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Abstract— Interior-point algorithms constitute a very interest-
ing class of algorithms for solving linear-programming problems.
In this paper we study efficient implementations of such algo-
rithms for solving the linear program that appears in the linear-
programming decoder formulation.

I. I NTRODUCTION

Consider a binary linear codeC of length n that is used
for data transmission over a binary-input discrete memoryless
channel. As was observed by Feldmanet al. [1], [2], the ML
decoder for this setup can be written as

x̂ML = arg max
x∈C

〈γ,x〉,

whereγ is a length-n vector that contains the log-likelihood
ratios and where〈γ,x〉 is the inner product (inR) of the
vectorγ with the vectorx. Because the cost function in this
maximization problem is linear, this is essentially equivalent
to the solution of

x̂
′
ML , arg max

x∈conv(C)
〈γ,x〉,

where conv(C) denotes the convex hull ofC when C is
embedded inRn. (We say “essentially equivalent” because
in the case where there is a unique optimal codeword then the
two maximization problems yield the same solution. However,
when there are multiple optimal codewords thenx̂ML andx̂

′
ML

are non-singlet sets and it holds thatconv(x̂ML) = x̂
′
ML.)

Because the above two optimization problems are usually
practically intractable, Feldmanet al. [1], [2] proposed to solve
a relaxation of the above problem. Namely, for a codeC that
can be written as the intersection ofm binary linear codes
of length n, i.e., C , ∩m

j=1Cj , they introduced the so-called
linear programming (LP) decoder

x̂LP , argmax
x∈P

〈γ,x〉, (1)

with the relaxed polytope

P ,

m
⋂

j=1

conv(Cj) ⊇ conv(C) ⊇ C, (2)

for which it can easily be shown that all codewords inC are
vertices ofP .

The same polytopeP appeared also in papers by Koetter
and Vontobel [3], [4], [5], where message-passing iterative
(MPI) decoders were analyzed and where this polytopeP was

called the fundamental polytope. The appearance of the same
object in these two different contexts suggests that there is a
tight connection between LP decoding and MPI decoding.

The above codesCj can be any codes of lengthn, however,
in the following we will focus on the case where these codes
are codes of dimensionn−1. For example, letH be anm×n

parity-check matrix for the codeC and lethT

j be thej-th row
of H.1 Then, defining

Cj =
{

x ∈ {0, 1}n
∣

∣ 〈hj ,x〉 = 0 (mod 2)
}

for j = 1, . . . , m, we obtainC = ∩m
j=1Cj .

Of course, the reason why the decoder in (1) is called LP
decoder is because the optimization problem in that equation
is a linear program (LP).2 There are two standard forms for
LPs, namely

minimize 〈c,x〉

subj. to Ax = b (3)

x ≥ 0

and

maximize 〈b, λ〉

subj. to A
Tλ + s = c (4)

s ≥ 0

Any LP can be reformulated (by introducing suitable auxiliary
variables, by reformulating equalities as two inequalities, etc.)
so that it looks like the first standard form. Any LP can also
be reformulated so that it looks like the second standard form.
Moreover, the first and second standard form are tightly related
in the sense that they are dual convex programs. Usually, the
LP in (3) is called the primal LP and the LP in (4) is called the
dual LP. (As it is to be expected from the expression “duality,”
the primal LP is the dual of the dual LP.)

Not unexpectedly, there are many ways to express the LP
that appears in (1) in either the first or the second standard
form, and each of these reformulations has its advantages (and
disadvantages). Once it is expressed in one of the standard
forms, any general-purpose LP solver can basically be used to
obtain the LP decoder output. However, the LP at hand has a
lot of structure and one should take advantage of it in order to

1Note that in this paper all vectors arecolumn vectors.
2We use LP to denote both “linear programming” and “linear program.”



obtain very fast algorithms that can compete complexity- and
time-wise with MPI decoders.

Several ideas have been presented in the past in this direc-
tion, e.g., by Feldmanet al. [6] briefly mention the use of
sub-gradient methods for solving the LP of an early version
of the LP decoder (namely for turbo-like codes), by Yang
et al. [7], [8] on efficiently solvable variations of the LP
decoder, by Taghavi and Siegel [9] on cutting-hyperplane-
type approaches, by Vontobel and Koetter [10] on coordinate-
ascent-type approaches, by Dimakis and Wainwright [11]
and by Draperet al. [12] on improvements upon the LP
decoder solution, and by Taghavi and Siegel [13] and by
Wadayama [14] on using variations of LP decoding (together
with efficient implementations) for intersymbol-interference
channels.

In this paper our focus will be on so-called interior-point
algorithms, a type of LP solvers that has become popular with
the seminal work of Karmarkar [15]. (After the publication
of [15] in 1984, earlier work on interior-point-type algorithms
by Dikin [16] and others became more widely known). We
present some initial thoughts on how to use this class of
algorithms in the context of LP decoding. So far, with the
notable exception of [14], interior-point-type algorithms that
are especially targeted to the LP in (1) do not seem to have
been considered. One of our goals by pursuing these type
of methods is that we can potentially obtain algorithms that
are better analyzable than MPI decoders, especially when it
comes to finite-length codes. (Wadayama [14] discusses some
efficient interior-point-type methods, however, he is trying to
minimize a quadratic cost function, and the final solution is
obtained through the use of the sum-product algorithm that
is initialized by the result of the interior-point search. Al-
though [14] presents some very interesting approaches thatare
worthwhile pursuing, it is not quite clear if these algorithms
are better analyzable than MPI decoders.)

There are some interesting facts about interior-point-type
algorithms that make them worthwhile study objects. First of
all, there are variants for which one can prove polynomial-time
convergence (even in the worst case, which is in contrast to the
simplex algorithm). Secondly, we can round an intermediate
result to the next vector with only0 / 1

2 / 1 entries and
check if it is a codeword.3 (This is very similar to the
stopping criterion that is used for MPI algorithms.) Note that
a similar approach will probably not work well for simplex-
type algorithms that typically wander from vertex to vertex
of the fundamental polytope. The reason is that rounding the
coordinates of a vertex yields only a codeword if the vertex
was a codeword.4 Thirdly, interior-point-type algorithms are

3To be precise, by rounding we mean that coordinates below1

2
are mapped

to 0, that coordinates above1
2

are mapped to1, and that coordinates equal
to 1

2
are mapped to1

2
.

4Proof: in an LDPC code where all checks have degree at least two, the
largest coordinate of any nonzero-vector vertex is at least1

2
. Therefore, there

is no nonzero-vector vertex that is rounded to the all-zero codeword. The
proof is finished by using the symmetry of the fundamental polytope, i.e., the
fact that the fundamental polytope “looks” the same from anycodeword.

also interesting because they are less sensitive than simplex-
type algorithms to degenerate vertices of the feasible region;
this is important because the fundamental polytope has many
degenerate vertices.

The present paper is structured as follows. In Secs. II and III
we discuss two classes of interior-point algorithms, namely
affine-scaling algorithms and primal-dual interior-pointalgo-
rithms, respectively. As we will see, the bottleneck step of
the algorithms in these two sections is to repeatedly find
the solution to a certain type of system of linear equations.
Therefore, we will address this issue, and efficient solutions to
it, in Sec. IV. Finally, we briefly mention some approaches for
potential algorithm simplifications in Sec. V and we conclude
the paper in Sec. VI.

II. A FFINE SCALING ALGORITHMS

An interesting class of interior-point-type algorithms are
so-called affine scaling algorithms which were introduced
by Dikin [16] and re-invented many times afterwards. Good
introductions to this class of algorithms can be found in [17],
[18].

Fig. 1 gives an intuitive picture of the workings of one
instance of an affine-scaling algorithm. Consider the LP in (3)
and assume that the set of all feasible points, i.e., the set of all
x such thatAx = b andx ≥ 0, is a triangle. For the vector
c shown in Fig. 1, the optimal solution will be the corner in
the lower left part. The algorithm works as follows:

1) Select an initial point that is in the interior of the set of
all feasible points, cf. Fig. 1(b), and let the current point
be equal to this initial point.

2) Minimizing 〈c,x〉 over the triangle is difficult (in fact,
it is the problem we are trying to solve); therefore,
we replace the triangle constraint by an ellipsoidal
constraint that is centered around the current point. Such
an ellipsoid is shown in Fig. 1(c). Its skewness depends
on the closeness to the different boundaries.

3) We then minimize the function〈c,x〉 over this ellipsoid.
The difference vector between this minimizing point
and the center of the ellipsoid (see the little vector in
Fig. 1(d)) points in the direction in which the next step
will be taken.

4) Depending on what strategy is pursued, a shorter or a
longer step is taken in the above-found direction. This
results in a new current point. (Whatever step size is
taken, we always impose the constraint that the step size
is such that the new current point lies in the interior of
the set of feasible points.)

5) If the current point is “close enough” to some vertex then
stop, otherwise go to Step 2. (“Closeness” is determined
according to some criterion.)

Not surprisingly, when short (long) steps are taken in Step 4,
the resulting algorithm is called the short-step (long-step)
affine scaling algorithm. Convergence proofs for different
cases can be found in [19], [20], [21].

Of course, an affine-scaling algorithm can also be for-
mulated for the LP in (4). Moreover, instead of the above-
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Fig. 1. Some iterations of the affine-scaling algorithm. (See text for details.)

described discrete-time version, one can easily come up with
a continuous-time version, see e.g. [22]. The latter type of
algorithms might actually be interesting for decoders thatare
implemented in analog VLSI.

The bottleneck step in the affine-scaling algorithm is to find
the new direction, which amounts to solving a linear system of
equations of the formPu = v, whereP is a given (iteration-
dependent) positive definite matrix,v is a given vector, andu
is the direction vector that needs to be found. We will comment
on efficient approaches for solving such systems of equations
in Sec. IV.

III. PRIMAL -DUAL INTERIOR POINT ALGORITHMS

In contrast to affine-scaling algorithms, which either work
only with the primal LP or only with the dual LP, primal-
dual interior point algorithms – as the name suggests – work
simultaneously on obtaining a primaland a dual optimal
solution. A very readable and detailed introduction to this
topic can be found in [23]. As in the case of the affine-scaling
algorithm there are many different variations: short-step, long-
step, predictor-corrector, path-following, etc.

Again, the bottleneck step is to find the solution to a linear
system of equationsPu = v, whereP is a given (iteration-
dependent) positive definite matrix,v is a given (iteration-
dependent) vector, andu is the sought quantity. We will
comment in Sec. IV on how such systems of linear equations
can be solved efficiently.

A variant that is worthwhile to be mentioned, is the class
of so-called infeasible-interior-point algorithms. The reason is
that very often it is easy to find a primal feasible initial point
or it is easy to find a dual feasible initial point but not both
at the same time. Therefore, one starts the algorithm with a
primal/dual point pair where the primal and/or the dual point
are infeasible points; the algorithm then tries to decreasethe
amount of “infeasibility” (a quantity that we will not define
here) at every iteration, besides of course optimizing the cost
function.

One of the most intriguing aspects of primal-dual interior-
point algorithms is the polynomial-time worst-case boundsthat
can be stated. Of course, these bounds say mostly something
about the behavior when the algorithm is already close to
the solution vertex. It remains to be seen if these results
are useful for implementations of the LP decoder where it is
desirable that the initial iterations are as aggressive as possible
and where the behavior close to a vertex is not that crucial.
(We remind the reader of the rounding-procedure that was
discussed at the end of Sec. I, a procedure that took advantage
of some special properties of the fundamental polytope.)

IV. EFFICIENT APPROACHES FORSOLVING Pu = v

WHEREP IS A POSITIVE DEFINITE MATRIX

In Secs. II and III we saw that the crucial part in the
discussed algorithms was to repeatedly and efficiently solve
a system of linear equations that looks like

Pu = v,



whereP is an iteration-dependent positive definite matrix and
wherev is an iteration-dependent vector. The fact thatP is
positive definite helps becauseu can also be seen to be the
solution of the quadratic unconstrained optimization problem

minimize
1

2
u

T
Pu − 〈v,u〉 (5)

subj. to u ∈ R
h

where we assumed thatP is anh×h-matrix. It is important to
remark that for the algorithms in Secs. II and III the vectoru

usually does not have to be found perfectly. It is good enough
to find an approximation ofu that is close enough to the
correctu. (For more details, see e.g. [18, Ch. 9].)

Using a standard gradient-type algorithm to findu might
work. However, the matrixP is often ill-conditioned, i.e., the
ratio of the largest to the smallest eigenvalue can be quite big
(especially towards the final iterations), and so the convergence
speed of a gradient-type algorithm might suffer considerably.

Therefore, more sophisticated approaches are desirable.
Such an approach is the conjugate-gradient algorithm which
was introduced by Hestenes and Stiefel [24]. (See Shewchuk’s
paper [25] for a very readable introduction to this topic and
for some historical comments.) This method is especially
attractive whenP is sparse or whenP can be written as a
product of sparse matrices, the latter being the case for LP
decoding of LDPC codes.

In the context of the affine scaling, e.g. Resende and
Veiga [26] used the conjugate-gradient algorithm to efficiently
solve the relevant equation systems and studied the behav-
ior of the conjugate-gradient algorithm with different pre-
conditioners.

A quite different, yet interesting variant to solve the mini-
mization problem in (5) is by using graphical models. Namely,
one can represent the cost function in (5) by anadditive
factor graph [27], [28], [29]. Of course, there are a varietyof
factor graph representations for the this cost function, however,
probably the most reasonable choice in the context of LP
decoding is to choose the factor graph that looks topologically
like the factor graph that is usually used for sum-product or
min-sum algorithm decoding of LDPC codes. One can then
try to find the solution with the help of the min-sum algorithm.

[Equivalently, one can look at the maximization problem

maximize exp

(

−
1

2
u

T
Pu + 〈v,u〉

)

(6)

subj. to u ∈ R
h.

Here the function to be optimized is proportional to a Gaus-
sian density and can be represented with a Gaussian factor
graph [27], [28], [29]. (Which in contrast to the above factor
graph is amultiplicative factor graph.) One can then try to find
the solution with the help of the max-product algorithm, which
in the case of Gaussian graphical models is equivalent (up to
proportionality constants) to the sum-product algorithm.]

The reason for this being an interesting approach is that
the behavior of the min-sum algorithm applied to a quadratic-
cost-function factor graphs is much better understood thanfor

(a) (b)

Fig. 2. Replacement of a partial factor graph representing adegree-k check
function node by another partial factor graph withk−2 check nodes of degree
three and withk − 3 new auxiliary variable nodes. (Herek = 6.)

other factor graphs. E.g., it is known that if the algorithm
converges then the solution vector is correct. Moreover, by
now there are also practically verifiable sufficient conditions
for convergence [30], [31], [32]. However, the quadratic-cost-
function factor graphs needed for the above problem are more
general than the special class of quadratic-cost-functionfactor
graphs considered in the cited papers. Of course, one could
represent the cost function in (6) by a factor graph within
this special class (so that the above-mentioned results are
applicable), however, and quite interestingly, when this cost
function is represented by a factor graph that is not in this
special class, then the convergence conditions seem to be
(judging from some empirical evidence) less stringent. In fact,
we obtained some very interesting behavior in the context
of the short-step affine-scaling algorithm where only one
iteration of the min-sum algorithm was performed per iteration
of the affine-scaling algorithm. (The min-sum algorithm was
initialized with the messages obtained in the previous affine-
scaling algorithm iteration.)

V. OTHER SIMPLIFICATIONS

Depending on the used algorithm, there are many small (but
very useful) variations that can – when properly applied –
lead to considerable simplifications. E.g., one can replacethe
partial factor graph in Fig. 2(a) by the partial factor graph
in Fig. 2(b) that contains new auxiliary variable nodes but
contains only check nodes of degree three [33], [34]. Or, one
can adaptively modify the set of inequalities that are included
in the LP formulation [13], [14].

VI. CONCLUSION

We have presented some initial considerations towards using
interior-point algorithms for obtaining efficient LP decoders.
Encouraging preliminary results have been obtained but more
research is needed to fully understand and exploit the potential
of these algorithms.
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