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Abstract—This paper investigates the potential of non-binary
LDPC codes to replace widely used Reed-Solomon (RS) codes
for applications in communication and storage systems for
combating mixed types of noise and interferences. The inves-
tigation begins with presentation of four algebraic constructions
of RS-based non-binary quasi-cyclic (QC)-LDPC codes. Then, the
performances of some codes constructed based on the proposed
methods with iterative decoding are compared with those of RS
codes of the same lengths and rates decoded with the hard-
decision Berlekamp-Massey (BM)-algorithm and the algebraic
soft-decision Kötter-Vardy (KV)-algorithm over both the AWGN
and a Rayleigh fading channels. Comparison shows that the
constructed non-binary QC-LDPC codes significantly outperform
their corresponding RS codes decoded with either the BM-
algorithm or the KV-algorithm. Most impressively, the orders
of decoding computational complexity of the constructed non-
binary QC-LDPC codes decoded with 5 and 50 iterations of a
Fast Fourier Transform based sum-product algorithm are much
smaller than those of their corresponding RS codes decoded with
the KV-algorithm, while achieve 1.5 to 3 dB coding gains. The
comparison shows that well designed non-binary LDPC codes
have a great potential to replace RS codes for some applications in
communication or storage systems, at least before a very efficient
algorithm for decoding RS codes is devised.

I. INTRODUCTION

Although a great deal of research effort has been expended
in study and construction of LDPC codes [1], most of this
research has been focused only on binary LDPC codes, very
little being done in the design and construction of non-binary
LDPC codes. Non-binary LDPC codes were first investigated
by Davey and MacKay in 1998 [2]. In their paper, they also
generalized the sum-product algorithm (SPA) for decoding
binary LDPC codes to decode q-ary LDPC codes. We refer
to this generalized SPA for decoding q-ary LDPC codes as
the q-ary SPA (QSPA). To reduce decoding computational
complexity, Mackay and Davey also devised a Fast Fourier
Transform (FFT) based QSPA, called FFT-QSPA in 2000 [3].
Their work on FFT-QSPA was recently further improved by
Declercq and Fossorier [4].

A q-ary regular LDPC code C is given by the null space
over GF(q) of a sparse parity-check matrix H over GF(q)
that has the following structural properties: 1) each row has
weight ρ; 2) each column has weight γ. We further impose
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the following additional structural property which is enforced
in almost all constructions of LDPC codes: 3) no two rows
(or two columns) have more than one place where they both
have nonzero components. Such a parity-check matrix H is
said to be (γ,ρ)-regular and the code C given by its null space
is called a (γ,ρ)-regular LDPC code. Structural property 3 is a
constraint on the rows and columns of the parity-check matrix
H and is referred to as the row-column (RC)-constraint. This
RC-constraint ensures that the minimum distance of the (γ,ρ)-
regular LDPC code C is at least γ + 1 and its Tanner graph
[5] has a girth of at least 6 [6], [7]. If the columns and/or
rows of H have varying weights, then the null space of H
gives an irregular LDPC code. If H is an array of sparse
circulants over GF(q), then its null space gives a QC-LDPC
code over GF(q) [6]–[8]. Encoding of a QC-LDPC code can
be implemented using simple shift-registers with complexity
linearly proportional to the number of parity-check symbols
of the code [9].

In this paper, we present a general and four specific alge-
braic constructions of RS-based QC-LDPC codes (construc-
tion based on RS codes). Some codes are constructed based
on these methods and their performances over the AWGN and
a Rayleigh fading channel with iterative decoding using the
FFT-QSPA are compared with those of RS codes of the same
lengths and rates decoded with either hard-decision (HD) BM-
algorithm [7], [10], [11] and/or algebraic soft-decision (ASD)
KV-algorithm [12]. Also presented in the paper is a class
of asymptotically optimal erasure-burst correction QC-LDPC
codes.

II. MATRIX DISPERSION OF FIELD ELEMENTS

Consider the Galois field GF(q) with q element where q is
a power of a prime. Let α be a primitive element of GF(q).
Then, the power, α−∞ = 0, α0 = 1, α, . . . , αq−2 give all the
elements of GF(q) and αq−1 = 1. For each nonzero element
αi in GF(q) with 0 ≤ i < q − 1, we form a (q − 1)-tuple
over GF(q), z(αi) = (z0, z1, . . . , zq−2), whose components
correspond to the q− 1 nonzero components of GF(q), where
the ith component zi = αi and all the other components are
equal to zero. This (q − 1)-tuple over GF(q) is called the q-
ary location-vector of the field element αi and has a single
nonzero component. The single nonzero components of the
q-ary location-vectors of two different nonzero elements of



GF(q) are at two different locations. The q-ary location-vector
of the 0-element of GF(q) is defined as the all-zero (q − 1)-
tuple, z(0) = (0, 0, . . . , 0).

Let δ be a nonzero element of GF(q). Then, the q-ary
location-vector z(αδ) of the field element αδ is the right
cyclic-shift (one place to the right) of the location-vector z(δ)
of δ multiplied by α. Form a (q − 1) × (q − 1) matrix A
over GF(q) with the q-ary location-vector of δ, αδ, . . . , αq−2δ
as rows. Matrix A is a special type of circulant permutation
matrix (CPM) over GF(q) for which each row is the right
cyclic-shift of the row above it multiplied by α and the first
row is the right cyclic-shift of the last row multiplied by α.
Such a matrix is called a q-ary α-multiplied CPM. Since
A is obtained by dispersing δ horizontally and vertically,
A is referred to as the two-dimensional (q − 1)-fold matrix
dispersion of δ (simply matrix dispersion of δ). It is clear that
the dispersion of the 0-element is a (q − 1) × (q − 1) zero
matrix. Dispersion of a field element into a binary CPM was
recently introduced in [13], [14].

III. CONSTRUCTION OF NON-BINARY QC-LDPC CODES
BY MATRIX DISPERSION

In this section, we present a general method for constructing
QC-LDPC codes over GF(q). Construction begins with an m×
n matrix over GF(q),

W =




w0

w1

...
wm−1


 =




w0,0 w0,1 · · · w0,n−1

w1,0 w1,1 · · · w1,n−1

...
...

. . .
...

wm−1,0 wm−1,1 · · ·wm−1,n−1


 , (1)

whose rows satisfies the following two constraints: 1) for 0 ≤
i < m, 0 ≤ k, l < q − 1, and k 6= l, αkwi and αlwi differ
in at least n − 1 places; 2) for 0 ≤ i, j < m, i 6= j, and
0 ≤ k, l < q − 1, αkwi and αlwj differ in at least n − 1
places. These two constraints on the rows of W are called the
α-multiplied row-constraints 1 and 2. The α-multiplied row-
constraint 1 implies that each row of W contains at most one
0-component. The α-multiplied row-constraint 2 implies that
any two rows of W differ in at least n− 1 places.

Dispersing each nonzero entry of W into an α-multiplied
(q − 1)× (q − 1) CPM over GF(q) and each 0-entry (if any)
of W into a (q − 1) × (q − 1) zero matrix, we obtain the
following m× n array of α-multiplied (q − 1)× (q − 1) CP
and/or zero matrices over GF(q):

H =




A0,0 A0,1 · · · A0,n−1

A1,0 A1,1 · · · A1,n−1

...
...

. . .
...

Am−1,0 Am−1,1 · · · Am−1,n−1


 . (2)

The array H is an m(q− 1)× n(q− 1) matrix over GF(q). It
follows from the structure of the location-vectors of nonzero
elements in GF(q) and the α-multiplied row-constraints 1 and
2 that H, as a matrix over GF(q), satisfies the RC-constraint.
The array H is called the two dimensional (q − 1)-fold array
dispersion of W (or simply array dispersion of W). We also

call H an RC-constrained array. The matrix W is called the
base matrix for array dispersion.

For any pair (γ,ρ) of integers with 1 ≤ γ ≤ m and 1 ≤ ρ ≤
n, let H(γ, ρ) be a γ × ρ subarray of H. The matrix H(γ, ρ)
is a γ(q − 1)× ρ(q − 1) matrix over GF(q) and also satisfies
the RC-constraint. Then, the null space of H(γ, ρ) over GF(q)
gives a q-ary QC-LDPC code Cqc of length ρ(q− 1) with rate
at least (ρ− γ)/ρ, whose Tanner graph has a girth of at least
6. The above construction gives a class of q-ary QC-LDPC
codes.

In Sections IV and VI, two specific RS-based constructions
of base matrices that satisfy the α-multiplied row-constrained
1 and 2 will be presented. These base matrices are then
dispersed into RC-constrained arrays of α-multiplied CPMs
over GF(q) for constructing q-ary QC-LDPC codes.

IV. CONSTRUCTION OF Q-ARY QC-LDPC CODES BY
DISPERSING A UNIVERSAL RS PARITY-CHECK MATRIX

Consider the Galois field GF(q). Let m be the largest prime
factor of q− 1 and q− 1 = cm. Let α be a primitive element
of GF(q) and β = αc. Then, β is an element of GF(q) of
order m, i.e., m is the smallest integer such that βm = 1. The
set Gm = {1, β, β2, . . . , βm−1} form a cyclic subgroup of the
multiplicative group Gq−1 = {1, α, . . . , αq−2} of GF(q). Form
the following m×m matrix over GF(q):

W(1) =




w0

w1

w2

...
wm−1




=




1 1 1 · · · 1
1 β β2 · · · βm−1

1 β2 (β2)2 · · · (β2)m−1

...
...

...
. . .

...
1 βm−1 (βm−1)2 · · · (βm−1)m−1




,

(3)
where the power of β is taken modulo m. For any 1 ≤ t ≤ m,
any t consecutive rows of W(1) form a parity-check matrix of
a cyclic (m,m− t,t + 1) RS code over GF(q) [7], [10], [15],
including the end-around case. Its generator polynomial has t
consecutive powers of β as roots. If q − 1 is a prime, then
m = q − 1 and β = α, a primitive element of GF(q). In this
case, the RS code is a primitive RS code [7]. If q − 1 is not
a prime, the RS code is a non-primitive RS code. Since m
is a prime, we can easily prove that W(1) has the following
structural properties: 1) except for the first row, all the entries
in a row are different and the they form all the m elements
of the cyclic subgroup Gm; 2) except for the first column, all
the entries in a column are different and they form all the m
elements of Gm; 3) any two rows have only the first entries
that are identical (equal to 1) and they differ in all the other
m−1 positions; 4) any two columns have only the first entries
that are identical (equal to 1) and they differ in all the other
positions.

Based on the structure of W(1), we can prove that the matrix
W(1) given by (3) satisfies the α-multiplied row constraints
1 and 2. Hence, W(1) can be used as a base matrix for array
dispersion. The dispersion of W(1) results in the following
RC-constrained m×m array of α-multiplied (q−1)× (q−1)



CPMs over GF(q):

H(1) = [Ai,j ]0≤i<m,0≤j<m . (4)

Since all the entries of W(1) are nonzero, H(1) contains no
zero matrix. The matrix H(1) is an m(q−1)×m(q−1) matrix
with both column and row weights m.

For any pair (γ,ρ) of integers with 1 ≤ γ, ρ ≤ m, let
H(1)(γ, ρ) be a γ×ρ subarray of H(1). The matrix H(1)(γ, ρ)
is a γ(q − 1)× ρ(q − 1) matrix over GF(q) with column and
row weights γ and ρ, respectively. The null space over GF(q)
of H(1)(γ, ρ) gives a q-ary QC-LDPC codes C(1)

qc . The above
construction gives a class of q-ary RS-based QC-LDPC codes.

In the following, an example is given to illustrate the above
construction of q-ary QC-LDPC codes based on an RS-based
and RC-constrained array of α-multiplied CPMs over GF(q).
In this example and other examples given in the rest of this
paper, we set q as a power of 2, say q = 2s. In decoding,
we use the FFT-QSPA [4] with 50 (or 5) iterations. The
number of computations required per iteration of the FFT-
QSPA in decoding a q-ary regular LDPC code is in the
order of Jρq log q [4], denoted O(Jρq log q), where J and
ρ are the number and weight of the rows of the parity-check
matrix of the code, respectively. For a constructed code, we
compute its error performance over the AWGN channel using
BPSK signaling, and compare its word error performance
with that of a (shortened) RS code of the same length and
rate decoded with the HD BM-algorithm and the ASD KV-
algorithm. The ASD KV-algorithm for decoding an RS code
consists of three steps: multiplicity assignment, interpolation,
and factorization [12]. The major computational complexity
(70%) to carry out the ASD KV-algorithm comes from the
interpolation step and is O(bλc4N2) [16], [17] where N is
the length of the code and λ is a complexity parameter [16]
that is determined by the interpolation cost of the multiplicity
matrix constructed at the multiplicity assignment step. As λ
increases, the performance of the KV-algorithm improves and
the computational complexity also increases. As λ approaches
∞, the performance of the KV-algorithm reaches its limit. A
typical value λ used for performance computation is 4.99 [16],
[17].

Example 1. Let (31,2,30) RS code over GF(25) be the base
code for code construction. The largest prime factor m of
25 − 1 = 31 is 31. Let α be a primitive element of GF(25).
Then, c = 1 and β = α. Based on (3) and (4), we can
construct a 31× 31 RC-constrained array H(1) of 31× 31 α-
multiplied CPMs over GF(25). Set γ = 4 and ρ = 28. Choose
a 4× 28 subarray H(1)(4, 8) of H(1). The matrix H(1)(4, 28)
is a 124 × 868 matrix over GF(25) with column and row
weights 4 and 28, respectively. The null space of H(1)(4, 28)
gives a 32-ary RS-based (868,747) QC-LDPC code with rate
0.8606. The symbol and block error performances of this
code decoded with iterative decoding using the FFT-QSPA
using 50 iterations are shown in Figure 1 which also includes
the block error performances of the (868,747,122) shortened
RS code over GF(210) decoded with the HD BM- and ASD
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Fig. 1. Error performances of the 32-ary RS-based (868,747) QC-LDPC code
and the (868,747,122) shortened RS code over GF(210) given in Example 1.

KV-algorithms, respectively. At the WER (word-error-rate) of
10−5, the 32-ary (868,747) QC-LDPC code achieves a 1.83
dB coding gain over the (868,747,122) shortened RS code
over GF(210) decoded with the BM-algorithm, while achieves
a 1.56 dB and a 1.31 dB coding gains over the shortened
RS code decoded using the KV-algorithm with interpolation
complexity coefficients 4.99 and infinity, respectively. Also
included in Figure 1 is the performance of the 32-ary (868,747)
QC-LDPC code with 5 iterations of the FFT-QSPA. We see
that even with 5 iterations of FFT-QSPA, the 32-ary (868,747)
QC-LDPC code achieves a 1.3 dB and a 1 dB coding gains
over the (868,747,122) shortened RS code decoded using the
ASD KV-algorithm with interpolation complexity coefficients
4.99 and infinity, respectively.

The number of computations required to decode the 32-
ary RS-based (868,747) QC-LDPC code per iteration of FFT-
QSPA is in the order of 124 × 28 × 32 × 5 = 555, 520.
Therefore, with 5 and 50 iterations of the FFT-QSPA, the num-
bers of computations required to decode the 32-ary RS-based
(868,747) QC-LDPC code are in the orders of 2, 777, 600
and 27, 776, 000, respectively. However, the number of com-
putations required to carry out the interpolation step of the
KV-algorithm with interpolation complexity coefficient 4.99 in
decoding the (868,747,122) shortened RS code over GF(210)
is 192, 876, 544 which is much larger than 2, 777, 600 and
27, 776, 000 required to decode the 32-ary RS-based (868,747)
QC-LDPC code with 5 and 50 iterations of the FFT-QSPA,
respectively. 44

V. ARRAY MASKING

In Section IV, we have presented a class of RS-based RC-
constrained arrays of α-multiplied CPMs over finite fields for
constructing nonbinary QC-LDPC codes. Although, arrays in
this class are highly structured, their constituent CPMs are
densely packed. In this section, we present a technique to
reduce the density of α-multiplied CPMs of an RC-constrained



array. The reduction of the density of α-multiplied CPMs of an
array results in a sparser array whose associated Tanner graph
has fewer edges and hence fewer short cycles and probably a
larger girth. As a result, the performance of the code given by
the sparser array can be improved and decoding computational
complexity can be reduced.

Let H(γ, ρ) = [Ai,j ] be a γ × ρ subarray of an RC-
constrained (q − 1)× (q − 1) array H of α-multiplied CPMs
over GF(q). Masking H(γ, ρ) is simply to replace a set of
α-multiplied CPMs by a set of zero matrices. The masking
operation can be mathematically formulated as a special matrix
product. Let Z(γ, ρ) = [zi,j ] be a γ × ρ matrix over GF(2).
Define the following product: M(γ, ρ) = Z(γ, ρ)⊗H(γ, ρ) =
[zi,jAi,j ], where zi,jAi,j = Ai,j for zi,j = 1 and zi,jAi,j =
O (a (q−1)× (q−1) zero matrix) for zi,j = 0. In this matrix
product operation, a set of α-multiplied CPMs is masked by
the 0-entries of Z(γ, ρ). We call Z(γ, ρ) the masking matrix,
H(γ, ρ) the base array, and M(γ, ρ) the masked array. The
distribution of the α-multiplied CPMs in the masked array
M(γ, ρ) is identical to the distribution of 1-entries in the
masking matrix Z(γ, ρ). Since the base array H(γ, ρ) satisfies
the RC-constraint, it is clear that the masked array M(γ, ρ)
also satisfies the RC-constraint, regardless of the masking
matrix. Hence, the associated Tanner graph of M(γ, ρ) has a
girth of at least 6. If the girth of the associated Tanner graph
of the masking matrix Z(γ, ρ) has a girth σ > 6, the girth of
the associated Tanner graph of the masked array M(γ, ρ) is
at least σ. The concept of masking was recently introduced in
[14], [18] for constructing binary LDPC codes.

The null space of M(γ, ρ) over GF(q) gives a q-ary QC-
LDPC code Cmas,qc which is different from the code given by
the null space of the base array H(γ, ρ). The error performance
of Cmas,qc depends on the distribution of 1-entries of the
masking matrix Z(γ, ρ). How to design masking matrices
that result in good QC-LDPC codes is an interesting and
challenging problem. Masking matrices can be constructed by
computer search or algebraically [14], [18]. A special type
of masking matrices is the circular type. A circular masking
matrix consists of a row of k (k ≥ 1) sparse circulants over
GF(2) in the following form: Z(γ, kγ) = [G0 G1 · · ·Gk−1],
where for 0 ≤ j < k, Gj is a γ×γ circulant with both column
and row weights wj . If w1 = w2 = · · · = wk = w, Z(γ, kγ)
is a regular masking matrix with column and row weights
w and kw, respectively. Otherwise, Z(γ, kγ) is irregular
and has multiple column weights and constant row weight
w1 + w2 + · · · + wk. A γ-tuple g over GF(2) is said to be
primitive if g and its γ − 1 cyclic-shifts are all different. For
0 ≤ j < k, each circulant Gj is formed by a primitive γ-
tuple gj over GF(2) with weight wj as the first row (or first
column) and its γ − 1 right cyclic-shifts (or downward cyclic
shifts) as the other γ − 1 rows (or other γ − 1 columns). The
primitive γ-tuple gj over GF(2) is called the generator of
jth circulant Gj . In computer search, it is desired to find k
generators such that the Tanner graph of Z(γ, kγ) has a girth
as large as possible and the number of short cycles is as small
as possible.

Example 2. Consider the 31× 31 array H(1) of α-multiplied
31×31 CPMs constructed in Example 1 based on the universal
RS parity-check matrix over GF(25). Suppose we choose
γ = 14 and ρ = 28. Take a 14×28 subarray H(1)(14, 28) from
H(1). Construct a 14× 28 circular masking matrix Z(14, 28)
that consists of two 14× 14 circulants, G1 and G2, in a row,
each having both column and row weights 3. By computer
search, we find two primitive generators of the two circulants
in Z(14, 28), which are g1 = (00001000010001) and g2 =
(00001010000100), respectively. Masking H(1)(14, 28) with
Z(14, 28), we obtain a 14× 28 masked array M(1)(14, 28) =
Z(14, 28) ⊗ H(1)(14, 28) which is a 434 × 868 matrix over
GF(25) with column and row weights 3 and 6, respectively.
The null space of M(1)(14, 28) gives a 32-ary (868,434)
QC-LDPC code with rate 0.5. The bit, symbol, and word
error performances of this code over the AWGN channel
with iterative decoding using the FFT-QSPA (50 iterations)
are shown in Figure 2 which also includes the word error
performances of the (868,434,435) shortened RS code over
GF(210) decoded with the HD BM-algorithm and the ASD
KV-algorithm with interpolation complexity coefficients 4.99
and infinity, respectively. At the WER of 10−5, the 32-ary
(868,434) QC-LDPC code achieves a 3.98 dB coding gain
over the (868,434,435) shortened RS code decoded with HD
BM-algorithm, while achieves a 3.39 and a 2.90 dB coding
gains over the shortened RS code decoded using the ASD KV-
algorithm with interpolation complexity coefficients 4.99 and
infinity, respectively. The word error performance of the 32-
ary (868,434) QC-LDPC code decoded with 10 iterations of
the FFT-QSPA is also included in Figure 2. We see that even
with 10 iterations, the 32-ary (868,434) achieves a 3.03 dB
coding gain over the shortened RS code decoded using the
ASD KV-algorithm with interpolation complexity coefficient
4.99.

The numbers of computations required to decode the 32-
ary (868,434) QC-LDPC code with the FFT-QSPA using
10 and 50 iterations are in the orders of 4, 166, 400 and
20, 832, 000, respectively. However, the required number of
computations to carry out the interpolation step of the KV-
algorithm with interpolation complexity coefficient 4.99 in
decoding the (868,434,435) shortened RS code is in the order
of 192, 876, 544 which is much larger than 4, 166, 400 and
20, 832, 000, the orders of numbers of computations required
to decode the 32-ary (868,434) QC-LDPC code using the FFT-
QSPA with 10 and 50 iterations, respectively. 44
VI. CONSTRUCTION OF Q-ARY QC-LDPC CODES BASED

ON RS CODES WITH TWO INFORMATION SYMBOLS

Consider a (q − 1,2,q − 2) RS code Cb over GF(q) with
two information symbols. Let α be a primitive element of
GF(q). The generator polynomial of this RS code Cb has
α, α2, . . . , αq−3 as roots. This RS code has two nonzero
weights, q − 1 and q − 2. Therefore, the minimum weight
of this code is q − 2. There are (q − 1)2 code words of
weight q − 2. It can be easily proved that (1, 1, . . . , 1) and
(α0, α, α2, . . . , αq−2) are two linearly independent code words
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Fig. 2. Error performances of the 32-ary (868,434) QC-LDPC code and the
(868,434,435) shortened RS code given in Example 2.

of weight q−1 in Cb. Then, w0 = (α0−1, α−1, . . . , αq−2−1)
is a minimum weight code word in Cb whose first component
is equal to 0 and all the other q− 2 components are nonzero.
Form the following (q−1)× (q−1) matrix W(2) over GF(q)
with w0 and its right cyclic-shifts w1, . . . ,wq−2 as rows:

W(2) =




w0

w1

...
wq−2


 =




α0 − 1 α− 1 · · · αq−2 − 1
αq−2 − 1 α0 − 1 · · · αq−3 − 1

...
...

. . .
...

α− 1 α2 − 1 · · · α0 − 1


 . (5)

The matrix W(2) has the following structural properties: 1)
any two rows (or two columns) differ in all positions; 2) all
the q − 1 elements in each row (or each column) are distinct
elements in GF(q); 3) each row (or each column) contains one
and only one 0-element; 4) all the 0-elements lie on the main
diagonal of W(2). Note that the rows of W(2) are minimum
weight codewords of the (q − 1,2,q − 2) RS-based code Cb.
It can be easily proved that W(2) satisfies the α-multiplied
row-constraints 1 and 2.

The two-dimensional (q−1)-fold array dispersion of matrix
W(2) given by (5) results in the following RC-constrained
(q − 1)× (q − 1) array of α-multiplied (q − 1)× (q − 1) CP
and zero matrices over GF(q):

H(2) =




O A0,1 · · · A0,q−2

A0,q−2 O · · · A0,q−3

...
...

. . .
...

A0,1 A0,2 · · · O


 , (6)

Note that the zero submatrices of H(2) lie on the main diagonal
of H(2). Each row of submatrices of H(2) is a right cyclic-shift
of the row above it and the first row is the right cyclic-shift of
the last row. The matrix H(2) is a (q − 1)2 × (q − 1)2 matrix
over GF(q) with both column and row weights q−2 for which
each row corresponds to a minimum weight code word of the
RS code Cb.

For any pair (γ,ρ) of integers with 1 ≤ γ, ρ ≤ q − 1, let
H(2)(γ, ρ) be a γ × ρ subarray of H(2). Then, H(2)(γ, ρ) is
γ(q − 1) × ρ(q − 1) matrix over GF(q). The null space over
GF(q) of H(2)(γ, ρ) gives a q-ary regular RS-based QC-LDPC
code C(2)

qc of length ρ(q−1) with rate at least (ρ−γ)/ρ, whose
Tanner graph has a girth of at least 6. For a given (q−1,2,q−2)
RS code over GF(q), a family of structurally compatible q-ary
RS-based QC-LDPC codes of various lengths and rates can
be constructed.

Example 3. Let the (63,2,62) RS code over GF(26) be the
base code for code construction. Based on Cb, (5), (6), and
using array dispersion, we can construct a 63 × 63 RC-
constrained array H(2) of α-multiplied 63 × 63 CPMs over
GF(26). Choose γ = 8 and ρ = 16. Take an 8 × 16
subarray H(2)(8, 16) from H(2), avoiding zero matrices. We
use H(2)(8, 16) as the base array for masking. Construct an
8 × 16 circular masking matrix Z(8, 16) that consists of two
8 × 8 circulants, G0 and G1, in a row, each having both
column and row weights 3. By computer search, we find two
primitive generators of the two circulants in Z(8, 16), which
are g1 = (01011000) and g2 = (00101010), respectively.
Masking H(2)(8, 16) with Z(8, 16), we obtain an 8 × 16
masked array M(2)(8, 16) = Z(8, 16)⊗H(2)(8, 16) which is a
504×1008 matrix over GF(26) with column and row weights 3
and 6, respectively. The null space of M(2)(8, 16) gives a 64-
ary (1008,504) QC-LDPC code over GF(26) with rate 0.5. The
bit, symbol, and word error performances of this code over the
AWGN channel with iterative decoding using the FFT-QSPA
(5 and 50 iterations) are shown in Figure 3, which also includes
the word error performances of the (1008,504,505) shortened
RS code over GF(210) decoded with the HD BM-algorithm
and the ASD KV-algorithm with interpolation complexity
coefficients 4.99 and ∞, respectively. At a WER of 10−5,
the 64-ary (1008,504) QC-LDPC code achieves a 4 dB coding
gain over the (1008,504,505) shortened RS code decoded with
the HD BM-algorithm, while achieves a 3.3 dB and a 2.8
dB coding gains over the shortened RS code decoded with
the ASD KV-algorithm. With 5 iterations of FFT-QSPA, the
64-ary (1008,504) code has a 2.3 dB coding gain over the
(1008,504,505) shortened RS code decoded using the ASD
KV-algorithm with interpolation complexity coefficient 4.99.

The numbers of computations required in decoding the 64-
ary (1008,504) QC-LDPC code with 5 and 50 iterations of
the FFT-QSPA are 5, 806, 080 and 58, 060, 800, respectively.
However, for decoding the (1008,504,505) shortened RS code
over GF(210) using the ASD KV-algorithm with interpolation
coefficient 4.99, the number of computations required to carry
out the interpolation step is in the order of 260, 112, 384! 44
Example 4. In this example, we construct a high rate code
based on the 63 × 63 array of α-multiplied 63 × 63 CPMs
constructed in Example 3. Choose γ = 4 and ρ = 32. Take a
4× 32 subarray H(2)(4, 32) from H(2) that does not contain
zero submatrices on the main diagonal of H(2). The array
H(2)(4, 32) is a 252× 2016 matrix over GF(26) with column
and row weights 4 and 32, respectively. The null space over
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64−ary LDPC(1008,504)−SPA50, BER
64−ary LDPC(1008,504)−SPA50, SER
64−ary LDPC(1008,504)−SPA50, WER
64−ary LDPC(1008,504)−SPA5, WER

RS(1008,504,505) over GF(210), BM, WER
RS(1008,504,505) over GF(210), KV (λ=4.99), WER

RS(1008,504,505) over GF(210), KV (λ=∞), WER
Uncoded BPSK, BER

Fig. 3. Error performances of the 64-ary (1008,504) QC-LDPC code and
the (1008,504,505) shortened RS code given in Example 3.

GF(26) of H(2)(4, 8) gives a 64-ary (2016,1779) QC-LDPC
code with rate 0.8824. The bit, symbol, and word error perfor-
mances of this code decoded with the FFT-QSPA are shown in
Figure 4 which also includes the bit, symbol, and word error
performances of the (2016,1779,238) shortened RS code over
GF(211) decoded with the HD BM-algorithm. At the SER of
10−6 (or WER of 10−5), the 64-ary (2016,1779) QC-LDPC
code achieves a 2 dB coding gain over the (2016,1779,238)
shortened RS code over GF(211).

The performance of the (2016,1779,238) shortened RS code
over GF(211) with the ASD KV-algorithm is not available
because the number of computations required to carry out the
interpolation step of the KV-algorithm is simply too large,
1, 040, 449, 536. The numbers of computations required for
10 and 50 iterations in decoding the 64-ary (2016,1779)
QC-LDPC codes with the FFT-QSPA are in the orders of
30, 965, 760 and 154, 828, 800, respectively, which are much
smaller than 1, 040, 449, 536. 44

VII. CONSTRUCTION BY ARRAY DISPERSION

A subarray of an RC-constrained array H of α-multiplied
CPMs constructed in the previous sections (either H(1) given
by (4) or H(2) given by (6)) can be dispersed into a larger array
with a lower density to construct new q-ary QC-LDPC codes.
In this section, we present an array dispersion technique to
construct a large class of q-ary QC-LDPC. Codes constructed
by this array dispersion technique not only perform well over
the AWGN channel and some fading channels but also have
good erasure-burst correction capabilities.

For 3 ≤ t < q and 1 ≤ k, let H(t, kt) be a t×kt subarray of
the RC-constrained array H of α-multiplied (q− 1)× (q− 1)
CPMs over GF(q) constructed in Section VI. Since H is a
(q − 1) × (q − 1) array and H(t, kt) is a subarray of H, the
parameters k and t must satisfy the constraint kt ≤ q− 1. We
assume that H(t, kt) does not contain any zero matrix. Divide
H(t, kt) into k t×t subarrays, H1(t, t),H2(t, t), . . . ,Hk(t, t),
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64−ary LDPC(2016,1779)−SPA50, BER
64−ary LDPC(2016,1779)−SPA50, SER
64−ary LDPC(2016,1779)−SPA50, WER
64−ary LDPC(2016,1779)−SPA10, WER

RS(2016,1779,238) over GF(211), BM, BER

RS(2016,1779,238) over GF(211), BM, SER

RS(2016,1779,238) over GF(211), BM, WER
Uncoded BPSK, BER

Fig. 4. Error performances of the 64-ary (2016,1779) QC-LDPC code and
the (2016,1779,238) shortened RS code given in Example 4.

such that

H(t, kt) = [H1(t, t) H2(t, t) . . . Hk(t, t)] , (7)

where for 1 ≤ j ≤ k, the jth t × t subarray Hj(t, t) is
expressed in the following form:

Hj(t, t) =




A(j)
0,0 A(j)

0,1 · · · A(j)
0,t−1

A(j)
1,0 A(j)

1,1 · · · A(j)
1,t−1

...
...

. . .
...

A(j)
t−1,0 A(j)

t−1,1 · · · A(j)
t−1,t−1




, (8)

where each A(j)
i,l with 0 ≤ i, l < t is an α-multiplied (q −

1)×(q−1) CPM over GF(q). Since H(t, kt) satisfies the RC-
constraint, each subarray Hj(t, t) of H(t, kt) also satisfies the
RC-constraint.

Cut Hj(t, t) into two triangles, upper and lower triangles,
along its main diagonal, where the lower triangle contains the
α-multiplied CPMs on the main diagonal of Hj(t, t). Form
two t × t arrays of α-multiplied CP and zero matrices as
follows:

Hj,U (t, t) =




O A(j)
0,1 A(j)

0,2 · · · A(j)
0,t−1

O O A(j)
1,2 · · · A(j)

1,t−1
...

...
...

. . .
...

O O O · · · A(j)
t−2,t−1

O O O · · · O




, (9)

and

Hj,L(t, t) =




A(j)
0,0 O O · · · O

A(j)
1,0 A(j)

1,1 O · · · O
...

...
...

. . .
...

A(j)
t−2,0 A(j)

t−2,1 A(j)
t−2,2 · · · O

A(j)
t−1,0 A(j)

t−1,1 A(j)
t−1,2 · · ·A(j)

t−1,t−1




, (10)



where O is a (q − 1) × (q − 1) zero matrix. From (9), we
see that the upper triangle of the t× t array Hj,U (t, t) above
the main diagonal line is identical to the upper triangle of
Hj(t, t) above the main diagonal line, and the rest of the
submatrices in Hj,U (t, t) are zero matrices. From (10), we see
that the lower triangle of Hj,L(t, t) including the submatrices
on the main diagonal line is identical to that of Hj(t, t),
and the submatrices above the main diagonal line are zero
matrices. Since Hj(t, t) satisfies the RC-constraint, it is clear
that Hj,U (t, t) and Hj,L(t, t) also satisfy the RC-constraint.

For 1 ≤ j ≤ k and 2 ≤ l, we form the following l× l array
of t× t subarrays:

Hj,l-f,disp(lt, lt) =


Hj,L(t, t) O O · · · O Hj,U (t, t)
Hj,U (t, t) Hj,L(t, t) O · · · O O

O Hj,U (t, t) Hj,L(t, t) · · · O O
...

...
...

. . .
...

...
O O O · · ·Hj,U (t, t) Hj,L(t, t)




,

(11)
where O is a t × t array of (q − 1) × (q − 1) zero matrices.
From (11), we see that each row of Hj,l-f,disp(lt, lt) is a right
cyclic-shift of the row above it and the first row is the right
cyclic-shift of the last row. Also, the t×t subarrays, Hj,L(t, t)
and Hj,U (t, t), in Hj,l-f,disp(lt, lt) are separated by a span of
l − 2 t × t zero subarrays, including the end-around case,
with Hj,L(t, t) as the starting subarray and Hj,U (t, t) as the
ending subarray. From (9), (10), and (11), we readily see that
all the α-multiplied CPMs in each row (or each column) of
Hj,l-f,disp(lt, lt) together form the jth subarray Hj(t, t) of the
t×kt array H(t, kt) given by (8). The array Hj,l-f,disp(lt, lt)
is called the l-fold array dispersion of Hj(t, t), where the sub-
scripts, “l-f” and “disp” of Hj,l-f,disp(lt, lt) stand for “l-fold”
and “dispersion”, respectively. The array Hj,l-f,disp(lt, lt)
is an lt(q − 1) × lt(q − 1) matrix over GF(q) with both
column and row weights t. Since Hj(t, t) satisfies the RC-
constraint, it follows from (11) that the l-fold array dispersion
Hj,l-f,disp(lt, lt) of Hj(t, t) also satisfies the RC-constraint.
Since any two subarrays in H(t, kt) given by (7) jointly satisfy
the RC-constraint, their corresponding l-fold array dispersions
jointly satisfy the RC-constraint.

Now, we view Hj,l-f,disp(lt, lt) as an lt × lt array of α-
multiplied (q − 1) × (q − 1) CP and zero matrices. From
the structures of Hj,U (t, t), Hj,L(t, t) and Hj,l-f,disp(lt, lt)
given by (9), (10), and (11), respectively, we readily see
that each row of Hj,l-f,disp(lt, lt) contains a single span of
(l − 1)t zero matrices of size (q − 1) × (q − 1) between
two α-multiplied CPMs, including the end-around case. For
0 ≤ s < t, replacing the s α-multiplied CPMs right after the
single span of zero matrices by s zero matrices, we obtain a
new lt × lt array Hj,l-f,disp,s(lt, lt) of α-multiplied CP and
zero matrices. The array Hj,l-f,disp,s(lt, lt) is called the s-
masked and l-fold array dispersion of Hj(t, t). Each row of
Hj,l-f,disp,s(lt, lt) contains a single span of (l− 1)t + s zero
matrices of size (q − 1)× (q − 1).

Replacing each t × t subarray in the t × kt array H(t, kt)

of (7) by its s-masked l-fold array dispersion, we obtain the
following lt× klt array of α-multiplied (q− 1)× (q− 1) CP
and zero matrices over GF(q):

Hl-f,disp,s(lt, lkt) =
[H1,l-f,disp,s(lt, lt) H2,l-f,disp,s(lt, lt) · · ·Hk,l-f,disp,s(lt, lt)] .

(12)
Hl-f,disp,s(lt, klt) is referred to as the s-masked and l-fold
dispersion of the array H(t, kt) given by (7). As an lt × klt
array of α-multiplied CP and zero matrices, each row of
Hl-f,disp,s(lt, klt) contains k spans of zero matrices, each
consisting of (l−1)t+s zero matrices of size (q−1)×(q−1),
including the end-around case. The array Hl-f,disp,s(lt, klt) is
an lt(q− 1)× klt(q− 1) matrix over GF(q) with column and
row weights, t − s and k(t − s), respectively. It satisfies the
RC-constraint.

The null space over GF(q) of Hl-f,disp,s(lt, klt) gives a (t−
s,k(t− s))-regular q-ary QC-LDPC code Cl-f,disp,s of length
klt(q − 1) with rate at least (k − 1)/k, whose Tanner graph
has a girth of at least 6. The above construction by multi-fold
array dispersion gives a large class of non-binary QC-LDPC
codes. This multi-fold array dispersion allows us to construct
long codes of various rates from small non-binary fields. There
are five degrees of freedoms in code construction, namely q,
k, l, s, and t. The parameters k and t are limited by q, i.e.,
kt ≤ q−1. To avoid column weight of Hl-f,disp,s(kt, klt) less
than 3, we need to choose s such that t − s ≥ 3. However,
there is no limitation on l. Therefore, for given q, k, s, and t,
we can construct very long codes over the same field GF(q) by
varying l. This means that we can construct long QC-LDPC
codes over small non-binary fields.

Example 5. Based on the (63,2,62) RS code over GF(26),
(5), and (6), we first construct a 63 × 63 array H(2) of α-
multiplied 63 × 63 CPMs. Set k = 2, l = 3, k = 5, and
s = 1. Take a 5×10 subarray H(2)(5, 10) from H(2) (avoiding
zero matrices on the main diagonal of H(2)). The 1-masked
and 3-fold array dispersion of H(2)(5, 10) gives a 15 × 30
array H(2)

3-f,disp,1(15, 30) of α-multiplied 63 × 63 CP and
zero matrices over GF(26). It is a 945 × 1890 matrix over
GF(26) with column and row weights 4 and 8, respectively.
The null space over GF(26) of this matrix gives a 64-ary
(4,8)-regular (1890,946) QC-LDPC code with rate 0.5005.
The bit, symbol, and word error performances of the 64-ary
(1890,946) QC-LDPC code decoded using the FFT-QSPA with
50 iterations are shown in Figure 5, which also include the
word error performance of the (1890,946,945) shortened RS
code over GF(211). At the WER of 10−4, the (1890,946,945)
shortened RS code decoded with the FFT-QSPA achieves a 3.1
dB gain over the (1890,946,945) shortened RS code decoded
with the HD BM-algorithm, while achieves a 2.5 dB and a 2
dB coding gains over the shortened RS code decoded using
the KV-algorithm with interpolation complexity coefficients
4.99 and infinity. Also included in Figure 5 is the word
error performance of the 64-ary (1890,946) QC-LDPC code
with 5 iterations of the FFT-QSPA. We see that, even with
5 iterations, the 64-ary (1890,946) QC-LDPC code achieves
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64−ary LDPC(1890,946)−SPA50, BER
64−ary LDPC(1890,946)−SPA50, SER
64−ary LDPC(1890,946)−SPA50, WER
64−ary LDPC(1890,946)−SPA5, WER

RS(1890,946,945) over GF(211), BM, WER
RS(1890,946,945) over GF(211), KV (λ=4.99), WER

RS(1890,946,945) over GF(211), KV (λ=∞), WER
Uncoded BPSK, BER

Fig. 5. Error performances of the 64-ary (1890,946) QC-LDPC code
decoded with the FFT-QSPA and the word error performances of the
(1890,946,945) shortened RS code decoded with the BM- and KV-algorithms
given in Example 5.

a 2 dB coding gain over its corresponding shortened RS
code decoded using the ASD KV-algorithm with interpolation
complexity coefficient 4.99.

The numbers of computations required in decoding the
64-ary (1890,946) QC-LDPC code with the FFT-QSPA us-
ing 5 and 50 iterations are in the orders of 14, 515, 200
and 145, 152, 000, respectively. However, decoding the
(1890,956,945) shortened RS code with the KV-algorithm, the
number of computations required to carry out the interpolation
step is in the order of 914, 457, 600! 44

VIII. APPLICATIONS TO FADING CHANNELS

Some communication environments are characterized by
multipath channels. A multipath channel has more than one
path from the transmitter to the receiver. Such multiple paths
may be caused by atmospheric reflection or refraction, frac-
tions from buildings or other obstacles. Signal components
arriving via different paths may add destructively, resulting
in a phenomenon called fading. A typical communication
environment characterized by a multipath fading channel is
a wireless communication system. Rayleigh fading is widely
used for modeling a wireless channel. In [19]–[21], binary
LDPC codes have been shown to perform well over Rayleigh
fading channels with BPSK signaling.

In following, we use some q-ary QC-LDPC codes con-
structed in early sections to show that they perform well over
a correlated fading channel. There are different approaches
to modeling a correlated fading channel. In our performance
computation, we use an improved Jakes’ channel model pro-
posed in [22]. We apply the codes constructed in Examples
2 and 5 to mobile communications. We assume that the
carrier frequency is 900 MHz and the source rate is 9.6 kb/s.
Three typical speeds are considered: 5 km/h, 60 km/h, and
120 km/h. The Doppler shifts are listed in Table I. We also
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32−ary LDPC(868,434), 5 km/h, SER
32−ary LDPC(868,434), 5 km/h, WER
32−ary LDPC(868,434), 60 km/h, SER
32−ary LDPC(868,434), 60 km/h, WER
32−ary LDPC(868,434), 120 km/h, SER
32−ary LDPC(868,434), 120 km/h, WER

Fig. 6. Error performances of the 32-ary (868,434) QC-LDPC code decoded
with the FFT-QSPA with CSI over the uncorrelated Rayleigh fading channel
(32-QAM) given in Example 1.
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64−ary LDPC(1890,946), 5 km/h, SER
64−ary LDPC(1890,946), 5 km/h, WER
64−ary LDPC(1890,946), 60 km/h, SER
64−ary LDPC(1890,946), 60 km/h, WER
64−ary LDPC(1890,946), 120 km/h, SER
64−ary LDPC(1890,946), 120 km/h, WER

RS(1890,946,945) over GF(212), 5 km/h, SER

RS(1890,946,945) over GF(212), 5 km/h, WER

RS(1890,946,945) over GF(212), 60 km/h, SER

RS(1890,946,945) over GF(212), 60 km/h, WER

RS(1890,946,945) over GF(212), 120 km/h, SER

RS(1890,946,945) over GF(212), 120 km/h, WER

Fig. 7. Error performances of the 64-ary (1890,946) QC-LDPC code
decoded with the FFT-QSPA with CSI over the uncorrelated Rayleigh fading
channel (64-QAM) given in Example 5.

assume perfect channel side information (CSI) at the receiver.
The performances of the 32-ary (868,434) QC-LDPC code
given in Example 2 and the 64-ary (1890,946) QC-LDPC
code given in Example 5 are shown in Figures 6 and 7,
respectively, decoded with the FFT-QSPA with 50 iterations.
Also included in these two figures are the performance of
their corresponding shortened RS codes decoded with the
HD BM-algorithm. We see that two non-binary QC-LDPC
codes significantly outperform their corresponding shortened
RS codes decoded with the HD BM-algorithm. Of course, the
performance improvements are at the expense of much larger
decoding computational complexities.



TABLE I
DOPPLER SHIFTS

Q-ary LDPC Codes Mobile Speed Maximum Doppler Frequency Symbol Duration Normalized Doppler
v (km/h) fD (Hz) Ts (s) fD · Ts

32-ary (868,434) 5 4.170 5.208× 10−5 2.172× 10−4

32-ary (868,434) 60 50.035 5.208× 10−5 2.606× 10−3

32-ary (868,434) 120 100.069 5.208× 10−5 5.212× 10−3

64-ary (1890,946) 5 4.170 5.214× 10−5 2.174× 10−4

64-ary (1890,946) 60 50.035 5.214× 10−5 2.609× 10−3

64-ary (1890,946) 120 100.069 5.214× 10−5 5.217× 10−3

16-ary (960,491) 5 4.170 5.328× 10−5 2.221× 10−4

16-ary (960,491) 60 50.035 5.328× 10−5 2.666× 10−3

16-ary (960,491) 120 100.069 5.328× 10−5 5.331× 10−3

IX. CORRECTION OF BURSTS OF SYMBOL ERASURES

In [13] and [14], binary QC-LDPC codes for correction
of bursts of erasures were constructed in terms of the zero-
covering spans of the parity-check matrices of the codes. If
the length of the zero-covering span of the parity-check matrix
of a binary LDPC is λ, then the code is capable of correcting
any erasure-burst of length up to at least λ + 1 bits.

Based on the structure and length of the spans of zero
matrices in the rows of the array Hl−f,disp,s(lt, lkt) given by
(12), it can be proved that the length λ of the zero-covering-
span of Hl−f,disp,s, as a lt(q − 1) × klt(q − 1) matrix over
GF(q), is lower bounded by [(l−1)t+s](q−1). Consequently,
the q-ary QC-LDPC code Cl-f,disp,s given by the null space
of the lt(q − 1) × klt(q − 1) matrix Hl-f,disp,s(lt, klt) over
GF(q) is capable of correcting any erasure-burst of length up
to [(l − 1)t + s](q − 1) + 1 symbols. Since the row rank
of Hl-f,disp,s(lt, klt) is at most lt(q − 1). The erasure-burst
correction efficiency η (defined as the ratio of the erasure-burst
correction capability of a code to the number of parity-check
symbols of the code) is at least

η ≥ [(l − 1)t + s](q − 1) + 1
lt(q − 1)

,

which is approximately equal to [(l − 1)t + s]/lt for large
q, t, and l. For large l, t, and small t − s, the erasure-burst
correction efficiency η of Cl-f,disp,s is approaching to one.

Consider the 64-ary (1890,946) QC-LDPC code given in
Example 5. Its parity-check matrix has a zero-covering span of
length at least 693 and hence the code is capable of correcting
any erasure-burst of length up to at least 694 symbols. The
burst-erasure correction efficiency of the code is at least 0.735.

Example 6. Suppose we construct a 15× 15 RC-constrained
array H(2) based on the (15,2,14) RS code over GF(24). Set
k = 2, l = 8, s = 0, and t = 4. Take a 4 × 8 subarray
H(2)(4, 8) from H(2). The 0-masked and 8-fold dispersion
of H(2)(4, 8) gives a 32× 64 array H(2)

8-f,disp,0(32, 64) of α-
multiplied 15 × 15 CP and zero matrices. It is a 480 × 960
matrix over GF(24) with column and row weights 4 and 8,
respectively, whose zero-covering span has a length of at least
420. The null space of GF(24) of this matrix gives a 16-
ary (960,491) QC-LDPC code with rate 0.5115. This code
is capable of correcting any erasure-burst of length up to at
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Fig. 8. Error performances of the 16-ary (960,491) QC-LDPC code and the
(960,491,470) shortened RS code over GF(210) given in Example 6.

least 421 symbols. The erasure-burst correction efficiency of
this code is at least 0.8770. This code also performs well over
the AWGN channel and the mobile fading channel specified
by Table 1 as shown in Figures 8 and 9. 44

X. CONCLUSION AND REMARKS

In this paper, we have presented four algebraic methods
for constructing of non-binary RS-based QC-LDPC codes.
Based on these methods, some non-binary QC-LDPC codes
were constructed. Experimental results show that these codes,
decoded with iterative decoding using FFT-QSPA, perform
very well over the AWGN and a correlated fading channels.
They significantly outperform their corresponding shortened
RS codes of the same lengths and rates decoded with either
the BM-algorithm or the KV-algorithm (regardless of the
choice of interpolation complexity coefficient, finite or infi-
nite). Most impressively, the orders of decoding computational
complexities of the constructed non-binary QC-LDPC codes,
decoded with 5 and 50 iterations of the FFT-QPSA, are
much smaller than those of their corresponding shortened RS
codes decoded with the KV-algorithm with finite interpolation
computer complexity coefficient. The comparison shows that
well designed non-binary LDPC codes have a great potential
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Fig. 9. Error performances of the 16-ary (960,491) QC-LDPC code decoded
with the FFT-QSPA with CSI over the uncorrelated Rayleigh fading channel
(16-QAM) given in Example 6.

to replace RS codes for some applications in communication
or storage systems, at least before a very efficient algorithm for
decoding RS codes is devised (a very challenging problem).
The QC-LDPC codes constructed based on array dispersions
given in Section VII not only perform well over the AWGN
and a correlated mobile fading channels but they are also
effective in correcting erasure-bursts.

The study given in this paper is by no means conclusive. It
is simply a preliminary study of the potential of non-binary
LDPC codes for possible replacement of RS codes in some
applications. Further study is definitely needed. Further study
must include error-floor performance and rate of decoding con-
vergence of non-binary LDPC codes and their performances
over other types of channels, such as optical and channels with
jamming. For applications in storage systems, codes of a very
high rate, say 0.937, with a very low bit-error-rat, say 10−15, is
needed. Consequently, error-floor performance of non-binary
LDPC codes is an important subject to be investigated.

Since the non-binary LDPC codes presented in this paper
are quasi-cyclic, they have the same encoding advantage as
the cyclic (or shortened cyclic) RS codes. Encoding can be
implemented using simple shift-registers with linear complex-
ity. Hardware implementation of the FFT-QSPA for decoding
a non-binary QC-LDPC code may not be a hindering problem
with the recent introduction of the new metal chips by Intel
and IBM that can process data at a much faster speed and
consume much less power than the conventional silicon chips.
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