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ABSTRACT
Current data structures for searching large string collec-
tions are limited in that they either fail to achieve mini-
mum space or they cause too many cache misses. In this
paper, we discuss some edge linearizations of the classic
trie data structure that are simultaneously cache-friendly
and storable in compressed space. The widely-known front-
coding scheme [26] is one example of linearization; it is at
the core of Prefix B-trees and many other disk-conscious
compressed indexes for string collections. However, it is
largely thought of as a space-effective heuristic without ef-
ficient search support.

In this paper, we introduce new insights on front-coding
and other novel linearizations, and study how close their
space occupancy is to the information-theoretic minimum.
The moral is that they are not just heuristics. The second
contribution of this paper engineers these linearizations to
design a novel dictionary encoding scheme that achieves
nearly optimal space, offers competitive I/O-search time,
and is also conscious of the query distribution. Finally, we
combine those data structures with cache-oblivious tries [6,
3] and obtain a succinct variant, whose space is close to the
information-theoretic minimum.

1. INTRODUCTION
Many tasks at the core of modern web search, informa-
tion retrieval, and data mining applications boil down to a
sequence of search primitives on huge collections of data,
containing (long) strings of variable length. (See [23, 26,
19] for some examples.) In this setting, compression and
locality of access are key design features for developing ef-
ficient and scalable software tools. As the dataset grows
in size, string queries require more and more levels of the
memory hierarchy. Each level of memory has its own perfor-
mance features, but memory tends to get faster and smaller
as it gets closer to the CPU. Therefore, the main goal in
modern data structure design is to address simultaneously
space succinctness (which fits more data in faster memory)
and cache-friendly queries (which exploits faster memory).
For large string collections, these goals can represent huge
performance improvements.
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The typical choice to store a set of strings is the trie data
structure [17] and its derivatives, which unfortunately can-
not simultaneously guarantee the two issues above. B-tries
and their variations (see e.g. [2, 9, 6, 3] and references
therein) achieve I/O-efficiency but cannot guarantee com-
pressed space occupancy. On the other hand, recent com-
pressed text indexes [22] achieve space succinctness but re-
quire many I/Os. As a result, the problem of basic string
searching in hierarchical memory is open when we need to
optimize both compression and locality of reference.

In this paper, we investigate the string searching problem,
formalized as follows. Let S be a sorted set of K strings
s1, s2, . . . , sK having variable length for a total of N char-
acters, drawn from an arbitrary alphabet Σ = {1, 2, . . . , σ}.
The problem consists of storing S in a compressed format
while supporting fast access and search primitives over its
strings without scanning their compressed encodings en-
tirely at each query. Given a pattern string P [1, p], we
identify the following fundamental queries:

• Member(P ) determines whether P occurs in S.

• Rank(P ) counts the number of strings in S that are
lexicographically smaller than or equal to P .

• Prefix Range(P ) returns all strings in S that are
prefixed by P .

• Select(i) returns si, the ith lexicographically-ranked
string in S.

Other important operations on strings—such as successor,
predecessor, and count—can be expressed as a constant
combination of these queries and will not be dealt with
explicitly here. This is also the case for Member, a sim-
plification of Prefix Range. Notice that we do not need
storage for string pointers or identifiers in S, since string si

can be implicitly and uniquely identified by integer i, its
rank in S. Hereafter, the term string set encoding refers to
storing S in compressed format, and string dictionary en-
coding refers to a compressed and indexed storage of S that
supports the above query operations. The string dictionary
encoding can be seen as generalization to a set of strings of
the fully-indexable dictionary (FID) introduced in [24].

In this paper we address both string set encoding and string
dictionary encoding by revisiting the classic trie data struc-
ture and considering some tree linearizations that are cache-
friendly and storable in compressed space. Informally, a
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linearization of a compacted trie is a sequence of its edge
labels in some predetermined order. A widely known exam-
ple of linearization is front coding (FC), in which the edge
labels of the compacted trie are recorded in preorder. FC

is widely used in practice to solve the string set encoding
problem within the nodes of Prefix B-trees and many other
disk-conscious indexes for string collections [26]. Although
the connection between FC and tries is largely intuitive [17],
we introduce new insights on FC and other linearizations of
compacted tries. Our first contribution (see Section 3) is to

• quantify the difference between the space occupancy of FC
and the information-theoretic minimum number of bits, de-
noted LT, needed to store S. Our analysis leads naturally
to another linearization, called rear coding (RC), which is
a simple variant of FC. Still RC comes much closer to LT

than FC does—in other words, FC and RC are not merely
heuristics.

We then move to the string dictionary encoding problem.
It is known [26] that FC is not searchable as is, but it needs
some bucketing strategy and some extra pointers that in-
crease its space occupancy and query performance. To over-
come these limitations, [3] proposed the locality-preserving
front coding (LPFC), which adaptively partitions the set of
strings into blocks such that decoding any string of S takes
optimal I/Os, but it incurs in a (constant) increase in the
space occupancy of FC. String searching still needs extra
data structures and thus an additional overhead in space
and query time. Compressed linearizations of labeled trees
(and tries) that support powerful string queries [10, 11] do
exist, but unfortunately they do not guarantee locality of
access in querying S.

In this paper, we go one step further in the design of a
compressed string dictionary encoding, by proposing a lin-
earization of the compacted trie that may be annotated
with a small amount of extra bits to support fundamental
string queries. To analyze the performance of our solu-
tions, we will use the cache-oblivious model [12], in which
the computer is abstracted to consist of a processor and
two memory levels: the internal memory of size M and the
(unbounded) disk memory, which operates by reading and
writing data by blocks of size B. These two parameters
are unknown to algorithms, which only know about the ex-
istence of the memory hierarchy: they cannot exploit the
value of M and B in their design parameters, yet these
parameters come into play only during algorithm analysis.
As a consequence, cache-oblivious algorithms originally de-
signed for a two-level memory hierarchy, automatically tune
to hierarchies with many memory levels [12]. Our second
main contribution is

• to design a new trie linearization based on the centroid
path decomposition of the compacted trie for S that sup-
ports I/O-efficient string queries and approaches LT plus
O(1) bits per string in S. This achieves our twofold target
on space compression and cache-oblivious query accesses.
(See Theorem 6 in Section 4.2.) Such a compressed and
searchable dictionary encoding could be used to squeeze
more strings into each node of a Prefix B-tree, thus achiev-
ing a double advantage: i.e. decrease both its height (be-
cause of the increase in the nodes’ fan-out) and routing-time
of string searches (because of its searchability).

• We show that such a linearization has the further posi-
tive feature of efficiently managing a flow of string queries
issued according to a given probability distribution p(x),
where x ∈ S. This flexibility allows us, for instance, to
exploit the access statistics in a server [1]. The search cost
turns out to be proportional to log(1/p(x)), for any x ∈ S,
which is the information content of x. This scenario is very
well known in data structure design [20], and has led many
authors to propose weighted search data structures whose
time complexity depends on the probability distribution of
their queries. All those results known for string dictionar-
ies [7, 18] are neither cache-oblivious nor succinct. Our ap-
proach can be easily adapted to work in this setting, thus
achieving compressed space, cache-oblivious behavior and
distribution-awareness for string queries. (See Lemma 3 in
Section 5.)

Finally, we propose a novel use of LPFC for sampling a suit-
able subset of S, which can be succinctly stored in the cache-
oblivious index of [6]. Combining this result with our string
dictionary encoding, we present

• the first succinct data structure that simultaneously achieves
space close to the information-theoretic minimum and cache-
oblivious search performance (like COSB [3]). The space sav-
ing can be up to a multiplicative factor of Ω(log N). (See
Theorem 8 in Section 6.)

2. KNOWN RESULTS
The string dictionary problem is one of the fundamental
problems in computer science, dating its results back to the
60s when the Patricia Trie data structure [17] was intro-
duced. It goes without saying that hashing is not suitable
for the string dictionary problem because it cannot support
the Prefix Range(P ) query. Trie and their variations [17,
5] are efficient for managing small dictionaries that fit into
internal memory, but fail to provide efficient performance
once the strings spread over multiple memory levels [26].
This failure is the reason why [9] introduced the String B-
tree as a I/O-efficient data structure to manage large dictio-
naries of variable-length strings. The String B-tree requires
optimal O(P/B+logB N) I/Os to search for a pattern P in
S, but needs Ω(N/B) disk pages to store the strings in S,
and Θ(N log σ+K log N) overall bits of storage. Therefore,
the String B-tree is space inefficient and its design depends
on the a priori knowledge of the page size B.

Recently, cache-oblivious tries have been devised [6, 3] that
overcome the problem above by achieving the optimal O(P/B+
logB N) I/Os, without requiring the a priori knowledge
of the page size B. The advantage of these solutions is
that they automatically and optimally tune to hierarchies
with arbitrarily many memory levels [12]. Unfortunately
[6] is static and space inefficient, requiring Ω(N log σ +
K log N) bits. Conversely, the cache-oblivious string B-tree
(COSB) of [3] is dynamic and achieves the improved space
of (1 + ε)|FC(S)| + K log N bits. The novelty of this so-
lution relies on the design of locality-preserving front cod-
ing (LPFC). LPFCis an encoding scheme for a dictionary
of strings that, given a parameter ε, ensures the decoding
of any string s ∈ S takes O((1/Bε)|s|) I/Os and requires
(1 + ε)|FC(S)| bits of space. This adaptive scheme offers a
clear space/time tradeoff in terms of the user-defined pa-
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rameter ε, and its space occupancy depends ultimately on
the effectiveness of the FC-scheme, which we address in Sec-
tion 3.

All those solutions are mainly theoretical in their flavor. In
practice, software developers use (Prefix) B-trees to achieve
I/O-efficiency in the query operations, and the FC-scheme to
succinctly store the strings in the B-tree nodes [26]. The fi-
nal result is efficient in practice, but it is not cache-oblivious
(because it requires empirical tuning of the blocking param-
eter B) and it is not space optimal (because of the limita-
tions of the FC-scheme).

3. STRING SET ENCODINGS
In this section, we first devise a lower bound LT on the bit
complexity of encoding the string set S by drawing inspi-
ration from the structure of its compacted trie TS . Then,
we investigate two linearizations of TS (FCand RC) and com-
pare their bit-space complexity to LT. The lesson we learn
is that FC is not just a heuristic with good practical perfor-
mance, but it is also a suitable string encoding with space
occupancy intimately related to LT. Surprisingly enough,
we take inspiration from FC and LT, and propose another
linearization of TS (called RC) that comes closer to LT and
seems novel. In the following, we assume that no two strings
in S are one prefix of the other.

Let us start with the lower bound LT. Suppose we build
a (uncompacted) trie to represent the strings in S, such
that the ith leaf (equivalently, the ith root-to-leaf path)
in preorder identifies si. This trie can be viewed as a
cardinal tree CS whose edges are labeled with characters
drawn from alphabet Σ. (Recall that σ = |Σ|.) As noted
in [4], the information-theoretic minimum to represent CS

is the logarithm of the number of cardinal trees, namely
log
“

`Eσ+1
E

´

/(Eσ + 1)
”

bits, where E is the number of edges
in CS and log denotes the base 2 logarithm. This can be
bounded by

log

  

Eσ + 1

E

!

/(Eσ + 1)

!

≥ E log σ + E−Θ(log(Eσ)), (1)

and approaches E log σ + E log e−Θ(log(Eσ)) for increasing
values of σ ≥ 2.

Interestingly, eqn.(1) is not a lower bound for storing S
because of the presence of the many unary nodes that arise
when CS is used to represent variable-length strings. In fact,
the trie CS can be compacted so that no unary nodes exist
(except for the root), thus turning edge labels in strings of
variable length. The resulting tree is denoted by TS and
consists of K leaves, k ≤ K internal nodes, t = k + K
nodes overall, and t − 1 ≤ 2K edges. Note that E is equal
to the total length of all edge labels in TS . An example of
a compacted trie is shown in Fig. 1.

To provide a lower bound for the storage complexity of S,
denoted LT(S) (or simply LT), we proceed as follows.

1. Remove from TS all E − t + 1 non-branching char-
acters (if any) from its t − 1 edges. Those charac-
ters can be arbitrarily chosen from alphabet Σ and
freely distributed among the edges, without chang-
ing TS ’s structure. Storing these characters needs
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Figure 1: String set S = {acaat, acacg, acata, ctataata,

ctatag, ctatatac, ctatgt}, and its compacted trie TS . Its

encodings FC(S) = 〈0, acaat, 3, cg, 3, ta, 0, ctaaata, 5, g,

5, tac, 4, gt〉 and RC(S) = 〈0, acaat, 2, cg, 2, ta, 5, ctaaata,

3, g, 1, tac, 4, gt〉, obtained by traversing TS in preorder.

(E − t + 1) log σ + log
` E

t−1

´

bits,1 because the first

term reflects the cost of storing those (E− t+1) char-
acters, whereas the latter term accounts for encoding
the possible ways of partitioning those non-branching
characters among the t− 1 edges of TS (possibly with
empty partitions if some edge labels contain only their
branching character).

2. The trie resulting from dropping the non-branching
characters is actually a cardinal tree with no unary
nodes. Since each of the k internal nodes has at least
two children, the number of such cardinal trees is cer-
tainly at least the number of binary cardinal trees
with t = k + K = 2k + 1 nodes. The number of bits
required to represent the binary cardinal trees is at
least t + k log

`

σ
2

´

, since t bits are needed for encod-
ing the tree structure, and each pair of outgoing edges
from an internal node may be labeled in

`

σ
2

´

possible

ways. Thus, t+ k log
`

σ
2

´

= 2k log σ +(2k +1)− k(1+
log( σ

σ−1
)) ≥ (t − 1) log σ bits to represent.

Given the bijection that exists between S and its compacted
trie TS , we arrive at the following theorem.

Theorem 1. Encoding string collection S needs at least

LT(S) = E log σ + log

 

E

t − 1

!

bits. (2)

This result can be used in two ways. Negatively, to provide
a lower bound to the storage complexity of any string set S;

this lower bound is smaller than eqn. (1) because log
` E

t−1

´

≤
E, for any t ≥ 1. Positively, to infer that the encoding of TS

outperforms the encoding of CS because we strip the unary
nodes.

We now turn our attention to some interesting lineariza-
tions of TS and relate their storage complexity to LT. We
start from the well-known front-coding scheme (FC). It rep-
resents the string set S = {s1, s2, . . . , sK} as the sequence
FC(S) = 〈0, s1, n2, s

′
2, . . . , nK , s′K〉, where ni is the length

of longest common prefix (lcp) between si−1 and si, and

1Strictly speaking, the latter term should be log
`E−1

t−2

´

. However,

the difference between the two is at most a negligible additive
factor of log N , and is consumed by the second order terms.
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Figure 2: A “hard” example for FC.

s′i is the suffix of si remaining after the removal of its first
ni (shared) characters. The first string s1 is represented
in its entirety. FC is a well-established practical method
for encoding a string set [26]; its main drawback is that
decoding a string sj might require the decompression of
the entire prefix sequence 〈0, s1, . . . , nj , s

′
j〉. Recently, [3]

proposed a variant of FC, called locality-preserving front
coding (LPFC), that, given a parameter ε, adaptively par-
titions S into blocks such that decoding any string sj takes
O((1/ε)|sj |) optimal time and requires (1 + ε)|FC| bits of
space. This adaptive scheme offers a clear space/time trade-
off in terms of the user-defined parameter ε. In any case,
it is not at all clear how much good is FC or LPFC with
respect to the information-theoretic lower bound LT. We
investigate this below.

We resort a long-standing observation [17] about a relation-
ship between TS and FC(S). (See Fig. 1). The characters
stored by FC in the suffixes s′i can be obtained by either (1)
scanning the edge labels of TS in preorder; or, (2) building
TS incrementally via the insertion of individual strings si

(in lexicographic order), and then taking suffix s′i as the la-
bel of the new edge added to the current (compacted) trie.
Thus, there is a bijective correspondence between trie edges
and FC’s suffixes s′i, whose total length sums up to E. The
net result is that FC(S) consists of three parts: (1) the edge
labels, taking E log σ bits; (2) the label separators #, tak-

ing at least log
` E

K−1

´

bits; and (3) the lcp lengths, taking

at least
P

i log(ni + 1) bits via any prefix-free encoding of
integers [8]. As a result, we see that

|FC| ≥ E log σ + log

 

E

K − 1

!

+
K
X

i=1

log(ni + 1). (3)

On the other hand, there exist solutions to compress a bi-
nary array of m bits with n bits set to 1 and m−n bits set to
0 (or vice versa), using the information-theoretic minimum
of log

`

m
n

´

+ O(log m) bits of space [25].

Therefore, since
PK

i=1 ni ≤
PK

i=1 |si| = N , we can use these

solutions to encode the values ni in log
`

N
K−1

´

+ O(log N)
bits, thus obtaining

|FC(S)| ≤ E log σ+log

 

E

K − 1

!

+log

 

N

K − 1

!

+O(log N).

(4)
The three-fold decomposition of FC’s storage cost suggests
some pathological situations when FC may be far apart from
LT. To get them, it suffices to enlarge the cost of storing
the lcp lengths in FC, a cost that is absent in LT. (See
Theorem 1.) An illustrative example is given in Fig. 2,
where the set S consists of K binary strings (i.e. σ = 2)

that share the same K-long binary prefix, followed by a
distinct log K-bit suffix. This is a hard case for FC, because
it repeatedly represents the value ni = K, thus incurring in
a significant penalty with respect to LT. To evaluate this
penalty, we consider the relationship between S and TS .
Here, TS consists of t = 2K nodes (k = K internal nodes
plus K leaves) and E = 3K − 2 edge-labeling characters.
Using eqn. (3), we see that |FC| is at least ≈ K(3 + log 3 +
log K) bits. On the other hand, LT ≈ K(3 + log 1.5) bits
by Theorem 1, and therefore FC is an Ω(log K) factor larger
than the lower bound.

Lemma 1. For an arbitrary string set S of K strings of
total length N , LT ≤ |FC(S)| ≤ LT + O(K log N/K). There
exist string dictionaries for which this upper bound is tight,
and/or the storage gap between LT and FC is more than a
factor Ω(log K).

The above example drives us to consider a different lin-
earization, called rear-coding (RC), which is a simple vari-
ation of FC. RC implicitly encodes the lcp length ni by
specifying the length of the suffix of si−1 to be removed
from it to get the longest common prefix between si−1 and
si. (See Fig. 1 for an example.) RC(S) = 〈0, s1, |s1| −
n2, s

′
2, . . . , |sK−1|−nK , s′K〉. This change is apparently small

but is, nonetheless, crucial to avoid repetitive encodings of
the same lcps: characters in the edge labels are counted
just once, guaranteeing that

PK−1
i=1 (|si| − ni+1) ≤ E. In

other words, we are decomposing the (compacted) trie TS

into K upward paths (one per leaf/string) and encoding
their individual lengths. If we encode these lengths using a
compressed binary array of E bits with K − 1 bits set to 1,

we need log
` E

K−1

´

+ O(log E) bits, and thus get overall

|RC(S)| ≤ E log σ + 2 log

 

E

K − 1

!

+ O(log E) (5)

bits, where one of the log
` E

K−1

´

terms comes from encoding
the above binary array and the other comes from encoding
the K − 1 delimiters for the K − 1 suffixes having overall
length E.

Comparing eqn. (4) and (5), we observe that RC overcomes
the inefficiencies of FC since E ≤ N . (In practice, it is much
smaller.) Also, RC matches LT when t ≈ 2K (e.g. when
σ = 2). Using our earlier example in Fig. 2, we see that
|RC| ≈ 2K(1 + log 3) bits, which is within a factor of 1.5
from LT, and thus asymptotically better than FC in this
case. Since K < t ≤ 2K, RC is never more than a constant
factor worse than LT.

Theorem 2. For any string set S,

LT ≤ |RC(S)| ≤
„

1 +
4(1 + log e)

2 log σ + 1
+ o(1)

«

LT. (6)

Proof. Let’s examine the ratio |RC|/LT using Theorem 1
and eqn. (5), and upper-bound it by

E log σ + 2 log
` E

K−1

´

+ O(log E)

E log σ + log
` E

t−1

´

≤ 1 +
2 log

` E
K−1

´

E log σ + 1
+ o(1).

Since
`

x
y

´

≤ (xe/y)y and E > K(1 + 1/σ), we can write:

|RC|/LT ≤ 1 + o(1) +
2(1 + log e

1+1/σ
)

log σ + 1/E
.
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The ultimate moral is that front- and rear-codings are not
just mere heuristic approaches to the (lossless) compres-
sion of string collections. They are intimately related to
the information-theoretic minimum LT on the storage com-
plexity of the string set S. Our results also suggest that the
novel RC may be asymptotically better than FC and never
worse than a constant factor from LT, which is realizable
for large alphabet size σ. Another interesting bound is that
of E log σ + log

`

E
t−1

´

+ log
`

2t
t

´

= LT(S) + Θ(K), descending

from the result in [10]. It can be lower than eqn. (5) in some
cases and is comparable to that of the dictionary encoding
in Theorem 6, but does not achieve cache-obliviousness in
decoding.

4. STRING DICTIONARY ENCODINGS
Similar to the terminology for other data types [15, 21],
we call a data structure for the string dictionary problem
succinct if it takes space close to the information-theoretic
lower bound LT and supports query operations—Member,
Rank, Prefix Range, and Select—with no slowdown
with respect to classic tries.

In the rest of the paper, we will make use of the following
well-known tools for succinctly encoding and efficiently ac-
cessing (labeled) trees and binary arrays. We recall that
an ordinal tree is a rooted tree with nodes of arbitrary de-
gree, while a σ-ary cardinal tree is the extension of a binary
tree to the case in which each node has σ children. (Empty
children are explicitly stored as null pointers.)

Theorem 3. [24] We can encode a binary array B[1, m]
with n 1s and m − n 0s (or vice versa) in log

`

m
n

´

+ o(m)
bits, and support Rank/Select operations in O(1) time.

Theorem 4. [4, 16, 14] We can encode an (unlabeled)
ordinal tree of t nodes in 2t + o(t) bits, and support sophis-
ticated navigational operations—find the parent, the ordinal
position among its siblings, the ith child, the DFS-rank, the
jth level-ancestor—in constant time.

Theorem 4 makes use of the DFUDS (depth first unary degree
sequence) encoding, which we will employ later on. Briefly,
it traverses a tree in preorder and, for each visited node,
outputs the node degree in unary using the symbols ( and ).
For example, ((() is for a node with three children, and )

is for a leaf. An extra ( is added to the beginning to obtain
a sequence of 2t balanced parantheses. For example, the
tree in Fig. 1 gives ( (() ((() ) ) ) (() ((() ) ) ) ).

From this example, we can observe the following. Each
node v (when traversed in preorder) is mapped to a dis-
tinct ) in the sequence; as a child (except the root), v is
also mapped to a distinct ( in the sequence when its parent
was traversed. We therefore define the DFS-rank (preorder
number) of a node as the number of ) symbols in the se-
quence that are to the left of its ) symbol (inclusive). Its
DFUDS-rank is the number of ( symbols in the sequence that
are to the left of its ( symbol (inclusive). Note that, for a
node, its DFS-rank and DFUDS-rank are not necessarily equal:
to this end, Theorem 4 allows us to map DFS-rank to DFUDS-
rank, and vice versa, in O(1) time.

Theorem 5. [24, 4] We can encode a σ-ary cardinal tree
of t nodes in log

``

tσ+1
t

´

/(tσ + 1)
´

+ o(t + log σ) bits, and

support navigational operations—find the parent, the degree,
the ordinal position among its siblings, the child with label c,
the ith child, the DFS-rank—in constant time.

Recent results [13] have refined the space occupancy of the
above solutions for binary arrays and trees by achieving
better o-terms, since they are non-negligible in many cases.

4.1 A Simple Approach Using Cardinal Trees
Our first succinct dictionary data structure for an ordered
set S of strings mixes the DFUDS encoding with a lineariza-
tion of the edge labels in TS . We call this simple mixed
encoding Z, and show that its space occupancy is close
to LT(S), and its time efficiency in supporting dictionary
queries in the RAM model is close to compacted tries. Un-
fortunately, this encoding does not efficiently generalize to
a hierarchy of memory levels, which is the main goal of this
paper. Such a key issue will be fully addressed in the next
sections.

Let w be a node of TS and let sw be the string labeling the
edge leading to w from its parent. We assume sw = σwαw,
where σw is the branching character of that edge and αw is
the (possibly empty) string of non-branching characters of
that edge.

We visit TS in pre-order and for each visited node v (other
than the root), we append the substring #αv to Z and drop
αv from the corresponding edge. At the end of the traversal,
each edge of TS is labeled only with its branching character,
and the string Z consists of E symbols, of which t − 1 are
#. Note that we can map Z’s characters to TS ’s edge labels
in constant time, once we are given their DFS-rank since it
corresponds to the rank of # in Z.

We have enough information to (a) store TS with just its
branching characters as a cardinal tree (Theorem 5), and
(b) build compressed data structures for supporting Rank
and Select operations over Z (Theorem 3), where # symbols
in Z are interpreted as 1s and the remaining symbols as
0s. This scheme takes 2t + t log σ bits for the cardinal tree,
whereas the indexing and storage of Z takes (E−t+1) log σ+

log
` E

t−1

´

+ o(E) bits, where t ≤ 2K. Summing up, the total

space occupancy (in bits) is 4K+E log σ+log
` E

t−1

´

+o(E) =

LT + 4K + o(E).

Whenever we need to access an edge label, we compute the
DFS-rank of the destination node and then access the corre-
sponding #-delimited substring in Z. Since every subtree of
TS is stored contiguously in Z, its traversal for retrieving
the pattern occurrences of Prefix Range(P ) takes opti-
mal time (even in the cache-oblivious setting). Notice that
the total number of characters retrieved for the occurrences
of pattern P [1, p] is at most p + Eocc symbols: because p is
the length of the upward path from the root of this subtree
to the root of TS , and Eocc denotes the number of characters
in the subtrie for the set occ ⊆ S of strings having prefix
P (so Eocc ≤ P

s∈occ |s|, but it is much less in practice).
Note that these strings are contiguous since S is sorted.
We therefore have (easily) proved the following result.

Lemma 2. Given trie TS , there exists a data structure
that requires LT(S)+4K+o(E) = (1+o(1))LT(S)+O(K) bits
and supports Rank(P ), Select(i), and Prefix Range(P )
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operations in O(p+log σ), O(|si|), and O(p+Eocc) time re-
spectively.

It was just an exercise to derive this solution by using ex-
isting succinct data structures. Surprisingly enough, this is
the first searchable and succinct implementation of an en-
coding scheme for string dictionaries that is better than
any known FC-based scheme both in space and time ef-
ficiency (see Lemma 1 and eqn. (4)). Compared to the
RC-scheme, the space in Lemma 2 is larger by the additive
term O(K) (see Theorem 2 and eqn. (5)). Theorically, since
LT ≥ E log σ and E ≥ K, we have that K = o(LT) when σ
goes to infinity; practically, we are just using 4 extra bits
per string.

Additionally, this approach compares favorably to the static
version of the cache-oblivious string B-tree [3] when it is
used in the RAM model, because of many positive features:
(1) it removes the dependance on the parameter ε (with
respect to space occupancy and throughput cost of Pre-
fix Range), (2) it achieves space close to optimal (up to
the additive term 4K + o(E)), and (3) it supports faster
query operations (since this cost does not depend on the
length of the predecessor and successor strings). However,
unlike COSB, it does not generalize to a hierarchy of memory-
levels due to lack of locality of references when traversing
the trie structure and comparing the edge labels. This is
the major point that we address in the rest of the paper,
where we introduce our main result.

4.2 A cache-oblivious approach
In this section we propose a string dictionary encoding
scheme, called PFC, which is succinct in space and cache-
oblivious in supporting the queries of our string dictionary
problem. PFC linearizes the trie TS by means of the cen-
troid path decomposition technique that suitably reshuffles
the strings in a way that they are succinctly encodable and
cache-consciously searchable.

Centroid path decomposition of a tree. We shall as-
sume without loss of generality that the root of TS has
degree 1. (If not, we can add an artificial root.) For any
node u in TS , the child of u with the most leaves in its sub-
tree is called u’s heavy child (ties are broken arbitrarily).
For any node u, the heavy path (or centroid path) from u
to a leaf is the downward path that traverses only heavy
children. It is well known that TS can be partitioned into
a set of K centroid paths, one per leaf (string), by a proce-
dure called centroid path decomposition. This is a recursive
procedure that first finds a centroid path of the root, and
then repeats the procedure in each subtree hanging off of
this centroid path.

Fact 1. Any root-to-leaf path π in TS (that is, a string s ∈
S) shares edges with at most dlog Ke centroid paths.

The centroid-path tree of TS . From the cardinal tree TS

we construct the new ordinal tree T c
S , called the centroid-

path tree, in which each node corresponds to a distinct cen-
troid path in TS . Precisely, T c

S has K nodes as there are
so many centroid paths, one per leaf in TS . We will denote
by πu the centroid path starting from a node u in TS ; and
wlog, we will also denote by u the corresponding node in
T c

S , storing in it information about the centroid path πu

it represents. Given this, nodes in T c
S are a subset of the

nodes in TS , namely, those originating a centroid path.

Let πr denote the centroid path of TS beginning at its root
r. We denote the subtries hanging off πr by T1, T2, ..., Tn(r),
numbering them in accordance to the lexicographical order
of their leaves. Let u1, u2, . . . , un(r) be the nodes at the
root of these subtries, respectively. Every trie Ti is then
recursively decomposed according to the centroid path be-
ginning at its root ui. As a result, T c

S is recursively defined
as the tree whose root is r, annotated with πr, having chil-
dren u1, u2, . . . , un(r), annotated with the paths resulting
from the centroid-path decomposition of T1, T2, . . . , Tn(r),
respectively. When it is clear from the context, we will use
the subtrie T c

i and its root ui interchangeably in T c
S , since

both are conceptually represented by the same node in T c
S .

Fig. 3 illustrates the recursive definition of T c
S . Pick a node

v on a centroid path πu of TS . We observe that its chil-
dren in TS are partitioned into three groups (some can be
empty): GL contains the children of v lying on the left side
of πu; GM contains the child of v along πu; GR contains the
children of v lying on the right side of πu. This observation
is crucial to understand the encoding that we are present-
ing next. We would like the nodes in GL ∪ GM ∪ GR to be
stored contiguously in the encoding of T c

S to permit efficient
branching from v to its children. Fortunately this is (par-
tially) true in T c

S , because the nodes in GL are contiguous
in T c

S , and the same holds for those in GR, while GM is
stored somehow as additional information in u (within the
label πu). Using this fact, we will show how to efficiently
branch from a node to its children using T c

S .

The structure of T c
S is suitable for cache-efficient access. As

previously mentioned, the nodes of the ordinal tree T c
S are

in one-to-one correspondence with a subset of the nodes in
the cardinal tree TS . While TS can have height Θ(K), the
height of T c

S is at most dlog Ke by Fact 1. (The maximum
height in T c

S is achieved when TS is a binary full balanced
tree.) On the average TS has height O(logσ K) [17, p.496]
and so the average height of T c

S is O(logσ K) since it can-
not exceed that of TS . Another interesting property is that
each root-node path π in TS is represented by a suitable
root-node path z1, z2, . . . , zh in T c

S (where z1 is its root
and h ≤ dlog Ke): in other words, π can be obtained by
concatenating suitable prefixes of the centroid paths πzi

annotated in the nodes zi in T c
S , for 1 ≤ i ≤ h. A portion

of the same path in both TS and T c
S is commented in the

caption of Fig. 3. We therefore want to mimic a path traver-
sal in TS using the above property on a suitable path in T c

S ,
by minimizing the random accesses to the trie encoding.

Given the interesting features above, we want to succinctly
store T c

S and its annotated centroid paths as an equiva-
lent representation of TS . As will be clear next, this is the
prelude to our linearization PFC of TS .

Succinct representation of T c
S. We represent T c

S with
a few succinctly indexed strings that encode trie struc-
ture and content, so that the subsequent string dictionary
queries can be implemented fast. All those strings are gen-
erated by visiting in pre-order the tree T c

S , and by rear-
ranging the children and the labels of every visited node in
a suitable way. As previously mentioned, the key difficulty
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Figure 3: Left: A compacted trie TS in which the centroid path πr from the root r is drawn in bold. Each node ui is the

root of the subtrie Ti, for 1 ≤ i ≤ 12. For node v, its groups are GL = {u3, u4, u5}, GM = {z}, and GR = {u11}. Top right:

The recursive structure of the centroid-path tree T c
S , where ui recursively stores the centroid path decomposition

of T c
i . Bottom right: The πr-based level-wise ordering of r’s children in T c

i , along with their binary arrays Blast
r and

Bside
r . Note that the path that starts from the root r ∈ TS and goes through the nodes v and z to u10’s subtrie in TS ,

is equivalently represented in T c
S by the path that starts from r ∈ T c

S and goes to its child u10, and so on, plus the

prefix of πr (up to node z) annotated at r, the prefix of πu10
annotated at u10, and so on.

here is that, for any node u in T c
S , its children represent-

ing the roots of T c
1 , T c

2 , T c
3 ...T c

n(u) are numbered according
to the lexicographical order of their leaves (i.e. a sort of
DFS-visit driven by πu), whereas efficient branching out of
πu’s nodes requires shuffling these sub-trees first level-wise
and then in left-to-right order (because the pattern search
proceeds top-down in TS , see Fig. 3). The following discus-
sion is aimed at showing how to succinctly encode T c

S while
supporting cache-oblivious string-dictionaries queries.

Encoding the structure. We first introduce the string
Ystruct of balanced parentheses that encodes the structure of
T c

S as an ordinal tree, using DFUDS representation. Since T c
S

consists of K nodes, we can use Theorem 4 to store Ystruct

in 2K + o(K) bits and take constant time to implement
many sophisticated navigational operations over T c

S . We
recall that we can map DFS-rank to DFUDS-rank, and vice
versa, in constant time.

Encoding the labels. We need to suitably arrange the
annotation πu of every node u in T c

S in such a way that
the resulting strings can be encoded succinctly and can be
combined efficiently on-the-fly with Ystruct to support fast
string-dictionary queries over TS . Hence, the basic question
is how to branch from a centroid path πu to its suitable
subtrie.

Given a path πu we use the symbol # to demarcate its edge
labels in top-to-bottom order. Notice that every symbol #
corresponds to a node in πu, with potentially many subtries
of TS hanging off it and lying to the left or to the right side
of πu. In T c

S , we reshuffle these children first level-wise and
then in left-to-right order. This means that we traverse πu

downward, and for every encountered node (i.e. # symbol),

we write the subtries that hang-off that node according to
the left-to-right order of their leaves. We will hereafter
call this ordering of u’s children in T c

S , πu-based level-wise
ordering, and drop πu-based when this is clear from the
context (see Fig. 3).

We wish now to encode the level-wise ordering in such a way
that the encoding is succinct and can be related efficiently
with Ystruct. We introduce two binary arrays Blast

u and
Bside

u which keep track, for every subtrie hanging-off πu,
from which of its # symbols it originates and from which side
(right or left) it lies. We also introduce another string Bhead

u

that keeps track of the branching characters of the edges
connecting πu to the above subtrees. This fully encodes
the structure and annotation of T c

S . Precisely, given the ith
subtree hanging-off πu (according to the level-wise ordering
above), we set the following binary arrays.

• Blast
u [i] = 1 iff that subtree is the rightmost one that

hangs off some node in πu.

• Bside
u [i] = 1 iff that subtree lies to the right of πu in

TS .

• Bhead
u [i] = c iff c is the first character labeling the edge

which connects that subtree to πu.

We construct compressed data structures (Theorem 3) to
support Rank and Select queries over Blast

u and Bside
u , each

containing n(u) entries (bits), where n(u) is the degree of u
in T c

S . Building all these data structures at the global level,
over all nodes u ∈ T c

S , they require 2K + o(K) space be-
cause T c

S has K nodes. Furthermore, we notice that Bhead
u

can be partitioned in n(u) sub-groups, one per node along
the centroid path πu in TS (hence, one per symbol # in
the annotation of u). Each subgroup refers to a node z on
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πu (hence, symbol #), and it is formed by the first (hence,
branching) symbols of the centroid paths hanging-off z and
lying on the left or the right side of πu in TS . It is im-
portant to notice that each subgroup consists of distinct
characters, and thus can be indexed by means of the dictio-
nary data structure of [4, Thm 4.2] which takes log σ bits
per indexed character. All these (subgroup) indexes can be
concatenated to form the indexed Bhead

u , thus taking space
which is log σ-times the number of indexed characters. We
notice that over all nodes u ∈ T c

S , the space required by all
these strings is (t− 1) log σ + o(t) bits because we have one
indexed character per edge in TS , and there are t− 1 edges
in total.

We finally concatenate those data structures by visiting the
nodes u of T c

S in pre-order, so building the (indexed) strings:

• Yhead which contains the Bhead
u -substrings;

• Ylast which contains the Blast
u binary vector;

• Yside which contains the Bside
u binary vector;

• Ytail which is the string containing the tails of the
centroid paths πu (i.e., without their first character,
which is already stored in Yhead).

Overall, Yside and Ylast occupy 2K +o(K) bits (because T c
S

has K nodes), Ytail takes (E− t +1) log σ + log
` E

t−1

´

+ o(E)

bits (because of t−1 edges and thus branching characters),
and Yhead takes (t−1) log σ+o(t) bits (because we have t−1
branching characters in TS). We point out that the little-oh
terms are due to the Rank and Select data structures that
we build to support constant-time access to the individual
data structures given the DFS-ranks of their corresponding
nodes in T c

S (by Theorem 3). In summary, the total space
(in bits) taken by all those strings is

4K + E log σ + log

 

E

t − 1

!

+ o(E) = LT + 4K + o(E)

.
It goes without saying that all those strings can be fused
in one string, maintaining their individuality, by paying an
extra additive o(E) term, and giving rise to our PFC.

The reader may notice at this point that both Ystruct and
the other Ys are built according to the DFS-visit of T c

S .
However, for every visited node u, the sub-structures of the
(indexed) strings Ys referring to u are arranged according to
the level-wise order of the corresponding subtrees, whereas
the ones present in the string Ystruct are arranged according
to the DFS-order of those subtrees. The rest of this section
is therefore dedicated to show how to orchestrate the path-
navigation of TS with the (succinct) arrangements of the
centroid-path information in T c

S .

Orchestrating Ys strings. String Ystruct is useful to
navigate T c

S via structure-based queries, whereas the other
strings Ys are useful to navigate T c

S via pattern-based queries.
To support all our string-dictionary queries, we need to go
back-and-forth from these two navigational approaches.

Let us consider a node u in T c
S . By Theorem 4, we know

that we can map the DFUDS-rank of u in T c
S to its DFS-

rank, and vice versa, in constant time. This is useful be-
cause we can jump in constant time between u’s position in

Ystruct—its corresponding ( symbol—to its data structures
Bside

u , Blast
u , Bhead

u , and Btail
u in the strings Ys.

Now, assume that v is the yth node on the centroid path πu.
The subtrees hanging-off v in TS may be divided into three
groups according to πu, as shown in Fig. 3. Indeed, given
y, we can access the yth data structure in Bhead

u to find all
characters heading the edges hanging-off v. Additionally,
given y and Blast

u and Bside
u , we can determine the ordinal

positions of GL and GR among the children of u in T c
S (and

thus get their DFUDS-ordering). It is enough to compute
a = Select(y − 1) and b = Select(y) in Blast

u , and then
count the number q0 of 0s in Bside

u [1, a] (subtrees on the
left of πu) using Rank of 0s; and count the number q1 of 1s
in Bside

u [1, b] (subtrees on the right of πu) using Rank of 1s.
Then, the value q0 (resp. n(u) − q1) indicates the starting
ordinal position of GL (resp. GR) among the children of
u in T c

S . Therefore, if Bhead
u provides us with the ordinal

position of the children of the v where we need to jump,
and we know the starting ordinal (DFS-)position of GL and
GR; then we also know the ordinal (DFS-)position of that
children in T c

S , and thus its DFUDS-position (by Theorem 4).
This tool is useful to percolate T c

S for pattern matching.

Dictionary queries in TS . All the following operations
are implemented by using string Ystruct to navigate T c

S via
structure-based queries, and the other strings Ys to navi-
gate T c

S via pattern-based queries.

Select(i). We take a top-down approach starting at the
root of T c

S and navigating to its required child subtree re-
cursively, till we find the correct path. Note that we are
looking for the ith leaf in TS . The nodes in T c

S correspond
to leaves in TS , however the pre-ordering of T c

S does not
give the pre-ordering of TS ’s leaves. Nonetheless, we are
able to determine which child of the root r of T c

S contains
the ith leaf of TS ; then, we can recursively navigate from
that child node until we find the ith leaf. Hence, we first
find out whether the required leaf is on the left or the right
of πr. This can be done by counting the number of children
which correspond to centroid paths hanging-off the left of
πr; and then counting the number of nodes descending from
those (left) children via Ystruct. This can be easily obtained
by the DFS-rank of the rightmost among those children. If
this number is larger than i, then the leaf we are interested
in is to the left of πr, otherwise it is to the right. At this
point the following observation is crucial: although the i-th
) does not correspond to the centroid path of si, because of
the shuffling induced by the centroid path decomposition,
the corresponding centroid path and the one of si belong
to the same subtree of r. Therefore, if the required node
goes on the left of πr, then we find in which subtree of r
the (i + 1)th ‘)’ symbol falls into; otherwise we check for
ith ) symbol. This child (subtree) can be found by using a
level-ancestor query (with level =2) [16] issued from the ‘)’
symbol we found.

This process continues recursively (by increasing the level
for the LA-query), until we find that the path we are at
is exactly what we want (i.e., when the left or right query
fails). Now, we reconstruct the string by traversing upwards
in T c

S . Since the height of T c
S is at most log K, the time

taken for this operation is O(|si| + log K).
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Prefix-Range(P ). We first check the path πr correspond-
ing to the root r of T c

S , and find the longest common prefix
(lcp) between P and πr. Notice that πr is stored contigu-
ously (in Ytail). If P is fully consumed, then we have a
match. Otherwise, we look at the mismatching character
P [lcp + 1]. If it does not correspond to a symbol # on πr,
then we stop there and no match exists; otherwise, we have
reached a node z in πr and thus compare P [lcp + 1] with
the character in πr after the #. (It is a branching char of
z.) If it is lower (lexicographically) then we should follow
a branching edge of z on the left of πr; if it is higher, we
should follow a branching edge of z on the right of πr. The
test on the existence of the branching char P [lcp + 1] at z
is done by accessing one of the two indexing data structures
in Bhead

z corresponding to the centroid paths hanging-off z
and lying to the left/right of πr. These data structures can
be determined in constant time given the position of z in πr

(found during the scanning); additionally, it takes constant
time to check the existence of a branching for P [lcp + 1]
([4, Thm 4.2]).2 Once we know that this branching does
exist, we also know its ordinal position among the children
of z and thus we can derive the ordinal position of this
child among the children of r according to the DFS-order in
constant time (as illustrated above). Finally, we jump to
the representation of this node in Ystruct via ordinal tree
operations in constant time (Theorem 4).

This process continues recursively until we find a mismatch
or until the entire pattern is consumed. In the latter case,
we identify the group of subtrees (children) of the current
node in T c

S that provide the answer for the current prefix-
range query. All these subtrees occur contiguously in the
strings Ytail and Yhead, so that we can reconstruct the re-
sulting strings in O(p + Eocc) time, where Eocc denotes the
number of characters in the subtree storing the set occ ⊆ S
of strings prefixed by P .

Rank(P ). For Rank(P ), we first navigate pattern p in T c
S

and reach a node v. It is easy to find the preorder rank of v
in T c

S by [16]. However, this pre-order rank is not the same
as the rank of the leaf in TS corresponding to p, which is the
value we are interested in. Nonetheless, we can derive this
value by subtracting by the preorder rank of v the number
of all ancestors w of v in T c

S such that πv is on left of πw

in TS . It is easy to keep track of this number during the
navigation of T c

S . In the case that the pattern is not fully
consumed at the node v, we find between which two children
of v the pattern search should have gone in log σ time and
we go to the end of the encoding of the subtree to the left
(of where the pattern should have gone) and then report
the rank as above.

Analysis in the Cache-Oblivious Model. We note that
the layout of the string Y involves few random accesses,
corresponding to the operations in Theorems 3– 5. In all
the above queries, the number of random accesses is a con-
stant per centroid-path visited and thus it is bounded by
O(log K) overall (Fact 1). Furthermore, the edge labels (of
total length p + Eocc) to be retrieved occur contiguously.
Hence, we get

2If the branching character does not match, [4, Thm 4.2] does
not tell the rank of the predecessor char of P [lcp + 1]. But we
do not need this!

Theorem 6. Given a set S of K strings drawn from
an alphabet of size σ, there is an encoding of S that takes
LT(S)+4K +o(E) = (1+o(1))LT +O(K) bits and supports
Prefix Range(P ), Rank(si), and Select(i) in O(P/B+
log K + Eocc/B), O(P/B + log K), and O(|si|/B + log K)
I/Os, respectively.

This result improves Theorem 2 because it guarantees cache-
obliviousness in the cost of scanning the searched pattern
P . We also notice that the space bound is asymptotically
better than any FC-based scheme (and thus also LPFC), be-
cause it is larger than the minimum LT by just an additive
term of 4K + o(E) bits.

As we observed before, we restate here the important fact
that term log K in Theorem 6 is actually logσ K on the
average (the height of T c

S ): this is actually a very small
value for large sets of strings. As a consequence, we expect
in practice this term to be small—e.g. it is approximately 6
for a billion strings over an English alphabet (σ ≈ 60).

In the following sections we aim at achieving an improve-
ment in the worst case, and thus proceed in two distinct
directions: either we deploy the knowledge of the distribu-
tion of the dictionary queries (Section 5), or we resort to
the cache-oblivious trie of [6] and devise a novel use for the
LPFC-scheme of [3] (Section 6).

5. A DISTRIBUTION-AWARE APPROACH
Another key property of our scheme is that it is flexible
enough to be distribution-aware in supporting the string
queries. In fact, let us assume that the leaves of TS are
weighted according to the probability p(s) of occurrence of
the corresponding string s in a user query. We aim at devis-
ing a succinct and cache-oblivious solution whose worst-case
term O(log K) is replaced by the (potentially) smaller term
O(log 1/p(s)), which reflects the information content of the
queried string s. This scenario is very well known in data
structural design [20], and has lead many authors to pro-
pose weighted search data structures whose time complexity
depends on the probability distribution of their queries. All
those results are neither cache-oblivious nor succinct. The
elegance of our approach is that it can be easily adapted to
work in this setting too.

The idea is that any leaf of TS is weighted according to
the probability of occurrence of its corresponding string in
the flow of dictionary queries. Then all internal nodes of
TS are weighted by summing the weights of their descend-
ing leaves. Our centroid-path decomposition approach, de-
scribed in the previous section, can then be applied by se-
lecting now the child with the largest weight. As a result, the
path corresponding to string s traverses O(log2 1/p(s)), in-
stead of O(log2 K) (see Fact 1), weighted-centroid paths of
TS . Given that this value influences the number of random
memory accesses, we have proven the following.

Lemma 3. Given a stream of queries for which we know
its distribution in advance, the term log K in Theorem 6 can
be transformed into log2(1/p(s)) where p(s) is the probabil-
ity of querying string s ∈ S.

It is interesting to note that in the case of a prefix search for
the pattern P is S, the extra cost is log2(1/p′), where p′ is
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the cumulative sum of the probability of occurrence of the
dictionary strings having prefix P . So our encoding has the
positive feature that the most frequently P occurs in the
query sequence, the lower is the extra I/Os our search pro-
cess induces with respect to the minimum Ω(P/B+Eocc/B).
Our string dictionary is the first that is succinct in space,
cache-oblivious and conscious of the query distribution. In
various practical settings this distribution can be estimated
in advance, e.g. using query-logs in search engines (see e.g.
[1] and refs therein).

6. SUCCINCT CACHE-OBLIVIOUS STRING
B-TREE

This structure consists of the two-level blocking scheme of-
ten used by software developers in practice [26], which has
been improved in this section to make use of our cache-
oblivious scheme plus some other specialties related to the
LPFC-approach. We prove several results below.

First of all, we use the terminology of the LPFC-encoding
scheme [3]. The LPFC scheme uses front compression but
periodically writes the whole string without relying on any
previous strings. Thus, when decoding a particular string,
one does not have to go too far back. We call a string
of S copied that is either entirely copied by FC or LPFC.
The former means that its lcp is zero; the latter means
that a string s has been copied because the cost of recon-
structing s given FC(S) was Ω(|s|/ε), where ε is a suitable
constant. The key feature of LPFC was to show that the to-
tal length of the strings (copied or not) was upper bounded
by (1 + ε)FC(S), and the cost of decoding any string s was
the optimal O(|s|/ε). This is an elegant trade-off between
space occupancy and time complexity to decode any FC-
compressed string, driven by the parameter ε. In this paper
we propose a novel use of LPFC as a sampling tool to derive
a more succinct and cache-obliviously searchable dictionary
encoding scheme.

We first show how to create a sampled set of strings. We
set ε = 1, construct LPFC(S), and mark all the copied
strings. Next, partition S into contiguous blocks of log2 K
strings each. We call a block valid if it contains at least
one copied string. From any valid block, we select the
minimum-length string and insert it in the set S ′. Since
each selected string is no longer than any copied string of
its block, we can prove that the total length of the strings in
S ′ is O(FC(S)/ log2 K) = o(LT(S)). Now, we use the cache-
oblivious trie of [6] on the strings of S ′, as a top-level index
structure to route the string queries to their proper block.
The space taken by this structure is |S ′| log |S ′| + S log σ
bits, where S is the total length of the strings in S ′. We
noted above that |S ′| = K/ log2 K and S = FC(S)/ log2 K,
so that the total space required by the top-level structure
is o(LT(S)) bits.

As far as the bottom-level data structure is concerned, we
use our structure of Theorem 6 for the valid blocks, the

other blocks are RC-encoded. This takes E log σ+2 log
` E

K−1

´

+

O(log E) bits (eqn. (5)). By simple algebraic arguments, one

can show that log
` E

K−1

´

= O(K) + o(E), and thus the bot-

tom level takes (1 + o(1))LT(S) + O(K) bits of space and,
any string s in a non-valid block can be decoded in optimal

O(|s|/B) I/Os, since it is a non-copied string of LPFC. The
use of RC instead of FC in the non-valid blocks is needed to
ensure the above space bound, without slowing down the
decoding performance.

Searching proceeds in the following way. We query the top-
level index in O(P/B + logB K) I/Os [6] and find a valid
block b. Then, we search b using Theorem 6, thus either
finding the result or determining that the searched string is
larger than any other string in block b. This takes O(P/B+
log log K) I/Os, because b contains log2 K strings. If the
searched string is larger than any other string in block b,
we perform a scan of the (non-valid) blocks following b (if
any). These blocks are actually FC-encoded, because they
do not contain any copied string, and since they are non-
valid we are ensured that every string in those blocks can
be decoded in optimal time. Therefore the search for P
takes O((P + succ(P ))/B) I/Os.

Theorem 7. Given a set S of K strings, we can de-
sign a data structure that takes (1 + o(1))LT(S) + O(K)
bits of space and supports Prefix Range(P ), Rank(si)
and Select(i) queries in O((P + succ(P ))/B + logB K +
log log K+Eocc/B), O((P+succ(P ))/B+logB K+log log K),
O(|si|/B + logB K + log log K) I/Os, respectively.

As we observed before, term log log K is actually logσ log K
on the average [17, p.496], which is actually a tiny value
for large sets of strings and in practice. When logB =
O(log K/ log log K) (which means “always” in practice for
large data sets), we get the COSB-bound with the optimal
space occupancy. To bound in the worst case the log log K
term by logB K, we modify the way the Kb strings in a
(valid) block b of the bottom-level structure are stored. We
compute the storage space S(b) of our scheme for the block
b (Theorem 6), and distinguish two cases:

1. If S(b) ≤ log4 K, we simply use our scheme because
we can obtain O(logB K) search bound for searching
this structure. In fact if B > S(b) then everything fits
in one page, otherwise B ≤ S(b) = polylog(K) and so
log log K = O(logB K).

2. If S(b) > log4 K, we have that the length of the
edge labels Eb is Ω(K2

b ). So we can afford to store
the powerful cache-oblivious blind trie of [6] to search
within b in an optimal number of I/Os. This takes
O(Kb log Kb) bits for the blind trie plus the cost of
storing the strings. The leaves of the blind-trie point
to the starting locations of the strings in the linear
storage structure. If we use LPFC to store the strings
in b (with parameter ε), we have a space occupancy of
(1 + ε)FC(b) + O(Kb log Kb) = (1 + ε + o(1))LT(b) be-
cause we have to consider the cost of the lcps and the
blind trie (but both are bounded because Kb ≤

√
Eb).

Any string s of block b, identified by a search in the
blind trie can be decoded in optimal O(|s|/B) I/Os.

Thus, we proved the following:

Theorem 8. Given a set S of K strings, we can design
a data structure that takes (1 + ε)LT + O(K) bits of space
and supports Prefix Range(P ), Rank(si) and Select(i)
queries in O((P+succ(P ))/(Bε)+logB K+Eocc/B), O((P+
succ(P ))/B + logB K), O(|si|/B + logB K) I/Os, respec-
tively, where ε is a user defined parameter.
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This is better than the storage space of the cache-oblivious
String B-tree [3] because it takes (1 + ε)FC + O(K log N)
bits and LT may be asymptotically smaller than FC, as we
pointed out in Section 3.
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