . , cN} be a set of
N colors. An edge coloring is a map ψ : E → PC which
takes eij to Aij . The subset of colors assigned to the edge
eij will be denoted by Aij . Each color in Aij represents
the time instants during which the edge eij is active. Every
orthogonal protocol can be described as an edge coloring of the
network satisfying the following constraints. Similarly, every
edge coloring satisfying the following constraints describes an
orthogonal protocol.

Ai1 ∩Aj1 = φ, i 6= j. (10)
Aini ∩Ajnj = φ, i 6= j. (11)
Aij ∩Aij+1 = φ, j = 1, 2, ..., ni − 1. (12)

|Aij | = mi, j = 1, 2, ..., ni. (13)

Remark 2: An orthogonal protocol avoids back-flow if the

corresponding coloring satisfies the following condition:

Aij ∩Aij+2 = φ, j = 1, 2, ..., ni − 2.
By Remark 2, it is evident that any three adjacent edges

eij , ei(j+1), and ei(j+2) will map to disjoint sets of colors
when the coloring scheme corresponds to an orthogonal pro-
tocol avoiding back-flow. Moreover, it remains consistent with
the constraints to repeat the same set of colors in every
third edge. This suggests an easy way of describing the edge
coloring. For a given path in the network, we will have three
sets of colors in order and they are cyclically associated to
edges starting from source to destination. For reasons that will
become apparent later, the last edge (edge connected to the
sink) in the given path may get associated to a different set
of colors. So, to describe an orthogonal protocol, we define a
tuple of sets Gi = [Gi0, Gi1, Gi2] and a set F i for all i such
that,

Aij =
{

Gi(j mod 3), j 6= ni

F i, j = ni
(14)

Hereafter, we will use Gi and F i for i = 1, 2, ...,K to
completely describe an orthogonal protocol. Here, Gi specifies
the colors that are repeated cyclically on the edges of the path
Pi and F i specifies the color on the last edge eini of path Pi.

2) Protocols achieving MISO bound :
Lemma 4.4: Consider a KPP network. An orthogonal pro-

tocol satisfying the following constraints achieves the MISO
bound, i.e.,

d(r) = K(1− r) , 0 ≤ r ≤ 1 , (15)

1) In every cooperation frame, the destination receives
equal number of symbols from each one of the K
parallel paths.

2) The protocol avoids back-flow.
Theorem 4.5: When K ≥ 3, there exists a protocol achiev-

ing MISO bound.
Proof: (Outline) For K ≥ 4, the orthogonal protocol

achieving MISO bound is described by a coloring using the set
of colors C = {c1, c2, ..., cK}. Whenever we refer to color ci

assume c0 = cK and for i > K, ci = c(i mod K). The protocol
is given by,

Gi = [{ci}, {ci+1}, {ci+2}]
F i = {ci+3}
By Lemma 4.4, this protocol achieves the MISO bound.
The orthogonal protocol achieving the MISO bound for

K = 3 is also of cycle length K, but it is tricky, and hence
not given for the purpose of brevity.

Theorem 4.6: For K = 2 and ni > 1, the maximum
achievable rate for any orthogonal protocol is given by

Rmax ≤
{

1, n1 + n2 = 0 mod 2
2n2−1
2n2

, n1 + n2 = 1 mod 2 (16)

where n1 ≤ n2. A linear DMT between maximum diversity
and Rmax is achievable.



C. DMT of KPP(D) and KPP(I) networks

We consider KPP(D) and KPP(I) networks with relay nodes
operating under half-duplex constraint.

1) Optimal DMT for KPP(D) networks:
Theorem 4.7: For KPP(D) networks with half-duplex re-

lays, the optimal DMT (K + 1)(1 − r)+ is achievable if the
optimal DMT of the backbone KPP network is achievable by
an orthogonal protocol.

2) Causal interference in KPP(I) networks: By Theo-
rem 3.3, if the interference in a KPP(I) network is such that
input-output relation can be written in the following form, then
a cut-set bound DMT of d(r) = K(1− r)+ is achievable.




y1

y2

...
yK


 =




g1

∗ g2

∗ ∗ . . .
∗ ∗ ∗ gK







x1

x2

...
xK


 + n (17)

where gi =
∏ni

j=1 gij and ∗ denotes any entry, either zero or
non-zero. This is formalized in the following Lemma.

Lemma 4.8: If the interference in a KPP(I) network, run-
ning on a particular protocol, satisfy the following two con-
ditions, then the matrix connecting the output and a permuted
version of the input will be lower triangular with K inde-
pendent coefficients along its diagonal repeated periodically
(except maybe the first D time instants).

For each backbone path, Pi,
1) The delay experienced by the data traveling on any other

path from the first node of Pi to the sink should be no
lesser than the delay on Pi from the first node to the
sink.

2) The unique shortest delay from the first node of Pi to
the last node of Pi is through the backbone path from
the first node to the sink.

Definition 10: An orthogonal protocol for a KPP(I) network
is said to have continuous activation at a relay node if the node
transmits whatever it receives from the incoming edge in the
last instant in the immediately next time instant.

Definition 11: An orthogonal protocol for a KPP(I) network
is said to have almost continuous activation if the protocol has
continuous activation at all relay nodes except possibly at the
first node on each parallel path.

The conditions in Lemma 4.8 depend on the actual delays
experienced by the message symbol traveling through various
paths. However, the actual delays depend on the protocol used,
and it becomes difficult to account for delays experienced by
messages in each path. The class of protocols with almost
continuous activation, which is defined above, provides us
with a means to reduce the condition delays to a condition on
the actual path lengths, which are simpler parameters of the
network. Also, it can be proved that there exists a protocol with
almost continuous activation whenever K ≥ 3. For K = 2,
protocols with almost continuous activation exists when paths
lengths are same modulo 2.

Lemma 4.9: The optimal DMT of d(r) = K(1 − r)+ can
be achieved in a KPP(I) network with K ≥ 3, if the following
conditions are satisfied:

For each backbone path, Pi,

1) The length of any other path from the first node of Pi

to the sink should be no lesser than the length of the
backbone path, Pi, from the first node to the sink.

2) The unique shortest path from the first node of Pi to the
last node on that path is through the actual path from
that node to the sink.

Theorem 4.10: Optimal DMT of (K, L) Regular networks
is achievable.

Proof: (K, L) Regular networks satisfy the two condi-
tions of the Lemma 4.8 with the orthogonal protocol for the
backbone KPP network.

Remark 3: In particular Theorem 4.10 also implies that for
the two hop network without direct link, the optimal DMT is
achievable. This was also observed in an independent work
[14]. The protocol used in this paper and in [14] is essentially
the SAF protocol used in a network without direct link [7].
However, the proof techniques are different.

3) Optimal DMT for KPP(I) networks: In section IV-C.2,
we gave a sufficient condition to establish when a network
can be used along with a protocol with almost continuous
activation in order to achieve the optimal DMT. In this section,
we prove that all KPP(I) networks, with K ≥ 3 can be made
to achieve the optimal DMT.

Suppose the network does not meet the sufficient condition
given in Lemma 4.9. It is possible that the protocol can be
modified to make the network meet the sufficient condition
of Lemma 4.8. We do so here by adding delays to internal
nodes of the network such that, even though the path lengths
do not satisfy the constraints, the delays do. By appropriately
choosing a protocol and adding delays, we can make the
network and the protocol jointly satisfy the conditions of
Lemma 4.8. This leads us to the following Theorem.

Theorem 4.11: Consider a KPP(I) network with K = 3.
There exists a set of delays which when added appropriately
to various nodes in the networks, and when used along with
the protocol with almost continuous activation, satisfies the
conditions of Lemma 4.8.

Theorem 4.12: Consider a KPP(I) network with K ≥ 3.
The cut-set bound on the DMT d(r) = K(1 − r)+ is
achievable.

Proof: For K = 3, it follows from Theorem 4.11.
Now, we will consider the case when K > 3. Consider

a 3 parallel path sub-network of the original network. By
Theorem 4.11, we can get a matrix with these three product
coefficients along the diagonal. There are now KC3 possible
3PP subnetworks. If each of these subnetworks is activated in
succession, it would yield a lower triangular matrix with all
the K product coefficient gi repeated thrice K choose 3 times
on the diagonal. By Theorem 3.3, the DMT of this matrix is
better than that of the diagonal matrix alone. The diagonal
matrix has a DMT equal to K(1− r)+. Hence proved.



D. DMT of Fully-Connected Layered Networks

In section, we present AF protocols to achieve the optimal
DMT of fully connected layered networks. To begin with, we
have the following Lemma to compute the DMT of the parallel
channel with product coefficients occurring in some structure.

Lemma 4.13: Let H ⊂ {h11, h12, ..., h1M1} ×
{h21, h22, ..., h2M2} × ... × {hK1, hK2, ..., hKMK

} such
that each hij appear in Ni of the elements in H irrespective
of j. Let H = {h1, h2, . . . , hN}. Then NiMi = N . Let
Nmax := maxN

i=1 Ni and Mmin := minK
i=1 Mi.

Let ψ : H → G be a map such that ψ((a1, a2, ..., aK)) =
ΠK

j=1ai. Now let gi = ψ(hi), i = 1, 2, ..., N . Then each gi is
of the form ΠK

k=1hkl(i,k), where l(i, k) is a map from [N ] →
[Mk] for a fixed k ∈ [K].

Let H be a N × N diagonal matrix with the diagonal
elements given by Hii = Gi. Then the parallel channel H has
a linear DMT between a diversity of N

Nmax
and a multiplexing

gain of N :

d(r) =
(N − r)+

Nmax
(18)

Definition 12: Let P denote a set of paths from the source
to the sink in a layered network. The bipartite graph corre-
sponding to P is defined as follows.
• Each path Pi ∈ P form a vertex on the left as well as

the right of the bipartite graph.
• A vertex Pi on the left is connected to the vertex Pj on

the right if the corresponding paths are node disjoint.
Lemma 4.14: Consider the set of all paths from source to

sink, P = {P1, P2, . . . , PN}, of a given layered network. Let
the product of the fading coefficients on the i-th edge disjoint
path Pi be gi. Construct the bipartite graph corresponding to
P . If there exists a complete matching in this bipartite graph,
then these paths can be activated orthogonally in such a way
that the DMT of this protocol is greater than or equal to the
DMT of a parallel channel with fading coefficients gi, i =
1, 2, ..., N with the rate reduced by a factor of N , i.e., d(r) ≥
dHd

(Nr), where Hd = diag(g1, g2, ..., gN )
Lemma 4.15: Let P = {P1, P2, . . . , PN} be set of all paths

from the source to the sink in a fully connected layered net-
work having L layers. Then the bipartite graph corresponding
to P has a complete matching.

Theorem 4.16: For a fully-connected layered network, a
linear DMT between maximum diversity and maximum mul-
tiplexing gain of 1 is achievable.

Proof: Consider a fully connected layered network with
L relaying layers. Let there be Ri relays in the i-th layer
for i = 1, 2, .., L. Let R0 := 1 and RL+1 := 1 and Mi =
Ri−1Ri, i = 1, 2, ..., L+1 be the number of fading coefficients
in the cut between (i − 1)-th and i-th layers. Let hij , j =
1, 2, .., Mi be the corresponding fading coefficients. Let N be
the total number of paths from source to sink, and Pi, i ∈ [N ]
denote these paths. Let P denote the set of all paths. Then
N = ΠL

i=1Ri. Let gi be the product fading coefficient on path
Pi. Let Mmin = minL+1

i=1 Mi, and Nmax = maxL+1
i=1 Mi. Then

dmax = Mmin

By Lemma 4.15, the bipartite graph corresponding to P has
a complete matching. Hence by Lemma 4.14 we can obtain a
DMT of d(r) ≥ dHd

(Nr). Now, we need to compute dHd
(r).

To that effect, we make the following observations, which will
enable us utilize Lemma 4.13.

A given path Pi can be alternately represented as
the set of fading coefficients on that path hi =
(h1l(i,1), h2l(i,2), ..., h(L+1)l(i,(L+1))). Consider the set of all
hi, i.e., H = {hi, i ∈ [N ]}. Now let gk, k ∈ [N ] be the
product of fading coefficients on path Pi.

Now clearly H ⊂ {h11, h12, ..., h1M1} ×
{h21, h22, ..., h2M2} × ... × {hK1, hK2, ..., hKMK

}. Also,
each hij appears in the same number Ni of times irrespective
of j. This means that Ni = N

Mi
.

If ψ is defined as in Lemma 4.13, then gi = ψ(hi). Now we
have satisfied all the conditions of Lemma 4.13 and therefore,
dHd

(r) = N−r
N1

. And we get d(r) ≥ dmax(1− r)+

A sufficient condition that guarantees that a linear DMT
between the maximum diversity and multiplexing gain on a
general layered network is given in Lemma 4.17

Lemma 4.17: For a general layered network, a linear diver-
sity multiplexing tradeoff of d(r) = dmax(1−r)+ between the
maximum diversity gain dmax and the maximum multiplexing
gain 1 is achievable whenever the bipartite graph correspond-
ing to the set of edge disjoint paths ei, i = 1, 2, ..., dmax from
the source to the destination has a complete matching.

E. Code Design to Achieve Optimal DMT

Consider any network and protocol described above, and let
us say the protocol operates for M slots. The induced channel
is given by Y = HX + W where X, Y, W is a M × 1 vector
and H is a M × M matrix. However, to design an optimal
code for this channel, we need to use a space time code matrix
X . In order to obtain an induced channel with X being a
M ×T matrix, we do the following. Instead of transmitting a
single symbol, each node transmits a row vector comprising of
T symbols during each activation. Then the induced channel
matrix takes the form: Y = HX + W , with X, Y, W being
M × T matrices and H the same M ×M matrix as earlier.

So there are totally MT symbols transmitted. In the matrix
X , let us call the row vector of T symbols in slot i as xi.
To address a specific symbol: the j-th symbol in slot i, we
use the notation xij . Let us use similar notation for the output
matrix Y .

Now from [4], we know that if we use an approximately
universal code for X , then it will achieve the optimal DMT
of the channel matrix H irrespective of the statistics of the
channel. Explicit minimal delay approximately universal codes
for the case when T = M are given in [2], constructed based
on appropriate cyclic division algebras [9].

1) Short DMT Optimal Code Design: The code construc-
tion provided above affords a code length of TM = M2.
Also we need M very large for the initial delay overhead
to be minimal. This entails a very large block length, and
indeed very high decoding complexity. Now a natural question
is whether optimal DMT performance can be achieved with



shorter block lengths. We answer this question for KPP net-
works by constructing DMT optimal codes that have T = K
and a block length of K2. We also provide a DMT optimal
decoding strategy that also requires only decoding a K ×K
matrix at a time. This is a constant which does not depend
on M and therefore, even if we make M large, the delay and
decoding complexity are unaffected. This code construction
can be easily extended to other networks considered in this
paper as well.

Let us assume that after D time instants the KPP network
comes to steady state (i.e., all K paths start delivering symbols
to the destination). Consider the first K inputs after attaining
steady state xD+1, xD+2, ..., xD+K . If the channel matrix is
restricted to these K time slots alone, then channel matrix
would be a lower triangular matrix with the K independent
coefficients gi, i = 1, 2, .., K. The DMT of this matrix alone
is dK(r) = K(1− r)+. So if we use a K ×K DMT optimal
matrix as the input (this can be done by setting T = K and
using a K ×K approximately universal CDA based code for
the input), we will be able to obtain a DMT of dK(r) for
this subset of the data. This means that the probability of
error for this vector comprising of T input symbols will be of
exponential order Pe

.= ρ−dK(r) if an ML decoder is used to
decode the K ×K matrix.

Let us assume that the first K symbols has been decoded
independently. Let us now focus on the next K received
symbols yD+K+1, yD+K+2, ..., yD+K+K . These symbols po-
tentially depend on the previous block of K symbols and
it is optimal to decode all of these together. However we
show that a Successive Interference Cancellation (SIC) based
method is DMT optimal as well. After the first block of K
symbols are decoded, its effect will be subtracted out from
the remaining symbols, and then the next block of K symbols
decoded independently. For the third block, the effect of the
first two blocks each of length K will be subtracted out and
the third block decoded independently and so on.

Let us evaluate the probability of error when this SIC based
method is used. Let us find the probability of error for B
blocks after the initial D instants of silence. Let Ei denote
the event that there is an error in any of the first i blocks,
Fi denote the event that there is an error in decoding the i-th
block. Proceeding by induction on the i-th statement P (Ei) =
ρ−dK(r), we get

P (Fi) = P (Fi/Ei−1)P (Ei−1) + P (Fi/Ei−1)P (Ei−1)
≤ P (Ei−1) + P (Fi/Ei−1)
.= ρ−dK(r) + ρ−dK(r)

.= ρ−dK(r)

⇒ P (Ei) = P (
i⋃

j=1

Fj) ≤
i∑

j=1

P (Fj)

.=
i∑

j=1

ρ−dK(r) .= ρ−dK(r)

Therefore, we have that the entire probability of error is of

the exponential order of ρ−dK(r) and the scheme achieves the
optimal DMT of the H matrix.
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